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Abstract: This paper studies a class of distributed time delay systems that exhibit power law type
long memory behaviors. Such dynamical behaviors are present in multiple domains and it is therefore
essential to have tools to model them. The literature is full of examples in which these behaviors
are modeled by means of fractional models. However, several limitations of fractional models have
recently been reported and other solutions must be found. In the literature, the analysis of distributed
delay models and integro-differential equations in general is older than that of fractional models.
In this paper, it is shown that particular delay distributions and conditions on the model coefficients
make it possible to obtain power laws. The class of systems considered is then used to model the
input-output behavior of a lithium-ion cell.

Keywords: power law behaviors; distributed time delay systems; fractional models; lithium-ion
batteries

1. Introduction

Systems with long memory behaviors sometimes generate outputs whose power spectrum X(ω)

exhibits power laws (X(ω) ≈ K/ω2ν) when supplied by white noise. Numerous examples of this kind
of behavior have been revealed in various domains:

• Electrochemistry through charge diffusion in batteries [1–4];
• Thermal conduction through the exact solution of the heat equation in a semi-infinite medium

linking the heat rate to the surface temperature [5,6];
• Biology through complex dynamics in biological tissues [7];
• Mechanics through the dynamical properties of viscoelastic materials and in particular wave

propagation problems in these materials [8];
• Acoustics through visco-thermal losses in wind instruments [9];
• Electrical distribution networks [10].

The fractional integrator operator that links an input u(t) to an output y(t) and defined in the
Riemann–Liouville sense by the Equation [11]

y(t) =
∫ t

0

1

(t− τ)ν−1
u(τ)dτ = ν

0I
{
u(t)

}
, (1)

also exhibits this kind of behavior as the modulus of the Fourier transform of this operator, denoted∣∣∣Y( jω)/U( jω)
∣∣∣ is defined by 1/ων. That is why a fractional order pseudo-state space description was

introduced to model this kind of behavior. In the commensurate case and in most of the studies found
in the literature, this description is defined by:

Fractal Fract. 2020, 4, 1; doi:10.3390/fractalfract4010001 www.mdpi.com/journal/fractalfract

http://www.mdpi.com/journal/fractalfract
http://www.mdpi.com
http://www.mdpi.com/2504-3110/4/1/1?type=check_update&version=1
http://dx.doi.org/10.3390/fractalfract4010001
http://www.mdpi.com/journal/fractalfract


Fractal Fract. 2020, 4, 1 2 of 11

{ dν
dtν x(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(2)

where dν
dtν is a fractional differentiation operator (which is, in a certain sense, the inverse operator to

the operator ν0I{ }). There are several definitions for dν
dtν in the literature [11]—more than 30 are listed

in [12]—that are not all equivalent in relation to initial conditions [13–15].
Even if this kind of model provides a good fitting of the input-output behavior of many systems,

Description (2) has several drawbacks:

• The variable x(t) that plays the role of the state does not have the properties of a state, which is
why the name pseudo-state was introduced [13,14];

• The initial conditions are not well taken into account if the Caputo or the Riemann–Liouville
definitions are used for the derivative of the pseudo-state; it is better to define the description
with a fractional integration to take into account the model past [13–17];

• The use of fractional differentiation in the pseudo-state space description is not mandatory and
only fractional integration is needed [16];

• This description memory is infinite and it exhibits infinitely slow and fast time constants (even if
they are attenuated, they exist), which excludes the possibility of linking the pseudo-state variable
to a physical variable [14,16];

• Exact observability cannot be reached as all the system past must be known to predict its future [18];
• The fractional integration given by Equation (1) involves a singular kernel [19,20]. As mentioned

in [20], this leads to complications in the solution/simulation of the fractional order
differential equations;

• In modeling, several mathematical and interpretation problems can invalidate the models
obtained [21].

In recent decades, there has been a frantic “fractionalization” of concepts and methods dedicated
to integer models. It therefore seemed necessary to better define the benefits and limits of fractional
models. Over many years of research in the field of fractional models, I have largely participated in
updating several of the drawbacks previously mentioned. Faced with the omnipresence of phenomena
and systems that exhibit power law behaviors, I became convinced that it was necessary to better
understand the physical origins of these phenomena and it is proposed here to use other ways of
modeling them than fractional models.

