
Citation: Yoo, S.; Kim, N. Coarse

Alignment Methodology of Point

Cloud Based on Camera

Position/Orientation Estimation

Model. J. Imaging 2023, 9, 279.

https://doi.org/10.3390/

jimaging9120279

Academic Editor: Rémi Boutteau

Received: 20 October 2023

Revised: 8 December 2023

Accepted: 12 December 2023

Published: 14 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Coarse Alignment Methodology of Point Cloud Based on Camera
Position/Orientation Estimation Model
Suhong Yoo 1 and Namhoon Kim 2,*

1 Department of Drone and GIS Engineering, Namseoul University, 91, Daehak-ro, Seonghwan-eup, Seobuk-gu,
Cheonan-si 31020, Republic of Korea; shyoo@nsu.ac.kr

2 Department of Civil Engineering and Environmental Sciences, Korea Military Academy, 574, Hwarang-ro,
Nowon-gu, Seoul 01805, Republic of Korea

* Correspondence: kim_namhoon@kma.ac.kr

Abstract: This study presents a methodology for the coarse alignment of light detection and ranging
(LiDAR) point clouds, which involves estimating the position and orientation of each station using
the pinhole camera model and a position/orientation estimation algorithm. Ground control points
are obtained using LiDAR camera images and the point clouds are obtained from the reference station.
The estimated position and orientation vectors are used for point cloud registration. To evaluate the
accuracy of the results, the positions of the LiDAR and the target were measured using a total station,
and a comparison was carried out with the results of semi-automatic registration. The proposed
methodology yielded an estimated mean LiDAR position error of 0.072 m, which was similar to the
semi-automatic registration value of 0.070 m. When the point clouds of each station were registered
using the estimated values, the mean registration accuracy was 0.124 m, while the semi-automatic
registration accuracy was 0.072 m. The high accuracy of semi-automatic registration is due to its
capability for performing both coarse alignment and refined registration. The comparison between
the point cloud with refined alignment using the proposed methodology and the point-to-point
distance analysis revealed that the average distance was measured at 0.0117 m. Moreover, 99% of the
points exhibited distances within the range of 0.0696 m.

Keywords: place recognition; pose estimation; mapping; sensor fusion for localization; LiDAR; coarse
alignment; point cloud registration

1. Introduction
1.1. Background

The automatic registration of point clouds is a significant research area in civil engi-
neering, surveying, and building information modeling (BIM). To acquire extensive 3D
spatial data, aerial laser scanning (ALS) or terrestrial laser scanning (TLS) methodologies
utilizing light detection and ranging (LiDAR) instruments are deployed across multiple
stations, necessitating the registration of survey outcomes from each station. This process
is particularly crucial in indoor environments with many occluded areas, thus necessitating
the use of multiple stations [1–3]. Point cloud registration is also necessary when using
LiDAR surveying to collect data in a vast outdoor area [4].

There are two stages of automatic point cloud registration: coarse alignment and
refined alignment [5]. The approximate initial values of the point cloud registration pa-
rameters are acquired using coarse alignment and are fine-tuned using refined alignment.
For coarse alignment, constraints such as point, line, and surface can be used. As a repre-
sentative example, the authors in [6] developed the feature-based 4-point congruent sets
(F-4PCS) method and successfully performed non-target feature-based registration. The au-
thors in [7] proposed a local feature statistics histogram (LFSH) local feature descriptor for
point cloud registration that rapidly produced robust results. Image-based matching can
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also be affected using LiDAR and optical cameras. Ref. [8] registered point clouds by bun-
dle adjustment using a camera attached to a LiDAR device. Ref. [9] set an initial value for
the iterative closest point (ICP) using a feature detection algorithm. ICP is a representative
method for refining alignment [10,11]. Men et al. [12] proposed a 4D ICP algorithm using a
3D point cloud and also a hue color domain. As such, various methods have been proposed
for coarse alignment. However, according to the study in [9], there are some restrictions
for automatic registration. It was necessary to have a sufficiently wide overlapped area to
perform point cloud registration using targets, or to use the surveying result of a relatively
small area. It is still difficult to perform automatic point cloud registration in situations
where the overlapped area is not large or there is no target.

Using the position information acquired by a LiDAR may be proposed as the simplest
approach for solving this problem. Since the Global Navigation Satellite System (GNSS)
or Inertial Measurement Unit (IMU) is attached to a LiDAR, coarse alignment can be per-
formed without the aid of an algorithm if accurate sensor positions can be obtained. In the
study of [13], a laser scanner, GNSS, and Inertial Navigation System (INS) were used for
Mobile Mapping System (MMS) point cloud registration. Ref. [14] proposed a method using
a laser tracker to determine the six degrees of freedom (DOF) of a multisensory system for
3D data collection. In addition, various studies used LiDAR positional information [15–17].
However, in the case of indoor surveying, the use of GNSS is limited. Also, when using
INS, the accuracy of the sensor directly affects the quality of the LiDAR’s position.

