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Abstract: We explore the possibility of attaining valley-dependent tunnelling and confinement using
proximity-induced spin-orbit couplings (SOCs) in graphene-based heterostructures. We consider
gate-tunable asymmetric quantum dots (AQDs) on graphene heterostructures and exhibiting a C3v

and/or C6v symmetry. By employing a tight-binding model, we explicitly reveal a pure valley
confinement and valley signal in AQDs by streaming the valley local density, leading to valley-charge
separation in real space. The confinement of the valley quasi-bound states is sensitive to the locally
induced SOCs and to the spatial distribution of the induced AQDs; it is also robust against on-site
disorder. The adopted process of attaining a pure valley-Hall conductivity and confinement with
zero charge currents is expected to provide more options towards valley-dependent electron optics.

Keywords: asymmetric quantum dots; valley selection; confinement; valley-Hall conductivity;
local density

1. Introduction

Graphene has been widely used as a vital two-dimensional (2D) material for next-
generation devices due its several degrees of freedom. It is constantly used in nanoelec-
tronics due to its high carrier mobility [1–3], long mean free path [4–6] and tunable density
using external fields [7–9]. Graphene on realistic substrates exhibits induced proximity
effects which are highly desirable for spintronics applications, due to the presence of
several SOCs [10–13]. Therefore, the induced SOC terms give rise to strong spin life-
time anisotropy [14] which does allow an interesting level for manipulating the valley
and spin degrees of freedom and for achieving new attractive spintronic devices. In fact,
the induced/controllable spin-valley coupling is known to be one of the key features in
proximity-induced SOCs that are pertinent to devices for spintronic and opto-valleytronic
applications [15].

Additionally, it is strongly considered as an efficient material for valleytronic devices
since its two valleys at the Dirac cones (−K and +K) constitute an additional degree of free-
dom that could lead to several fruitful applications. In fact, they can be used to attain valley
polarization that provides valley-driven currents and encoding of the information [16–18].
In this context, producing valleytronic devices able to manipulate valley-polarized cur-
rents [9,19–21] and optoelectronic effects [22–24], to deal with information based on mo-
mentum space, is highly desirable.

The applicability of valleytronics might strongly rely on the assumption that valley
polarization and processing can be controlled through optoelectronic access. In this case,
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designing new materials hosting a higher-order of valley-localized states is still promising.
Instead of charge confinement, valley confinement is expected to increase the optoelectronic
access and valley processing as well as attaining a valley-qubit scheme of a confined electron
depending on its valley degree of freedom [25,26].

Recent advances in achieving quantum confinement in graphene-based systems have
opened new paths to lifting the valley degeneracy, using graphene quantum dots (GQDs)
and the induced effects by electrostatic potentials and magnetic or pseudo-magnetic fields
in nanobubble QDs [9,27–30].

Although almost all interesting quantum phenomena reported in such GQDs can be
well understood from a theoretical background, such engineering of strain-induced QDs
remains challenging. Moreover, to our knowledge, no investigation related to valley-charge
separation using induced SOCs and their related point group symmetry has been reported
in GQDs.

Adopting alternative ways of making GQDs to localize valley confinement instead
of charge (electron) confinement is the aim of the present work. It will become clear that
lifting the valley degeneracy and obtaining valley-localized states in GQDs, induced by
local proximity effects, has important advantages. In fact, the motivation of our work
came from recent experimental achievements in GQDs [31–33] in which a voltage pulse
from a scanning tunnelling microscope tip can be utilized to advantageously create AQDs
at the graphene interface with several substrates, the asymmetry resulting from differ-
ences in shape and/or the number of SOC terms. Here, we report the observation of
valley confinement and valley-charge separation in AQDs embedded in gate-tunable
graphene/heterostructure devices. These devices exhibit C3v and/or C6v symmetry that
represent, for example, graphene heterostructures with transition metal dichalcogenides
(TMDs) and/or hexagonal boron nitride (hBN), respectively [10,14,34].

Figure 1 is a schematic of several circular AQDs. In general, we might define several
AQDs, where the right side of the strip may contain NR Gr/hBN-like QDs (C6v) and its left
side NL Gr/TMD-like QDs (C3v), placed on a graphene-like sheet with zigzag boundaries.
The role of the gated QDs is to control or modulate the valley contribution to the current,
as we will show in Section 3, RQD is the radius of all QDs.