Thus, to overcome these problems and to model power law type long memory behavior, a class
of distributed time delay models will be used here. Distributed time delay models, also known in
the literature as hereditary models [22] or integro-differential equation-based models [23], have long
existed. In this study, the delay distribution used in their definition is particularized in order to obtain
the desired power law behaviors. The class of model considered is then applied to the modeling of a
lithium-ion cell input-output behavior.

2. A Class of Time Delay Systems That Exhibits a Power Law Long Memory Behavior

The following class of distributed time delay systems is considered.

d
dt x(t) = A0x(t) + A1

∫ T f
0 η(τ)x(t− τ)dτ+ Bu(t)

with A0 ∈ R, A1 ∈ R and B ∈ R
(3)

Distributed delay makes it possible to model the cumulative effect of the past values on the
dynamics [3]. The literature abounds in practical applications of distributed delay systems, which
appear in fields as varied as thermodynamics, ecology, epidemiology (predator–prey systems), logistics,
traffic flow, microorganism growth, or hematopoiesis. In all these cases, the use of a distributed kernel
allows thinner modeling of the interactions between the different system components.
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In Equation (3), kernel η(t) is assumed to be defined by:

η(t) = C0
tν−1e−ωlt

Γ(ν)
with 0 < ν < 1ωl ∈ R∗+, (4)

with

C0 =
(
1 +ωl

2
) ν

2 with Γ(ν) =
∫
∞

0
tν−1e−tdt. (5)

The Laplace transform of Equation (3) (disregarding the initial conditions) is given by:

sx(s) = A0x(s) + A1

∫ T f

0
η(τ)x(s)e−τsdτ+ Bu(s) (6)

and thus

sx(s) = A0x(s) + A1x(s)
∫ T f

0
η(τ)e−τsdτ+ Bu(s). (7)

The following integral is now studied:

I(s) =
∫ T f

0
η(τ)e−τsdτ. (8)

Function η(t) being given by Equation (4), integral I(s) is given by (see Appendix A)

I(s) =
C0

(
T f

)ν
Γ(1 + ν) 1F1

(
ν, 1 + ν, T f (s +ωl)

)
(9)

where 1F1(a, b, z) denotes the Kummer function defined by:

1F1(a, b, z) =
∞∑

n=0

(a)n

(b)n

zn

n!
(10)

with
(a)n = a(a + 1)(a + 2) . . . (a + n− 1), (a)0 = 1. (11)

Integral I(s) given by Equation (9) is represented in Figures 1 and 2 for several values of ν and for
several values of T f . These figures highlight that:

• Parameter ν affects the order of the power law behaviors;
• Parameter T f chosen such that T f = 10/ωl, controls the frequency band on which the power law

behavior exists.
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𝜈
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0
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∞
𝑛=0

𝑧𝑛

𝑛!
    (10) 
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Figure 1. Gain (a) and phase (b) diagrams of integral I(s) for various values of ν and Tf = 10,000. Figure 1. Gain (a) and phase (b) diagrams of integral I(s) for various values of ν and Tf = 10,000.
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Figure 2. Gain (a) and phase (b) diagrams of integral I(s) for various values of Tf and ν = 0.5.

Using expression I(s), Equation (7) becomes:

sx(s) = A0x(s) + A1x(s)I(s) + Bu(s). (12)

The transfer function linking x(s) to u(s) is given by:

x(s)
u(s)

=
B

s−A1I(s) −A0
(13)

and can be rewritten as follows:

x(s)
u(s)

=
−B/A1

−s/A1 + I(s) + A0/A1
=

β

α1s + I(s) + α0
= H(s) with β =

−B
A1

, α1 =
−1
A1

, and α0 =
A0
A1

. (14)

Parameters β, α0, and α1 can be used to control the gain of the transfer function H(s) (value of
H(0)) and the frequency band on which the power law behavior takes place. Figure 3 describes how
parameters (must) act on the gain asymptotic diagram of the H(s) denominator to obtain the required
power law behavior. Let ω1 = 10/T f . As