This research presents a novel method for coarse registration based on the LiDAR
device’s position and orientation, which does not rely on GNSS or an IMU coupled with a
LiDAR. Instead, the LiDAR’s position and the stations’ orientations are estimated using the
point cloud surveying results of the reference station, and coarse registration is performed
based on the estimated value. A pinhole camera model is utilized to estimate the camera’s
position and orientation. The pinhole camera model is a simplified geometric transfor-
mation that converts a three-dimensional scene into a two-dimensional image plane [18].
The key assumption in the pinhole camera model is that light travels in straight lines.
Numerous studies have effectively modeled the structure of cameras with precision using
this simplistic camera model. Many prior research endeavors have employed the pinhole
camera model for a variety of investigations, including camera calibration and sensor
position estimation [19–23]. Unlike existing methods that are based on the collinearity
equation, the proposed method estimates the location of the laser scanning device using
a single image without initial values. To test the accuracy of the suggested technique,
a checkerboard marker and an automatic matching result provided by the LiDAR vendor
were utilized. Figure 1 presents a conceptual diagram of this study.

Figure 1. Conceptual diagram for estimating camera position and orientation.
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In this research, our approach involved employing a pinhole camera model-based
method to estimate the position of the device using a camera attached to the LiDAR. We
opted not to use Single Photo Resection (SPR) due to its reliance on the initial position
and orientation parameters of the LiDAR, and the Perspective-n-Point (PnP) solution due
to its dependency on the calibration values of the LiDAR camera. Considering that the
reliability of the estimated values with the Direct Linear Transformation (DLT) algorithm is
lower compared to the pinhole camera model-based method, we ultimately conducted the
estimation of the LiDAR’s position and orientation using the pinhole camera model-based
method. Specifically, the pinhole camera model was selected due to its advantageous
feature that allows to obtain the result value through a straightforward calculation when
an adequate number of Ground Control Points (GCPs) are available.

1.2. Related Work
1.2.1. Estimating Camera Position and Orientation

There are various methods such as SPR [24–27], the law of cosine [28], Procrustes
algorithm [29–31], PnP algorithm [32], DLT algorithm [33], and pinhole camera-based
algorithm [34–36] to estimate the position and orientation of the sensor using the cam-
era image. Among these methods, SPR is a widely recognized algorithm for estimating
EOPs [26,37]. It operates by iteratively adjusting three or more control points based on the
collinearity equation. Efforts have been made to enhance the efficiency of SPR. Nonetheless,
the reliance of SPR on accurate initial EOP values poses a challenge when such values
are unspecified. The same is true for the law of cosine algorithm, Procrustes algorithm,
and PnP algorithm where IOP is required. Particularly, the PnP algorithm, introduced
by Fischler and Bolles [32], estimates the position and orientation of a camera using a 3D
object’s corresponding point and a 2D image. Employing a perspective projection model,
it is extensively utilized in fields like indoor positioning and robotics. However, these
methods presuppose knowledge of the camera’s interior orientation information.

DLT model enables simultaneous estimation of the camera’s IOPs and EOPs. DLT
parameters are employed to represent EOP parameters, and the least-square solution (LESS)
is commonly used for their estimation. This method is widely applied in photogrammetry
and computer vision due to its simplicity and the utilization of a straightforward formula
for estimating the camera’s IOPs and EOPs. The advantage of using the Direct Linear
Transform (DLT) in camera pose estimation lies in its ability to perform the estimation by
calculating a set of simple 11 parameters based on control points. This feature has led to the
widespread use of DLT in various studies for camera pose estimation [38–40]. However,
the accuracy of the estimated IOPs and EOPs using the DLT model is lower compared to
physical models like the collinearity equation or the coplanarity equation [41]. When using
Direct Linear Transform (DLT) model to estimate camera pose, it must be noted that it is
highly sensitive to noise, and if control points satisfy the collinear condition, it may fail to
perform accurate pose estimation. Additionally, it has the drawback of not satisfying the
regular orthogonality properties for the rotation matrix. Furthermore, in the case of affine
projection, some information about the rotation matrix is missing, making it impossible to
calculate the camera orientation [42,43].

The pinhole camera model also yields satisfactory results for EOP estimation. In certain
cases, the perspective projection model has been employed to estimate radial distortion
values, principal distances, and EOPs. The solution can be obtained using techniques
such as the Gröbner basis or the Sylvester matrix [34,44]. The pinhole camera model-
based algorithm can stably estimate the position and orientation of the camera sensor [45].
Several investigations have demonstrated the potential application of this approach to
rolling shutter pose estimation as well [46,47].

1.2.2. Point Cloud Registration

Numerous attempts have been made to develop an effective technique for indoor
point cloud registration. Tsai and Huang [48] proposed a registration method to align a
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multi-view point cloud using a camera calibration technique. The authors used the pan-tilt
records of the camera and transformation matrices to merge point clouds. The presented
method was compared with the fast global registration method and Super4PCS and showed
superiority in terms of the root mean square (RMS) results and processing time. This
method was suitable to be applied when the LiDAR device rotates at one location and
performs registration after acquiring a point cloud. Zhang et al. [49] proposed an end-to-
end registration network (SLORNet) to overcome the difficulties in matching low-density
point clouds with a small overlap. This method performed exceptionally well for indoor
point cloud registration but has limitations for outdoor registration. A robust ICP (RICP)
method for the registration of Red, Green, Blue, and Depth (RGB-D) point clouds was also
proposed [50]. In this study, the existing ICP algorithm was improved regarding region
selection, point matching, and noise treatment. In particular, silent object detection (SOD),
which is based on a deeply supervised network was used to search for matching points
and produced satisfactory indoor point cloud registration. Various algorithms have been
used to register indoor point clouds. These methods prove efficient when the point cloud
acquisition point is at a short distance, e.g., when matching the point cloud of one room.
When registering the point cloud of a long corridor with many corners and when the
exact location of the LiDAR cannot be specified because it is indoors, registration must be
performed using another method.

