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Abstract: Blueberry (Vaccinium spp.) is a popular fruit providing health benefits to humans, mainly
because the fruit is rich in anthocyanins. Normally, the mature fruits of blueberry are fully blue, but
we found a striped type in ‘Xilai’ blueberry. This study aimed to clarify the mechanisms underlying
striped color mutations. We used transcriptome analysis to screen differentially expressed genes
(DEGs) between the different stripes. A total of 2234 DEGs were identified in light stripes compared
to dark stripes, among which 1023 genes were upregulated and 1213 genes were downregulated.
These DEGs were related to anthocyanin synthesis, including phenylpropyl, flavonoid, and flavonol
synthesis. Six DEGs (CHI, DFR, 4CL, CHS, F3H, and ANS) and six differentially expressed transcrip-
tion factors (bHLH, MYB, and WD40 families) were selected for an investigation of the expression
patterns of 12 DEGs related to anthocyanin synthesis in the two different striped blueberry peels using
real-time quantitative polymerase chain reaction (qRT-PCR). Anthocyanin content and expression
levels of transcription factors related to anthocyanin synthesis were higher in dark than in light
stripes. This study enriches the available transcriptome information on blueberries and provides a
scientific basis for further revealing the molecular mechanisms related to the coloring of blueberry
peel, cloning, and expression of growth-related genes.

Keywords: blueberry; striped color mutation; anthocyanin; qRT-PCR; differentially expressed genes

1. Introduction

Blueberries (Vaccinium spp.) are recognized as one of the five main health foods by
the Food and Agriculture Organization of the United Nations and are one of the most
important small fruit cash crops worldwide [1]. Due to their unique taste and high content
of antioxidants, blueberries are very popular among consumers [2,3]. Blueberries are
known to contain high levels of vitamins A and C, dietary fiber, and magnesium, as well
as many bioactive phenolic compounds, including anthocyanins [4]. The fruit color of
blueberry is a very important agronomic trait and is of great significance for the commodity
value and market competitiveness of fruits [5].

Anthocyanins are widely distributed in various organs and tissues of the plants,
including flowers and fruits [6], and they have important effects on plant physiology.
The basic structure of the anthocyanins is α-phenyl-benzopyrane, which is a C6-C3-C6
carbon skeleton structure. The methylation and hydroxylation at different positions of
the skeleton structure decide different colors of the plant skin [7–9]. It is reported that
there are 650 kinds of anthocyanins in nature, however, the most common are six kinds
of anthocyanins, namely pelargonidin, cyanidin, delphinidin, peonidin, petunidin, and
malvidin [10].

Anthocyanins are pigments that impart surface color to blueberry fruits and are one
of the main bioactive compounds found in blueberries [11–13]. Anthocyanins account
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for 60–70% of the total phenolic substances [14–17], and the biological activity of antho-
cyanins is widely recognized. The biosynthetic pathways of anthocyanins have been
demonstrated in other plants [18]. Anthocyanin biosynthesis is a branch of the flavonoid
metabolic pathway, and its key enzyme-encoding genes include chalcone synthase (CHS),
chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid-3′-hydroxylase (F3′H),
dihydroflavonol-4-reductase (DFR), and anthocyanin synthase (ANS) [19]. Subsequently,
anthocyanin synthase (ANS) and colorless anthocyanin dioxygenase (LDOX) catalyze the
conversion of colorless anthocyanins and catechins to anthocyanins [20], which are then
converted to colored anthocyanins via the flavonoid pathway [21]. The appearance of
fruit streaks is a key factor in determining the quality of some fruits and directly affects
their commercial market value [22]. For example, most consumers prefer watermelon
varieties with bright green skins and heavy stripes. A striped pattern is usually visible in
the longitudinal direction, which is a common naturally occurring phenomenon [23]. A
differential expression of MdMYB10 causes red and green stripes in apple peels, which are
favored by New Zealand consumers [24].

In this study, we found a blueberry with different stripes; however, the cause of this
phenomenon is unknown. In order to explore the molecular mechanism of pericarp stripe
formation in blueberry, transcriptome sequencing was used to obtain the transcription
factors and key structural genes that control pericarp coloring. The expression level of the
gene was further detected using qRT-PCR, which provided scientific basis for further study
of the molecular mechanism of blueberry pericarp coloring.