∣∣∣I( jω)
∣∣∣ ≈ 1/ων with ω� ω1, in the configuration of Figure 4,

it can be checked that:

ω2 ≈

√√(
C0

α0

) 2
ν

−ω1
2 ω3 ≈

α0

α1
. (15)

Figure 4 shows the frequency response H(s)/s (H(s) given by Equation (14)) for various values
of ν and with ω1 = 0.001 rd/s, ω2 = 104 rd/s, ω3 = 106 rd/s, and T f = 104 s. This figure highlights
the ability of the considered class of models to produce power law behaviors and shows how the
parameters control the frequency band on which this behavior takes place.
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3. Power Law Long Memory Behavior Without Singular Kernel

The kernel used in Equation (4) has a singularity at time t = 0. To overcome such a problem, new
operators were proposed in [23] and others studied in [19,20]. In this work, it is proposed to modify
Equation (4) by the Equation:

η(t) = C0

(
ωνl

Γ(ν)
tν−1e−ωlt −

ωνl
Γ(ν)

tν−1e−ωmt +ωνl ω
1−ν
m e−ωmt

)
(16)

with

C0 =

∣∣∣∣∣∣∣∣∣
 1( j
ωl

+ 1
)ν − (

ωl
ωm

)ν 1( j
ωm

+ 1
)ν + (

ωl
ωm

)ν 1
j
ωm

+ 1


−1

∣∣∣∣∣∣∣∣∣. (17)

As t tends toward 0, the following relation holds (using Taylor expansions of the exponential
function in Equation (18)):
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η(t) ≈

t→ 0
C0

(
ωνl

Γ(ν)
tν−1(−ωlt +ωmt) +ωνl ω

1−ν
m

)
(18)

and thus
lim
t→0

η(t) = C0ω
ν
l ω

1−ν
m . (19)

This highlights the non-singularity of Kernel given by Equation (14) as time t tends toward 0.
With this new definition, the integral in Equation (8) is given by:

I(s)

= K1
(
1F1

(
ν, 1 + ν, (s +ωl)T f

)
− 1F1

(
ν, 1 + ν, (s +ωm)T f

))
+ K2

(
1−e
−(s+ωm)T f

s+ωm

) (20)

with

K1 =
C0ωl

νT f
ν

Γ(1 + ν)
K2 = C0ωl

νωm
1−ν. (21)

Figure 5 shows the gain and phase diagrams of integral I(s) for various values of ν and with
ωl = 10−2 rd/s and ωm = 104 rd/s.
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As for the kernel given by Equation (4), the parameters A0, A1, and B in Model (14), and thus
the parameters of β, α0, and α1, can be used to control the frequency band on which the power law
behavior takes place. This is illustrated by Figure 6 that shows the impact of α0 on the frequency
response of H(s).
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4. Application

It is proposed in this section to use the class of models introduced above to capture the behavior of
a lithium-ion cell. The need to implement short-term memory models such as the one introduced in this
paper for the modeling of electrochemical devices was highlighted in [24]. Also, it was shown in [25]
that only a positive electrode can be considered and under the hypothesis of a single spherical particle
for this electrode, a lithium-ion cell can be modeled using the block diagram of Figure 7, in which:

- A system Sd models the diffusion of lithium in the spherical particle and links the current I(t) to
the concentration of lithium Cs(t) at the surface of the spherical particle;

- A nonlinear function OCV(t) = f (CS(t)) links the concentration of lithium at the surface of the
spherical particle CS(t) to the open circuit voltage OCV(t);

- A resistor R is used to model the cell internal resistance and contact resistance.
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Figure 7. Model of a lithium-ion cell proposed in [25].