Extensive research has been conducted on feature-based registration algorithms as
well. You et al. [51] proposed a point cloud registration algorithm based on the 3D Neighbor-
hood Point Feature Histogram (3DNPFH) descriptor. Their algorithm involves uniformly
sampling the point cloud to extract key points, transferring these key points to a new
3D coordinate system by constructing a local reference coordinate system, and reducing
the coordinate search space during feature matching by focusing on key points of similar
surfaces in close proximity. They constructed a neighborhood point feature histogram
by combining density, curvature, and normal vector information to find precise matches.
The authors highlighted in their paper that the algorithm presented achieves faster reg-
istration compared to existing methods. In a study by Li et al. [52], an improved Whale
Optimization Algorithm (IWOA) and an improved ICP (Iterative Closest Point)-based
registration algorithm were proposed to address the issues of low accuracy and efficiency
in point cloud registration for stereo camera systems. This study also employed a two-step
approach involving coarse registration and refined registration for point cloud registration.
The proposed algorithms in this paper also demonstrated improved registration accuracy
and speed. However, it should be noted that the sample point clouds used in both studies
were Stanford point clouds, and experiments were not conducted on continuously acquired
point clouds while the LiDAR was in motion.

Alicandro et al. [53], Xiong et al. [54], and Liu et al. [55] conducted research on
feature-based registration algorithm targeting indoor and outdoor architectural structures.
Alicandro et al. [53] conducted research focused on fine registration process for large-scale
point clouds. Their proposed method introduces a novel approach that utilizes planar
approximations of geometric features associated with roof structures (PARF). The PARF
method demonstrates superior resilience to noise in comparison to other analysis tech-
niques, ensuring more reliable results even in the presence of noisy data. Additionally, it
exhibits notable computational efficiency, allowing for faster processing and analysis of
point cloud data. Moreover, it offers the advantage of enabling point cloud registration in
dynamic environments, surpassing the efficiency of the conventional ICP method. When
compared the results with GNSS surveying, marker-based registration showed an error
range of 0.011–0.012%, while the PARF methodology exhibited a lower positional error of
0.004–0.005%. In terms of computational time, the ICP algorithm required 120 min, whereas
PARF only took 30 min, thereby demonstrating its superiority in this aspect as well.

Xiong et al. [54] proposed a point cloud registration algorithm based on Gaussian-
weighting projected image matching. This method demonstrated its strength in registering
point clouds acquired from multiple stations. Firstly, the point cloud was normalized into
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a 2D grid, where the point density of each grid cell was normalized using a Gaussian
weighting function. Secondly, the SIFT (scale-invariant features) algorithm was employed
for image matching, and a line segment endpoint verification method was used to filter
out incorrect matches. Lastly, the transformation matrix between adjacent stations’ point
clouds was calculated based on image matching. The method was reported to have an
operation time 4 to 10 times faster and a registration accuracy 2 to 6 times higher compared
to the conventional 4PCS method. However, as acknowledged by the authors, a limitation
of this approach is that it is applicable only to point clouds with planar surfaces.

Liu et al. [55] introduced a methodology for registering the point cloud of an irregular
structure (specifically, a dome) in indoor environments. The methodology comprises three
blocks: coarse registration, partial fine registration, and full fine registration. In this study,
the coarse registration step utilized the image-based coarse registration method proposed
by Manush et al. [56]. Both studies utilized a LiDAR system known as Stockpile Monitoring
and Reporting Technology (SMART) to measure the volume of indoor stockpiles. The coarse
registration step consisted of six stages. Firstly, feature points between the reference
station’s acquired image and images acquired from other stations were detected using
the SIFT algorithm. After removing lens distortion, stereo-pair selection was performed,
and the rotation angle of the camera was estimated. After selecting the rotation matrix
and features, an iterative process was employed to fine-tune the camera rotation angle.
This refinement step resulted in excellent outcomes even when registering sparse point
clouds, showcasing the method’s effectiveness for both regular and irregular structures.
The system has demonstrated the capability to generate volume estimates that closely
resemble those obtained from Terrestrial Laser Scanner (TLS), with a difference within the
range of 1%.

Despite the abundance of research in point cloud registration, indoor environments
present additional challenges that make the task more difficult. Registration and localiza-
tion using indoor point clouds can encounter obstacles such as self-similarity within the
environment and the presence of unforeseen objects [57]. In Mahmood et al.’s study, they
addressed these challenges by proposing geometric feature-based localization and registra-
tion techniques to overcome these difficulties. In the study conducted by Luo et al. [58],
challenges were encountered during the registration of indoor point clouds obtained from
TLS and Mobile Laser Scanner (MLS) systems. To address this issue, the researchers lever-
aged existing architectural reference data as a means to overcome the difficulties associated
with indoor point cloud registration.