Lead
(L)

N- units of AQDs along 
zigzag boundaries

 

Lead
(R)

Left QDs (C3v-symmetry) Right QDs (C6v-symmetry) 

LQD RQD RQD
LQD

QD

4 QD 4 QD4 QD= or

A scattering area hosting gated QDs
8 QDLR

Figure 1. Schematic representation of a graphene monolayer with asymmetric quantum dots (AQDs).
The left side contains light gray dots, with C3v or C6v symmetry, and the right side light blue dots
with C6v or C3v symmetry. The QD radius is the same for all QDs, RQD = 7 nm. The distance between
the rightmost dot on the left side and leftmost one on the right side is denoted by DLR and that
between the dots on either side is denoted by DQD = 4RQD and is fixed. Due to the asymmetry in
the direction of the current, we consider injected carriers from left to right (GLR) or from right to left
(GRL). Injecting the current front the right is similar to injecting it from the left but with exchanged
QD symmetries between left and right.

The aim of the present work is to provide a systematic analysis of the role of the
proximity-induced SOCs in AQDs or SQDs, their sublattice dependence, and their influence
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on valley polarization (in k-space) or confinement, and on valley-dependent transport.
In Section 2, we briefly present the basics of the model and in Section 3 we present the
numerical results. A summary follows in Section 4.

2. Basics of the Model

Engineered QDs results, such as those shown in Figure 1, give rise to several SOC
terms near the QD regions that determine the symmetry of the HC6v and/or HC3v SOC
Hamiltonian. The general expression of the Hamiltonian of a QD reads [10]:

HAQD = −t ∑
⟨i,j⟩

(
a†

iσajσ + b†
iσbjσ

)
+

2i
3 ∑

⟨i,j⟩σ,σ′

(
λR a†

iσbjσ

)[
ŝ ⊗ dij

]
σ,σ′

+
i

3
√

3
∑

⟨⟨i,j⟩⟩σ
vij

(
λ
(A)
I a†

iσajσ + λ
(B)
I b†

iσbjσ

)
[ŝz]σ,σ

+
2i
3 ∑

⟨⟨i,j⟩⟩σ,σ′

(
λ
(A)
PIAa†

iσajσ + λ
(B)
PIAb†

iσbjσ

)[
ŝ ⊗ dij

]
σ,σ′

+ ∑
⟨i⟩

∆
(

a†
iσaiσ + b†

iσbiσ

)
[ŝz]σ,σ. (1)

Here, a†
iσ, ajσ (b†

iσ, bjσ) are the creation and annihilation operators for an electron at sites
i and j, of sublattice A (B), and σi, i = x, y, z denotes the Pauli matrices. The nearest
neighbour hopping between sites i and j is denoted by t. The terms λI , λR, λPIA and
∆ denote the strength of the intrinsic, Rashba, pseudo-inversion-asymmetry SOC, and
staggered potential, respectively. We denote by di,j (Di,j) the unit vectors connecting site j
to site i for the nearest (next-nearest) neighbours where vij is the orientation of the hopping
terms in the clockwise (+1) or counterclockwise (−1). The summation notation ⟨i, j⟩
(⟨⟨i, j⟩⟩) refers to the SOC for the nearest (next-nearest) neighbour.

The linearization of Equation (1) leads to an effective low-energy Hamiltonian around
the K1 and K2 points labeled by the valley index κ = −1 and κ = +1, respectively. The
final expression is given in the form HQD = Hk + H∆ + HR + HI [10], where:

Hk = h̄vF
(
κkxσx + kyσy

)
s0, (2)

H∆ = ∆σzs0, (3)

HR = λR
(
−κσxsy + σysx

)
s0, (4)

HI = (κ/2)
[
λ
(a)
I (σz + σ0) + λ

(b)
I (σz − σ0)

]
sz. (5)

The Fermi velocity vF is expressed in terms of the hopping t as vF =
√

3a0t/2h̄ where
a0 is the lattice constant. The pseudospin is denoted by the Pauli matrices σ, and s0 denotes
the spin identity matrix.

In Equation (1) the nearest and next-nearest-neighbour SOC hoppings depend on the
sublattice. In this way we distinguish the left and right QDs by the sign dependence of
the SOCs. For sign(λ(B)

I ) ̸= sign(λ(A)
I ), we have the case of C3v symmetry; however, for

sign(λ(B)
I ) = sign(λ(A)

I ) we have the case of C6v symmetry. For clarity we assume that all
SOC terms vanish outside the QDs and are finite, staggered or not, inside them. In addition,
we consider the same strength for all SOC terms in QDs with the same symmetry. The
experimental feasibility of the proposed set up is discussed in a recent work [31].