2. Materials and Methods
2.1. Plant Materials

‘Xilai’ blueberries were collected from Liaoning Haoyuan Agricultural Technology
Co., Ltd. (Sui Zhong, Liaoning Province, China) in 2021. One hundred even-sized, pest-free,
ripe blueberries were picked and immediately transported to the laboratory. Subsequently,
90 blueberries were randomly selected and evenly divided into three portions of 30 blueber-
ries each. Finally, the dark and light stripes on the surface of the blueberry were separated
from flesh, and the separated dark and light striped skins were quickly refrigerated in
liquid nitrogen at −80 ◦C, respectively.

2.2. Anthocyanin Content Determination

The total anthocyanin contents of the dark and light stripes were measured as previ-
ously described [25]. In a dark place and at low temperature, the dark and light stripes of
the blueberry peels were incubated in 1% (v/v) hydrochloric-methanol for 24 h. Then, 3 mL
of the supernatant was poured into cuvettes. Its absorbance was measured using a spec-
trophotometer at wavelengths of 530, 620, and 650 nm, respectively, and the anthocyanin
content was computed according to Equation (1) [26]:

Anthocyanin content (nmol g−1 FW) = [(OD530 − OD620) − 0.1 × (OD650 − OD620)]/ε × V/M × 106 (1)

where V is the liquid volume, M is the plant tissue weight, and the total anthocyanin
absorbance index is 4.62 × 104. The average of the three tests was calculated.

2.3. RNA Extraction, Library Preparation, and RNA Sequencing

RNA-seq was used to analyze the blueberry peel genes 60 days after flowering, and
the test was performed twice to ensure accuracy of the results. Total RNA was isolated
and purified using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions. The RNA content and purity of each sample were quantified
using NanoDrop ND-1000 (NanoDrop, Wilmington, DE, USA). RNA integrity (RIN > 7.0)
was determined using a Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA) and confirmed
via denatured agarose gel electrophoresis. Poly(A)mRNA was purified from two micro-
grams of total RNA by dynamic oligomeric magnetic beads. The mRNAs were cut into
small fragments using divalent magnesium ions under high-temperature conditions. The
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KC-DigitalTM Stranded mRNA Library Prep Kit (Illumina, San Diego, CA, USA) was used
to reverse-transcribe the cleaved RNA fragments and construct the final cDNA library.
Paired sequencing (PE150) of 2 × 150 bp was performed on an Illumina NovaSeqTM6000
(Wuhan SecCO Co., Ltd., Wuhan, China) according to the vendor’s recommended method.

2.4. Bioinformatics Analysis

Raw sequencing data were converted into valid readings after processing. 2StringTie
calculated mRNAs expression levels by calculating FPKMS, while RPKMs was calculated
using featureCounts. The DEGs between the control and treatment groups were identified
using the Edger software package. Differentially expressed transcripts were screened
with log2 (multiple change) > 1 or log2 (multiple change) < −1, which was statistically
significant (p < 0.05). Path analyses of the GO and KEGG enrichment were based on the
Gene Ontology Database 3 and KEGG pathway 4, respectively.

2.5. qRT-PCR Analysis

The total RNA was extracted via qRT-PCR analysis [27]. Total RNA (800 ng) was
extracted using a PrimeScript First Strand gene synthesis kit (Takara, Kusatsu, Japan), and
the first-strand gene was synthesized. qRT-PCR was performed as previously described [28].
Specific primers for each gene were designed using Primer3. The primers used in this study
are listed in Table S1. The known VcUBQ was used as an internal control. All experiments
were conducted in triplicates.

2.6. Statistical Analysis

The qRT-PCR and physiological determination data were analyzed using Microsoft
EXCEL 2010 software, and the mean values are expressed as means ± SE. Statistical
significance at * p < 0.05, ** p < 0.01 was tested using Student’s t-test. The correlation
between the dark and light stripe gene expression levels was explored using Pearson’s
correlation coefficient. The similarity between samples can be expressed by correlation
coefficient, that is, the closer the correlation coefficient is to 1, the higher the similarity of
expression patterns between samples. All data were compiled using Origin 2016.

3. Results
3.1. Dark Blueberry Skin Had Higher Anthocyanin Accumulation than Light Stripe Skin

In Haoyuan Agriculture, we discovered a new variety of blueberries with dark and
light stripes (Figure 1A). Seven years of observation, from 2016 to 2022, indicated that these
striped blueberries had stable genetic properties that ruled out environmental influences.
To investigate the mechanism underlying the coloring difference between these two stripes,
the total anthocyanin contents were measured in the dark and light stripes. The anthocyanin
content in the dark stripes was significantly higher than that in the light stripes, as shown
in Figure 1B.
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3.2. RNA-seq Technique and Analysis of DEGs in Blueberry Peel