1.2.3. Position and Orientation Estimation of Sensors Using Point Cloud

In Baek et al.’s study [59], authors focused on the position of the point cloud acquisition
platform (mobile LiDAR) in underground spaces. The authors utilized fast point feature
histograms to search for point features in both local and global point clouds and employed
random sample consensus (RANSAC) and ICP for registration. They then estimated the
position of the mobile LiDAR using these techniques. While their study shares similarities
with ours, there are clear differences. The main distinguishing factor is whether a pre-
existing global point cloud is available or not. Additionally, it is important to consider
whether the estimation is limited to the position of the platform alone or includes the
estimation of orientation as well.

In the study conducted by Wasik et al. [60], they utilized 2D point cloud data obtained
from other robots to achieve relative positioning of closely-grounded robots. By employing
a simple circle fitting algorithm on the 2D point cloud, the local coordinate frame of the
robot of interest could be estimated. The objective of this research was to determine the
position of robots of the same type in close proximity.

Salles et al. [61] conducted a study focused on aerial point clouds. They employed
the Normalized Cross-Correlation method to match the trajectory point cloud with a
pre-existing reference database. In this study, the accuracy of estimation was enhanced
by utilizing mapping data that integrates terrain, canopy top, and intensity information.
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By applying a 2D transformation called binning, they successfully tracked the trajectory of
the unmanned aerial vehicle (UAV).

In Jiang et al.’s study [62], they proposed a framework for estimating the position and
attitude of a robot using IMU (Inertial Measurement Unit) and LiDAR data. The Rank
Kalman filter was employed in their approach. Through experiments conducted on small-
scale trajectories, the authors demonstrated that their proposed method improved the
accuracy of robot movement path estimation by 23.84% and 25.26% in the X and Y axis
directions, respectively. This study also aimed to track the two-dimensional motion of
the robot. Indeed, a significant number of studies have been dedicated to extracting the
sensor’s position from a pre-existing point cloud. Positioning using point cloud has been
studied a lot in the field of position estimation of mobile systems such as SLAM and ROS,
and it was confirmed that the majority of the target data were 2D point cloud.

In summary, as observed from Sections 1.2.1–1.2.3, there are numerous prior studies on
sensor position/orientation using 2D image pixel coordinates or 3D point cloud coordinates
estimation and point cloud registration. However, despite the existence of many previous
research efforts, it has been challenging to find studies specifically focusing on performing
coarse registration of point clouds using the estimation of LiDAR’s position and orien-
tation. Although imaging sensors have been attached to LiDAR, they have mainly been
utilized to provide RGB information to the point cloud without additional functionalities.
Additionally, while there have been numerous studies on camera pose estimation, research
on integrating camera pose estimation with other sensors has been limited. Therefore,
in this paper, we conducted research on a methodology for registering 3D point clouds by
integrating the comprehensive theories presented. We focused on estimating the position
and orientation of the point cloud acquisition platform using the imaging sensor attached to
LiDAR and performed coarse registration. The method proposed in this study proves par-
ticularly beneficial in scenarios where determining the position and orientation of LiDAR
is challenging, such as in underground or indoor environments. Moreover, it offers the
advantage of performing point cloud registration outdoors using the same methodology.
Additionally, since it relies on estimating the position and orientation of LiDAR using
a two-dimensional image, it exhibits strengths in terms of computational requirements
and processing time. Lastly, a noteworthy advantage is its capability to conduct coarse
registration irrespective of the distance between point clouds.

2. Methodology
2.1. Camera Geometric Model and Estimating Position/Orientation Method
2.1.1. Pinhole Camera Model

The basic pinhole camera model is expressed using Equation (1) [63].

λxI = PXW (1)

where scalar λ is a scale factor, the vector xI is the homogeneous vector of the image point,
XW is the homogeneous vector of the object point, and P is the 3 × 4 homogeneous camera
projection matrix. When considering the application of principal point offset, pixel ratio,
and skew, Equation (1) is modified into Equation (2) as follows.

 f X + Zpx
f Y + Zpy

Z

 =

α f s px 0
0 β f py 0
0 0 1 0




X
Y
Z
1

 (2)

where f is the focal length, px and py are the locations of the principal point, α and β are
the pixel ratios, and s is the skew parameter.

Figure 2 illustrates the process of transforming between the world coordinate system
and the camera coordinate system. This transformation involves the utilization of rotation
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(R) and translation (t) operations. The geometric camera model, incorporating camera
rotation and translation, is applied in the following Equation (3).

λxI = PXW = K[R|t]XW (3)

where K = diag(1, 1, w) is the camera calibration matrix for w = 1
f .

Figure 2. World coordinate system and camera coordinate system.

2.1.2. Absolute Position/Orientation Estimation and Calibration Using Pinhole
Camera Model

In general, since the LiDAR’s important data are a 3D point cloud, the camera attached
to a LiDAR is only used to acquire the RGB value of the point cloud. Therefore, the provided
camera’s IOPs are bound to be limited. In particular, the radial distortion parameter,
as well as the camera’s focal length information, are not given in most cases. Therefore,
in this study, a method is used that simultaneously calibrates the camera and estimates
the absolute position/orientation. For this, assume that the camera’s principal point is
located in the center of the image, the skew parameter is 0, and the pixel ratio is 1. This
is consistent with the general characteristics of modern cameras [44,64–66]. Under these
assumptions, a process for camera calibration and position/orientation estimation was
proposed [34,36,44,67]. The image coordinates of the radially distorted image can be
expressed as Equation (4).

xI,i =
[
xi yi 1 + k1(x2

i + y2
i ) + k2(x2

i + y2
i )

2 + k3(x2
i + y2

i )
3]T (4)

where xI,i is the ith image point coordinates; k1, k2, and k3 are radial distortion parameters.
Let us define the skew–symmetric matrix of vector a as the following Equation (5).