To compute the valley conductance we use the Kwant package [35] which provides a
key functionality to analyze and resolve the scattering matrix (S±κ) in k-space channels.
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Within the limits of the Landauer-Büttiker approach [36], we numerically evaluate the
valley-dependent conductance as

Gn,m
κ = (e2/h)|Sn,m

κ |2, (m, n ≡ L, R), (6)

where Sn,m
κ is the valley scattering matrix between the left (L) (right (R)) and right (R) (left

(L)) leads for a given valley index κ = ±1. Further details are given in Appendix A.

3. Results and Discussion

Below we present numerical results for the valley-polarized conductance in a system con-
taining several QDs. To show its dependence on the sublattice nature and the signs of the SOCs
we consider one sublattice with C3v symmetry (staggered SOC, sign(λ(B)

I ) ̸= sign(λ(A)
I )) and

one with C6v symmetry (unresolved SOC, sign(λ(B)
I ) = sign(λ(A)

I )). We will investigate
two cases: (1) AQDs with C3v and C6v symmetries, separated by a distance DQD, and
(2) SQDs with only C3v symmetry, separated by a distance DQD, and SOCs staggered on
both sides. The distance between the rightmost dot on the left side and the leftmost dot on
the ride side is DLR. The results obtained are summarized in Figures 2–5.

3.1. Valley Dependence in Gated Symmetric or Asymmetric QDs

We consider injected carriers scattered by induced QDs of radius RQD = 7 (nm); the
inter-dot distance between left and right QDs leads is DLR = 4RQD. The graphene width is
set to W = 30 (nm) and the Fermi energy to EF = 0.035t, and t = 1 eV.
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Figure 2. (a) Valley conductance vs. intrinsic SOC length with either symmetric or asymmetric QDs.
(b) As in (a) for AQDs with different propagating directions (GLR or GRL). Panels (c–f) are zoom-ins
of the indicated ranges of λI with the effect of the inter-dot distance (DID = DLR) in the presence of
RSOC and staggered potentials.
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The results related to SQDs, defined by the staggered SOC parameters over all scatter-
ing regions, show that the valley conductance G is not purely polarized for weak spin-orbit
range when the system has more than one valley (solid line in Figure 2a). Additionally, we
observe that G, as a function of the strength λI of the ISOC, shows a nearly square-wave
transmission shown by the red solid line in Figure 2e, but without a pure valley transmit-
tance since both valleys are conducting. In contrast, for AQDs, G shows a more robust
control of its polarization. The conductance G, shown by the black dash-dotted curve in
Figure 2a, displays a smooth response and decays exponentially with λI . For instance, at
weak SOC strength (λI = 0.06t), we observe a full polarization: the injected carriers exit the
structure with a polarized transmission (G−K

LR = 1; G+K
LR = 0, in units of e2/h̄) at positive

energy. Obviously, AQDs are a better choice for lifting the valley degeneracy. We clearly
observe that the system blocks one valley as the carriers cross the two groups of QDs.

Additionally, it is worth discussing the valley asymmetry while computing the
conductance depending on the current direction. In fact, since we are dealing with AQDs,
one expects that the valley selectivity, when injecting the current from right to left (GRL),
instead of left to right (GLR), changes and so does the valley-dependent conductance. As
shown in Figure 2b, a change in the direction of the current for the same energy leads to an
exchange of the valleys. According to Figure 2b, we discuss two cases that provide valley
exchange but with different polarizations depending on the value of SOC and the chosen
direction of the current.

1. At λI = 0.06t, with the current injected from left to right, valley +K is conducting while
valley −K is not. Instead, if the current is injected front the right, the conductance
through valley +K vanishes and that from valley −K is finite;

2. At λI = 0.02t, we state that the valley polarization is ensured only in one direction.
We highlight the presence of a finite conductance of one valley only (G−K

RL = 1,
G+K

RL = 0, in units of e2/h̄. A change in the direction of the current for the same energy
does exchange the valleys, as in (1) (λI = 0.06t) but leads to a finite, unpolarized
conductance at both valleys (G−K

LR = 0.5, GK
LR = 2.5, in units of e2/h̄).