To investigate the molecular mechanism underlying the color difference between the
dark and light stripes, RNA-seq analysis was performed. Four libraries were established
(with two biological replicates per sample), and 47,031,570, 46,604,328, 44,632,796, and
45,747,804 raw reads were obtained. Unreliable raw read data and noncarrier errors were
excluded to obtain high-quality, clear, and valid read data. Finally, 44,329,956, 45,159,371,
41,859,650, and 44,047,046 clean reads were obtained. In addition, the valid reads were
compared to the reference genome using HISAT 2 software, which showed that the values
of the mapped reads ranged from 90.25 to 90.84%. In the light and dark stripes of the
blueberry peel, the highest percentage of sequences was located in the exonic regions, based
on the regional information of the reference genome, as shown in Figure 2A,B.
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Gene expression levels were measured as reads per kilobase per Million Reads (RPKM).
According to the RNA-seq analysis, the moderately expressed unigenes in light and dark
stripes accounted for the majority of the area under the curve (AUC), and the lower- or
higher-expressed unigenes accounted for a minority of the AUC as shown in Figure 3. In
Figure 3, by combining the horizontal and vertical coordinates, it can be seen that a small
part of unigenes in RPKM ranges from −2.5 to 2.5–5.0. In addition, it can also be seen
that the expression of the unigenes was slightly higher in the light stripes than in the dark
stripes. The degree of the dispersion of the unigenes in the dark stripes was slightly higher
than that in the light stripes, as shown more intuitively in the result in Figure S1.

The number of DEGs in the dark and light stripes was determined using two RNA-seq
analyses (Figure 4). The results revealed 5262 and 1608 DEGs, respectively. The 2688
genes were upregulated and 4182 genes were downregulated, as shown in Figure 4A,B.
Figure S2A,B show the volcano plots of the differential genes, which also show the number
of DEGs in the dark and light stripes.

The Spearman correlation between the dark and light stripe gene expression levels
was found to be higher than 0.92, as shown in Figure 5. We concluded that the genes for the
dark and light stripes were highly similar. These results are consistent with those obtained
for blueberry peel.

Compared to the gene expression in the dark stripe in the KEGG pathway, genes
with an increased expression in the light stripe were mainly enriched in the pathways of
photosynthesis, carbon metabolism, and photosynthetic antenna proteins, as shown in
Figure 6A, while genes with a decreased expression in the light stripe were mainly enriched
in the pathways of plant hormone signal transduction, starch and sucrose metabolism, and
plant–pathogen interaction, as shown in Figure 6B.
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Figure 6. KEGG enrichment analysis of differentially expressed genes, (A) upregulated genes and (B)
downregulated genes. The horizontal axis shows the enrichment significance, which is represented
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shows the enriched KEGG pathway. Dot size represents the number of differential genes in the
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Gene ontology (Go) was used to analyze the functional enrichment of differential
genes (Figure S3). Photosynthesis, plant type, cell wall organization, and plant type–cell
wall organization or biogenesis were the most abundant molecular functions among those
co-upregulated by both dark and light pericarp differentially expressed genes (Figure 7A).
However, ubiquitin protein transferase and ubiquitin-like protein transferase activities
were more abundant in biological processes among those co-downregulated by both dark
and light differentially expressed genes (Figure 7B).
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3.3. Differential Expression Analysis of Candidate Genes Related to Anthocyanins Synthesis
and Metabolism

In the RNA-seq results, we selected 39 DEGs associated with anthocyanin synthesis
(Figure 8). These genes include key structural genes in the anthocyanin biosynthesis
pathway (Figure 9A) and transcription factors such as MYB, bHLH, and WD40 family.
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Heat map results showed that nine genes were upregulated twice in the RNA-seq results
and 13 genes were downregulated twice in RNA-seq results (Figure 8). To confirm the
repeatability and accuracy of the RNA-seq results in the KEGG pathway, 12 DEGs related
to anthocyanin biosynthesis were randomly selected for qRT-PCR analysis. In Figure 9B,
the expression levels of six key structural genes involved in anthocyanin synthesis were
significantly higher in light stripes than in dark stripes, while the expression levels of
Vc4CL7-2, VcCHS, and VcDFR were the opposite. Figure 9C shows that the expression
levels of two bHLH family genes, VcbHLH21 and VcbHLH25, and two MYB family genes,
VcMYB108 and VcMYB7, were significantly higher in dark stripes than in light stripes. In
addition, there are two genes in the bHLH family that are not significantly different in
expression. This is consistent with the results of RNA-seq. These results indicated that our
transcriptome data were highly reproducible and reliable and could be used for further
studies of the key genes involved in anthocyanin accumulation in fruit stripes.
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different genes. Values represent the mean ± SE. Statistical significance was determined by Student’s
t test, ** p < 0.01.