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (5)

The following Equation (6) can be obtained by multiplying both sides of the pinhole
camera model by the skew–symmetric matrix of vector xI,i. 0 −(1 + k1r2

i + k2r4
i + k3r6

i ) yi
1 + k1r2

i + k2r4
i + k3r6

i 0 −xi
−yi xi 0

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34




Xi
Yi
Zi
1

 = 0 (6)

The third row of Equation (6) can be written as the following Equation (7):

−yi(p11Xi + p12Yi + p13Zi + p14) + xi(p21Xi + p22Yi + p23Zi + p24) = 0 (7)
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If seven GCPs are available, Equation (7) can be transformed into a matrix form as
shown in Equation (8).

Ax =


−y1X1 −y1Y1 −y1Z1 −y1 −x1X1 −x1Y1 −x1Z1 x1
−y2X2 −y2Y2 −y2Z2 −y2 −x2X2 −x2Y2 −x2Z2 x2

...
...

...
...

...
...

...
...

−y7X7 −y7Y7 −y7Z7 −y7 −x7X7 −x7Y7 −x7Z7 x7





p11
p12
p13
p14
p21
p22
p23
p24


= 0 (8)

Using Singular Value Decomposition (SVD), the value of p11 to p24 can be obtained.
When decomposing matrix A into U, Σ, and V, the optimal solution for minimizing |Ax|,
which corresponds to finding the solution for Ax = 0, is obtained using the right singular
vector of the V matrix. It is important to note that the magnitude of this right singular
vector is 1. However, further calibration or normalization steps may be necessary to ensure
the desired scale or magnitude of the solution. The scale value can be corrected using the
property of the rotation matrix. Although the number of GCPs can be reduced by using
methods such as Gröbner basis or Sylvester matrix [34,35,44]. However, the elements of
the matrix P can be obtained using 7 GCPs and the characteristic of the rotation matrix to
simplify the algorithm [45].

Let us define the P′ matrix as the following Equation (9).

P′ =

p11 p12 p13
p21 p22 p23
p31 p32 p33

 = KR (9)

Since the matrix K is a diagonal constraint matrix and R is the rotation matrix, the three
rows of the matrix P′ are perpendicular. Also, the norm of the first and second-row vectors
are the same. Therefore, Equation (10) can be established.

p11 p21 + p12 p22 + p13 p23 = 0

p31 p11 + p32 p12 + p33 p13 = 0

p31 p21 + p32 p22 + p33 p23 = 0

p2
11 + p2

12 + p2
13 − p2

21 − p2
22 − p2

23 = 0

(10)

In Equation (10), p32 and p33 can be expressed using p31 as the following Equation (11).

p32 = −
p31(p11 p23 − p21 p13)

p12 p23 − p22 p13
= p31c1, p33 = −

p31(p21 p12 − p11 p22)

p12 p23 − p22 p13
= p31c2 (11)

The remaining five unknown parameters are p31, p34, k1, k2, and k3. Using the second
row of Equation (7), these unknowns can be calculated.

Mvunknown = vobservation (12)

where

M =

[
xiXi + c1xiYi + c2xiZi xi −r2

i (p11Xi + p12Yi + p13Yi + p14)

−r4
i (p11Xi + p12Yi + p13Yi + p14) −r6

i (p11Xi + p12Yi + p13Yi + p14)
]

i×5

(13)

vunknown =
[
p31 p34 k1 k2 k3

]T
5×1 (14)

vobservation =
[
p11Xi + p12Yi + p13Zi + p14

]
i×1 (15)
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By applying the least-squares solution (LESS), the values of all elements of the
vunknown can be obtained. Finally, the radial distortion parameter, camera position, and ro-
tation can be obtained. The last unknown focal length can be obtained using the first and
last rows of matrix P as the following Equations (16) and (17).

w2 p2
11 + w2 p2

12 + w2 p2
13 − p2

31 − p2
32 − p2

33 = 0 (16)

f =
1
w
=

√
p2

11 + p2
12 + p2

13

p2
31 + p2

32 + p2
33

(17)

2.2. Data Acquisition
2.2.1. Sensors

The experiment conducted in this study employed the Leica BLK360 LiDAR; the
technical specifications of this device, as provided by Leica Geosystems, Seoul, Korea, are
presented in Table 1.

Table 1. Specifications of BLK360.