We further state that the distance DLR plays a major role in processing either valley
polarization or confinement as we will show later on. It is worth stating that for shorter inter-
dot distances DLR, the QDs edges are closer to each other and might provide transmittance
peaks due to mode mixing from the edge-dot coupling. A proper choice of DLR would
avoid the edge-dot coupling and the valley transmittance would be more stabilized. In what
follows, we will consider two values of DLR, (DLR = 4RQD or DLR = 8RQD), which have
been shown to provide different valley-centered properties, namely, valley polarization or
confinement.

First, as shown in Figure 2c–f, increasing DLR entails stronger SOCs to fully attain val-
ley polarization, which is not a good choice in our case. Based on the numerical results, the
best choice to control the valley is obtained when DLR = 4RQD. It is clearly seen that even
in the presence or absence of the RSOC and staggered potentials, if DLR = 4RQD = 28 (nm)
a full polarization in AQDs is achieved at weak SOCs, cf. Figure 2e,f . However, for SQDs
in all cases we have an unpolarized conductance, cf. Figure 2c,d.

We have discussed the valley selectivity as a function of the staggered SOCs (λA
I , λB

I ).
Since AQDs play the most important role in valley selection, it is worth providing more
details about the dependence of the valley conductance, in AQDs, on the RSOC and
staggered potentials.

As in the case of changing the inter-dot distance, adding a weak staggered potential
does not destroy the polarizations and provides a lower value of λI needed to polarize the
conductance (Figure 3a). A better choice of the staggered potential is to have ∆ < abs(λI),
see Figure 3a. To further support this claim we refer to Ref. [10] in which the effect of
the staggered potential in C3v and C6v is fully discussed. We mainly summarize that,
depending on whether we have ∆ < or > abs(λI), for both symmetries we have different
cases: an insulating flow, for ∆ < abs(λI), and a gapped case for ∆ > abs(λI).
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As a function of the RSOC strength, the valley-conductance is shown in Figure 3b.
Here, we consider weaker ISOC as expected in real proximity effects. When electrons are
injected with EF = 0.035t, we observe that the RSOC can play a role in controlling the
valley transmittance with the use of a top gate. One can obtain a pure valley-polarized
conductance for λR in the ranges 0.02t ≤ λR ≤ 0.03t and 0 ≤ λR ≤ 0.07t for weak staggered
coupling λI = 0.015t or 0.025t, respectively. The valley transmission is G−K

LR = 2, G+K
LR = 0,

in units of e2/h̄ for positive incident energy. Both the RSOC and the staggered potential are
induced by the gates and, since they do not affect the time-reversal and valley-inversion
symmetries, there is no effect on the results when we reverse the current direction.

We briefly mention the emergence of resonance modes that depend on the value of EF
and the strength of the ISOC. The results displayed in Figure 3c shows that a resonance
appears when we increase EF. For instance, at EF = 0.05t, a sharp resonance occurs where
the mode in the peak suits particularly into the QDs. The local density of states (LDOS), per
valley, near the resonance defined by λ(EF = 0.05t) = 0.025t, shows that the electrons are
near entirely valley localized around the last QD, leading to a characteristic vortex pattern
close to the C3v QD boundary. The localization is valley dependent but does not provide a
good application since the second valley is spreading throughout the whole sample. Below
we discuss how both valleys can be confined and the dependence of their properties on the
QD shape.
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Figure 3. Valley conductance versus ISOC (for different staggered potentials in (a) and EF in (c)) or
RSOC (for several ISOC strengths in (b)). Panels (d,e) show the LDOS per valley at EF = 0.05t for
staggered SOC λI = 0.025t.

3.2. Valley-Hall Signals and Valley Quasi-Bound States in AQDs

Below we emphasize how AQDs are used to obtain a valley-Hall conductivity with
neutral charge currents. In more detail, we show that AQDs, with a given shape (depending
closely on the number of QDs on the right side (C3v) and the distance DLR, do provide an
efficient way to (i) generate a pure valley-Hall polarized conductivity and (ii) confine pure
valley quasi-bound states pertinent to optoelectronic processes. We will mainly consider
two different systems defined by different inter-dot distances and the propagating modes
whether from left or right (asymmetry in the valley).
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Figure 4. Current mapping in real space where the red (blue) lines show the valley current K1 = −K
(K2 = +K). Panels (a,b) are for SQDs, while (c–f) are for AQDs. The current mapping is plotted at
EF = ±0.035t for the staggered SOC λI = 0.052t. Panel (g–i) show the energy bands, of a zigzag
ribbon in case of graphene, C6v and C3v.