The function OCV(t) = f (Cs) can be obtained by measuring the cell voltage at rest for various
cell states of charge (SOC). For the considered cell, this function is shown in Figure 8 and fitted by a
degree 10 polynomial. The initial state of the battery is defined by CS(0) and the cell voltage is U(t).
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The diffusion part exhibits a power law behavior at high frequency and it is proposed here to
model it using the following model: d

dt x(t) = A1
∫ T f

0 η(τ)x(t− τ)dτ+ BI(t)
U(t) = A1

∫ t
0 x(τ)dτ

(22)

in which the kernel η(τ) is defined by Equation (16) with ωl = 10/T f and ωm chosen ten times greater
than the sampling frequency of the current and voltage signals.

The current profile of Figure 9 is applied to the cell, and the parameters of Model (22) are tuned
using a nonlinear optimization algorithm that aims to reduce the error between the measured voltage
and the model output in Figure 7.
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The parameter optimization process provides the following results for the Model:

A1 = 989.6, B = 45.92, T f = 1410 s (23)
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Figure 10 shows a comparison of the cell voltage and the voltage provided by the model. It reveals
a good accuracy of the model and confirms the ability of this class of model to capture long memory
power law type behaviors. The differences that appear are the result of the very high currents applied
to the cell that exhibit some non-linear behaviors not taken into account by the model used.
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5. What Does the Proposed Approach Solve?

The previous sections show that the class of distributed delay models considered (Equation (3)) is
able to exhibit a power law behavior on a controlled frequency band. In comparison with the fractional
Model (2), and in relation with the comments in the introduction section:

• In Equation (3), the variable x(t) can be viewed as a real state and a physical meaning can be
associated to it;

• There is no longer any ambiguity in the operator used for the definition of Equation (3) (in
Equation (2), the Caputo, Riemann–Liouville, or other operators [12] can be chosen);

• The memory of Model (3) is of finite length;
• Initialization the Model (3) requires the knowledge of its state on a finite length and is well defined.

6. Conclusions

Dynamic systems that exhibit power law behaviors are currently modeled in the literature using
fractional models. Several papers recently revealed various limitations of this class of model. In order
to overcome these limitations, this paper is a first attempt to show that power law behaviors can also be
captured by classes of models that were introduced into the literature some time ago, i.e., distributed
delay models [26,27] (but also the Volterra equation of the second kind [28,29]). Two delay weight
functions permitting the desired power law are proposed. First, a simple one, but with a singularity,
and a second one without. For these two functions, conditions on the model coefficients are given
for the definition of the frequency band on which the power law takes place. The class of model
considered is used to capture the input-output behavior of a lithium-ion cell, a system that is known to
exhibit a power law behavior.

The author intends now to study in greater detail the properties of this class of model in order to
reach more complex behaviors. Particular attention will be paid to the meaning that can be given to
the state in a modeling approach. Other classes of model will also be used.
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Appendix A

This appendix gives some indications on how to obtain Equation (9). In [30], the following result
can be found:∫ 1

0
eztta−1(1− t)b−a−1dt =

Γ(b− a)Γ(a)
Γ(b) 1F1(a, b, z) with Re(b) > Re(a) > 0 (A1)

where 1F1(a, b, z) denotes the Kummer function defined by the Equation:

1F1(a, b, z) =
∞∑

n=0

(a)n

(b)n

zn

n!
with (a)n = a(a + 1)(a + 2) . . . (a + n− 1), (a)0 = 1. (A2)

Note that the Kummer function (or confluent hypergeometric function of the first kind) is
implemented in MATLAB software as kummerU (a, b, z).

The Equation (8) is given by:

I(s) =
∫ T f

0
η(τ)e−τsdτ =

∫ T f

0
C0
τν−1e−ωlτ

Γ(ν)
e−τsdτ. (A3)

Using the change of variable x = τ
T f

and thus dx = 1
T f

dτ, Integral (A3) can be rewritten as:

I(s) =
C0

(
T f

)ν
Γ(ν)

∫ 1

0
xν−1e−xT f (s+ωl)dx. (A4)

Using a = ν, b = 1 + ν and z = T f (s +ωl) in Equation (A1), Integral (A4) is also defined by:

I(s) =
C0

(
T f

)ν
Γ(1 + ν) 1F1

(
ν, 1 + ν, T f (s +ωl)

)
. (A5)

A similar calculation can be done with the kernel in Equation (16).
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