Dimensions Height: 165 mm/Diameter: 100 mm
Distance measurement system High-speed time-of-flight enhanced by Waveform Digitizing (WFD) technology
Laser class 1 (in accordance with per IEC 60825-1:2014)
Wavelength 830 nm
Field of view 360° (horizontal)/300° (vertical)
Range min. 0.6–up to 60 m
Point measurement rate up to 360,000 pts/s
Ranging accuracy 4 mm @ 10 m/7 mm @ 20 m

Camera System
15 Mpix 3-camera system, 150 Mpx full dome capture,
HDR, LED flash Calibrated spherical image, 360° × 300°

Thermal Camera
FLIR technology based longwave infrared camera
Thermal panoramic image, 360° × 70°

BLK360 is a terrestrial laser scanner with a camera attached, and it acquires 6 images
in 4 directions. The Leica BLK360 is equipped with three cameras that capture upward,
sideward, and downward images, allowing for the creation of 360° × 300° dome images.
For this study, mainly 4 sideward images were utilized. The process of acquiring side
images involves rotating the LiDAR at intervals of 90° and capturing images using the
sideward camera. Figure 3 depicts the cameras that are mounted on the LiDAR system,
while Figure 4 illustrates 2 sample images that were captured by these cameras. The BLK360
device was chosen for this study due to its user-friendly nature, allowing for easy utilization
of the images captured from the camera attached to the LiDAR. This facilitated a straight-
forward comparison with the proposed methodology by enabling simple measurements
and automatic registration. Furthermore, the proposed methodology can also be applied
for coarse alignment when using TLS with an attached camera, and thus not limited to the
BLK360 device.

The accurate location of each station was obtained through the application of Leica
TS13 total station. Figure 5 displays the implementation of LiDAR surveying and LiDAR
position surveying in conjunction with the total station. To implement the methodology
proposed in this study, it is necessary to identify feature points in images that can serve as
GCPs. For each station image, a selection of 9 to 12 GCPs was made. Figure 6 provides an
illustrative example of a chosen GCP.
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Figure 3. Leica BLK360 LiDAR attached cameras.

Figure 4. Images captured by LiDAR cameras.

(a) (b)

Figure 5. Experiment using surveying equipment: (a) Acquired point clouds using Leica BLK360
LiDAR, (b) surveying the position of LiDAR stations using TS13 total station.
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Figure 6. Feature point for GCP.

2.2.2. Test Site

The suggested process was verified through an indoor LiDAR survey conducted in
Engineering Hall 4 at Yonsei University. The layout of the test site and the location of each
station are shown in Figure 7. The target area, which consists of long corridors and various
obstacles, was suitable for verifying the proposed process. At the reference station, a point
cloud was acquired through laser scanning and used to acquire the GCPs for the remaining
stations. After extracting the GCPs from the acquired point cloud, the position of each
station was estimated using the suggested methodology. To determine the registration
accuracy, black and white targets were placed in the test site as shown in Figure 7. The red
triangle represents the reference station, which is Station 0. The red X marks represent
the various stations where point clouds and images were acquired. The black and white
checkered pattern denotes the targets that were attached for accuracy comparison purposes.

Figure 7. The layout of LiDAR stations.
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3. Results and Discussions
3.1. Point Cloud of Each Station

Figure 8 shows the point clouds acquired from each station and the camera’s view
direction of each station. Since no GPS or IMU was applied, each camera center was set to
the origin. The camera view direction was estimated using the image and point cloud of
each station. In this study, the camera view direction estimated using the point cloud of
each station was designated as a local camera orientation vector.

(a) (b) (c)

(d) (e)

Figure 8. Point clouds and local camera orientation vectors: (a) Station 1, (b) Station 2, (c) Station 3,
(d) Station 4, (e) Station 5.

3.2. LiDAR Position and Orientation Estimation

The position and orientation of the LiDAR were estimated by utilizing the point cloud
data from reference station and the images from each station. The world camera orientation
was determined based on the estimated orientation obtained from the point cloud data
of reference station. For each station, 9 to 12 GCPs were obtained by utilizing the images
captured at the respective station and the reference point cloud gathered at reference station.
The point cloud data were rotated using the local camera orientation vector and the world
camera orientation vector obtained from the previous subsection and translated using
the estimated LiDAR position. In the presented methodology, while only 7 GCPs are
technically required, a selection of 9 to 12 GCPs was made to minimize estimation errors
and eliminate outliers. The C(n, 7) estimation process was employed, followed by the
removal of estimated outlier values using the RANSAC algorithm. From the remaining
candidate solutions, the estimation result with the lowest reprojection error was considered
as the position and orientation of the LiDAR device. Table 2 summarizes the translation
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vectors, the local camera orientation vectors, and the world camera orientation vectors of
each station. Only the lever-arm vector representing the exact position of the camera in the
point cloud coordinate system was calculated for reference station. Since the point cloud of
reference station was used as a reference point cloud, point cloud rotation was not required
and therefore, the boresight vector was not calculated.

Table 2. Local camera orientation vectors and world camera orientation vectors.

Station Number
Translation Vector Local Camera Orientation Vector World Camera Orientation Vector
X (m) Y (m) Z (m) X (m) Y (m) Z (m) X (m) Y (m) Z (m)

Reference station 0.489 0.387 0.002 - - - - - -
Station 1 −12.715 7.464 0.021 0.359 −0.934 −0.005 0.999 −0.017 −0.002
Station 2 0.249 −4.358 0.014 0.535 −0.845 0.013 0.002 0.999 −0.001
Station 3 9.012 −4.254 −0.026 0.566 −0.825 −0.001 −0.999 0.013 0.006
Station 4 4.154 4.189 −0.012 0.550 −0.835 0.008 0.002 −0.999 0.001
Station 5 −6.718 4.249 0.029 0.932 0.363 0.002 0.999 −0.004 0.001

This study examined the precision of both the position and orientation of the LiDAR.
The position value of the LiDAR, as measured by the total station, was considered the true
value for the target coordinates. The precision of the LiDAR’s orientation was evaluated
indirectly using the reprojection errors of checkpoints that were acquired separately from
the GCPs used for estimating the LiDAR’s position with SPR. Table 3 presents a summary
of the position errors and reprojection errors for each station.