4. Discussion

The striped appearance of a blueberry peel is an attractive feature, which directly
influences consumers’ purchase intention. Striped blueberry fruits have been shown to be a
bud mutant. Bud mutants have traditionally been used to study the molecular mechanisms
underlying anthocyanin biosynthesis. The fruit of striped blueberry bud mutants were
used in this experiment.

Anthocyanin content measurements suggested that anthocyanin content in the dark
stripes was significantly higher than that in the light stripes (Figure 1), similar to the
observations in striped apple fruit peels [25]. The red regions of apple fruit with stripes
contain more anthocyanins and a higher UFGalT activity than adjacent regions from
the same fruit [29].This is explained by reduced/increased transcript levels of all the
anthocyanin pathway genes evaluated, including the structural genes in the pathway and
transcription factor, which regulates them. A previous study suggested that differences in
flavonoid content in blueberry plants may occur naturally in different varieties [30], but
differences in flavonoid content in dark and light streaks in the skin of the same variety of
blueberries have not been reported at the molecular level. To our knowledge, this is the first
comparative transcriptome analysis of the different stripes of the peel of the same blueberry
variety. Transcription levels of anthocyanin genes correlate with fruits’ stripe patterns.
Studies have shown that pigment patterns in apple peels may be a control mechanism,
and green stripes are associated with a lower anthocyanin accumulation, which is due to
the reduced transcription levels of all the assessed anthocyanin pathway genes, including
structural genes [25]. Moreover, the transcription factor MYB10 also plays an important role
in stripe formation in apple peels [31]. An overexpression of VcMIR156a in tomato (Solanum
lycopersicum) enhanced anthocyanin biosynthesis and chlorophyll degradation in the stem
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by altering pigment-associated gene expression [32]. ASR overexpression could promote
strawberry fruit coloring [33]. Anthocyanin accumulation and anthocyanin structural gene
expression were correlated with MYBA expression, and MYBA was able to transactivate
the DFR promoter from blueberry and other species [34]. Here, the expression of 4CL, DFR,
CHS, bHLH21, bHLH25, MYB108, and MYB7 differed between the light and dark stripes
(Figure 9), which suggests that they may be the candidate factors most likely to participate
in blueberry peel color formation. DNA methylation is one of the most common forms of
the covalent modification of eukaryotic genomes. In eukaryotes, DNA methylation refers
to the addition of a methyl group to the cytosine 5 carbon site [35,36]. In recent years, the
effect of DNA methylation on the growth and development of plant fruits has been widely
reported and involved in various aspects of growth and development. This suggests that
DNA methylation plays an important role in the regulation of fruit development [37,38].
Previous research has shown that the red-color-loss mutation in European pear ‘Max Red
Bartlett’ was because of DNA methylation in the PyMYB10 promoter [39]. In contrast,
the mutation in ‘Zaosu’ with green fruit skin to a red morph was associated with DNA
de-methylation in the promoter of PyMYB10. Thus, DNA methylation or demethylation
inhibited or activated the transcription of PyMYB10, subsequently suppressing or inducing
the expression of key structural genes involved in anthocyanin biosynthesis (e.g., UFGT).
The striped pigmentation pattern in the mature fruit of ‘Zaosu Red’ correlated well with
DNA methylation patterns in the PyMYB10 promoter. This finding is consistent with those
of other studies on striped pigmentation in apples [25] and maize [40]. However, whether
methylation or demethylation plays a role in the striped blueberry pattern formation
remains unknown.

This study provides a theoretical foundation for understanding the molecular mecha-
nisms of stripes in pericarps. However, the specific genes that cause dark and light streaks
in the skin are unknown and will be the focus of future studies.

5. Conclusions

The difference between the dark and light stripes in blueberries was due to antho-
cyanin content. We performed a transcriptomic analysis to explore the differentially ex-
pressed genes involved in anthocyanin synthesis and signal transduction pathways. Our
results showed that the expressions of VcDFR, Vc4CL7-4, and VcCHS in the dark stripes
were higher than that in the light stripes, leading to a higher anthocyanin content in the dark
stripes. In addition, the expression levels of transcription factors related to anthocyanin
synthesis (VcbHLH21, VcbHLH25, VcMYB108, and VcMYB7) were higher in dark stripes
than in light stripes. Our study identified key genes related to anthocyanin biosynthesis in
blueberries and provided a wide range of resources for potential genetic and functional
genome studies of non-model plant species.
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