Table 3. Position and reprojection error of estimated LiDAR position and orientation.

Station Number
Position Error

Reprojection Error (pixels)
X (m) Y (m) Z (m) Euclidean Error (m) Error/Distance (%)

Station 1 0.041 0.022 0.026 0.054 0.36 1.88
Station 2 0.034 0.029 0.025 0.051 1.17 2.00
Station 3 0.009 0.065 0.021 0.069 0.69 3.10
Station 4 0.030 0.067 0.010 0.074 1.25 4.08
Station 5 0.056 0.096 0.030 0.115 1.43 3.61

Mean 0.072 0.98 2.93

The estimated position error of the stations averaged 0.072 m with a maximum of
0.115 m. The estimated position error of semi-automatic registration averaged 0.070 m
with a maximum of 0.128 m. The position estimation results of the coarse alignment
method proposed in this study and of semi-automatic registration, were almost identical.
Additionally, the reprojection error of the proposed method averaged 2.93 pixels with
4.1 pixels as the maximum. It can, therefore, be concluded that the proposed coarse
alignment method reasonably estimates the position and orientation of the LiDAR.

3.3. Point Cloud Registration

The acquired point clouds from the stations were subject to rotation and translation
using local and world camera orientation vectors to achieve coarse alignment. Furthermore,
the precision of the proposed coarse alignment technique was evaluated by comparing
the registration accuracy using 10 black and white targets. The targets’ center coordinates
were determined using a total station, extracted from the coarse registered and semi-
automatic registered point clouds, and compared to the total station surveying outcome
to calculate the registration error. Table 4 illustrates the coarse alignment error and semi-
automatic error, where the proposed method exhibited a mean registration error of 0.124 m,
while semi-automatic registration achieved an error of 0.072 m. Since the point cloud’s
rotation contains an error, the coarse alignment method is deemed to have a higher error
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of approximately 0.05 m compared to semi-automatic registration. Additionally, the semi-
automatic registration process involves visual confirmation or user experience to achieve
coarse alignment, followed by refined alignment for the final output. In the semi-automatic
method, a skilled individual with knowledge of the surveying device manually performs
coarse alignment by locating the station, followed by refined alignment through software
using techniques like the ICP algorithm. As a result, the semi-automatic method generally
exhibits small registration errors for most targets. However, it is worth noting that the
methodology presented in this study also yields registration errors that are not significantly
large. Therefore, it is expected that incorporating various refined alignment algorithms
into the proposed coarse alignment method would increase registration accuracy. The
refined registration, utilizing the overlapping regions of each point cloud of stations,
resulted in a total point cloud with alignment errors comparable to those of the semi-
automatic approach. The minimum error was 0.008 m, the maximum error was 0.097 m,
and the average registration error concerning the target was 0.050 m. This showed a
difference of 0.022 m compared to the use of the semi-automatic methodology. The size of
overlapping regions between point clouds affects the registration accuracy in the case of
the ICP algorithm [68]. The point clouds utilized in this study had limited overlap due to
the distinctive features of the research area, consequently influencing the final accuracy.

Figure 9 shows the registered point cloud, while Figure 9a shows a point cloud where
only translation was performed. The local camera orientation vector did not match the
world camera orientation vector, and the point cloud was not properly registered. Figure 9b
shows a point cloud that performed both translation and rotation. This confirms that
registration was similar to that of the actual test site.

Table 4. Proposed coarse alignment error and semi-automatic registration error.

Target
Number

Errors (m)
Target

Number

Errors (m)

Proposed
Method

Proposed +
Fine Registration Semi-Automatic Proposed

Method
Proposed +

Fine Registration Semi-Automatic

#1 0.084 0.037 0.053 #6 0.191 0.073 0.075
#2 0.108 0.024 0.038 #7 0.210 0.035 0.056
#3 0.077 0.048 0.038 #8 0.077 0.081 0.149
#4 0.058 0.008 0.030 #9 0.158 0.021 0.114
#5 0.194 0.078 0.069 #10 0.085 0.097 0.096

Mean 0.124 0.050 0.072

Figure 9. Registration results: (a) only translation applied, (b) translation and rotation applied.
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Figure 10 compares the point cloud obtained through manual alignment followed
by fine alignment using the ICP algorithm with the point cloud aligned through the
proposed methodology. Figure 10 illustrates the outcomes analyzed and visualized through
CloudCompare V2. The numerical analysis is based on the point-to-point absolute distance
to assess the differences between the two point clouds. Figure 10a shows the point-to-point
absolute distance using a blue-to-red gradient, while Figure 10b presents the corresponding
histogram of the results. The approximate positions of each station are indicated by yellow
arrows in Figure 10a. The average distance between the 57,971,263 points is 0.0117 m,
with a maximum distance of 0.3529 m. Additionally, 99% of the points have distances
within 0.0696 m. Regions with larger point-to-point absolute distances, indicating higher
registration errors, are predominantly observed at the ends of long corridors, as depicted
by the red box in Figure 10a. This phenomenon arises due to the rotation and translation-
based registration approach employed in the proposed methodology. As the distance
from the station increases, errors in rotation angles have a greater impact on the positional
error of the points. Consequently, larger errors are observed when moving away from
stations 1, 2, 3, and 4. However, most of the errors are not excessive, and the addition of
refined alignment to the proposed coarse alignment methodology can effectively mitigate
these errors.

The semi-automatic registration function of the BLK360 produced accurate results.
However, automatic registration was not performed with long distances between stations
or with insufficient overlaps even though the BLK360 supports automatic registration.
In this experiment, even though additional stations were installed to facilitate automatic
registration, fully automatic registration was not performed. Figure 11 shows the links
and point cloud when automatic registration is performed. The program used is Leica
Cyclone Register 360 (BLK Edition). Figure 11a shows the link between each station as a
line, and Figure 11b shows the result of manual linking. It can be seen that the two link
results are very different from each other. Figure 11c shows the point cloud using the
link in Figure 11a. Specifically, Figure 11c indicates that there is an improper alignment
between the long hallway and the wall. This phenomenon can be attributed to the spatial
characteristics of the corridors, which often result in multiple point clouds with similar
shapes. Due to the similarity in wall structures within the corridors, the ICP algorithm tends
to minimize the distance between the point clouds during the matching process, leading to
a potential reduction in errors. However, this characteristic of the ICP algorithm can also
result in misaligned stations, as illustrated in Figure 11a. The user had to perform manual
registration based on the experience at the time of the surveying to create an accurate link as
shown in Figure 11b. If the method proposed in this study is used, the accurate initial value
could be set to create a link for automatic registration without requiring survey experience.
In contrast, when employing the method proposed in this study for point cloud registration,
we observed that the misplacement of stations did not occur. The detailed appearance of
the point cloud matched by the proposed method is depicted in Figure 12. Although there
may be errors in the fine details such as signs due to it being a coarse alignment stage,
the corridors and walls are well-matched, even in the absence of fine registration.
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Figure 10. Point to point absolute distance comparison: (a) visualization of point to point comparison,
(b) histogram of point to point absolute distance.
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Figure 11. Automatic and manual registration results: (a) automatic links, (b) manual links, (c) point
cloud incorrectly registered through automatic registration.

Figure 12. Detailed view of the registered point cloud using the proposed methodology.

4. Conclusions

This study proposed a new methodology for coarsely registering point clouds us-
ing reference point clouds and LiDAR camera images. The positions and orientations
of the LiDAR stations were established using a camera position/orientation estimation
algorithm based on a pinhole camera model and point cloud registration was performed
using the estimated position and orientation. To evaluate the accuracy of the proposed
methodology, the position and orientation estimation results and point cloud registration
accuracy were compared with the total station surveying results, which were set as true
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values. The reprojection errors of the checkpoints were used to compare the orientation
accuracy. To calculate the registration error of the point cloud, black and white targets were
attached to the research area, and their coordinates were obtained by measuring the center
of the target with the total station. The results of semi-automatic registration using the
registration software provided by the vendor were also compared.

Compared to the total station surveying results, the position estimation of the proposed
methodology showed a mean error of 0.07 m, while semi-automatic registration showed
a mean error of 0.072 m. The orientation error showed a mean of 2.93 pixels, indicating
that the estimated value was reliable. The point cloud registration error was 0.124 m
for the proposed methodology and 0.072 m the for semi-automatic registration. Since
semi-automatic registration performs both coarse and refined alignment, it is expected
that the registration error would decrease. The proposed methodology was found to be
effective in calculating the initial value for refined alignment, and accurate point cloud
registration could be achieved with additional point cloud adjustment. The creation of
links between stations during semi-automatic registration was found to be a challenge.
Nonetheless, the adoption of the methodology outlined in this study should lead to a
streamlined registration procedure.

The method proposed in this study offers a straightforward approach for coarse
alignment of point clouds, especially in scenarios where measuring the position of LiDAR
is challenging. It can be particularly valuable for point cloud registration in indoor or
underground environments where GNSS usage is impractical. In spaces characterized
by numerous narrow corridors, even automatic registration methods struggle to achieve
satisfactory coarse alignment. The proposed method provides the advantage of conducting
point cloud registration outdoors using the same methodology. If both the image attached
to the LiDAR and the reference point cloud are available, registration can be achieved
regardless of the environment, whether indoor or outdoor. Furthermore, this registration
approach is not limited to specific platforms and can also be applied to the outcomes of
aerial LiDAR surveys. The proposed method utilizing a two-dimensional image offers
several advantages. It incurs lower registration costs compared to methods employing
three-dimensional point clouds. Even in scenarios where point clouds from multiple
stations fail to overlap due to various factors, registration becomes feasible as long as an
image capturing the reference station is available. Lastly, a notable benefit is its ability to
perform coarse registration regardless of the distance between point clouds. By combining
the method proposed in this study with various feature point searching algorithms, it is
anticipated that efficient measurements can be conducted, thereby further enhancing the
alignment process.
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