For instance, two AQDs, with C3v symmetry on the right, C6v symmetry on the left,
and separated by an inter-dot distance, can be used to either promote valley-Hall signal or
confinement. Importantly, for DLR = 4RQD, the system exhibits a pure valley-Hall signal
when the current direction is from left to right. However, for DLR = 8RQD and when the
current is injected in the right, the system exhibits valley quasi-bound states. To make that
clear, we compute the current flow in a real-space representation by mapping both valley
currents and the valley-resolved LDOS, see Appendix B. The numerical results for both
cases are shown in Figures 4 and 5.

As stated earlier, reversing the direction of the current does not provide the same
valley selectivity for the same incident energy. In this case we search for a valley selectivity
when we change EF to its negative, thus changing the particle-hole symmetry. Bear in mind
that the valley symmetry is broken if we shift the current direction.

First, we look for a valley-Hall action. We consider two QDs, arranged in a chain
with the same radius RQD. The distance between the gated left and right QDs is set to
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DLR = 4RQD. We consider EF = 0.035t and map the current for AQDs and SQDs. The
results are shown in Figure 4 and allow us to clearly see the main differences between
SQDs or AQDs and to answer the question of whether we obtain either both Hall and bulk
conductivities or only valley-Hall signals in the system.

Looking at Figure 4a,b, we observe that the SQDs produce valley-Hall and -bulk
signals with a charge current that is not neutral since both valleys are driving the current in
the same direction (solid blue (red) curve for K1 =−K (K2 = K)). However, for AQDs we
see that valley-Hall signals are generated with neutral charge current, since only one valley
contributes to the current while the other does not, cf. Figure 4c,d. Additionally, changing
EF from positive to negative, as shown in Figure 4e,f, provides equal Hall currents, as
shown in the color bar, but interchanges the valleys that provide that current (always only
one valley is allowed to flow and the other is blocked). Hence, for AQDs, the valley-filtering
process is always operative and promotes valley-Hall currents. We briefly state that in such
a heterostructure, which includes a staggered ISOC, pseudo-helical and valley-centered
edge states were observed [14,29]. Our results endorse these claims and we might produce
valley filtering or valley confinement characterized by these protected edge states. These
results might be understood from the analysis of the band structure in Figure 4h,i.

From the band structure in Figure 4g–i, the lowering of the symmetry gives rise to
edge states that might ply a major role in conducting Hall currents as well as confining
quasi-bound states. More precisely, we observe that in the case of staggered ISOC terms we
have additional symmetric edge modes that appear at K1 and K2 which are unique to the
staggered case λ

(A)
I = −λ

(B)
I since they disappear in the uniform case λ

(A)
I = λ

(B)
I . For this

purpose, combining both symmetries would allow more control over valley-dependent
properties such as valley-Hall signals with neutral current or pure valley confinement.

It is worth stating that it is really important to consider only one QD with C3v symmetry
on the left side of the scattering region (the ISOC is staggered), to have a perfect valley-Hall
signal. Including more QDs would create an effective inter-dot hopping process which
would lead to an effective inter-dot transport between the embedded QDs and hence push
the current to bend from the edge of the sample towards its bulk as shown in Figure 4a,b
with two QDs separated by a distance 4RQD.

Second, let us now discuss valley confinement with the aim of attaining pure valley
quasi-bound states in the system. We will show that this kind of confinement does not
correspond to resonances with some states affected by the induced SOC and Fermi energy
(as discussed in Figure 3d,e), but it is rather obtained by internal reflections between the
left and right QDs and depends on the inter-dot distance DLR. This confinement resides
in between the left and right QDs but not within the QDs. To search for valley localized
states in the presence of AQDs, we numerically evaluated the LDOS to obtain the distance
DLR for which the inter-dot hopping between right and left QDs vanishes by varying DLR.
The results, for fixed RQD, show confined valley quasi-bound states for DLR = 8RQD and
valley-Hall currents for DLR = 4RQD.

According to Figure 5a,b, for SQDs the electrons are almost completely localized
between the QDs and the near absence of inter-dot hopping gives rise to vortex pattern
characteristics with vortices attached to the QD boundaries. Such features (but with electron
confinement) have been observed in graphene with gate-defined quantum dots [37,38].
The incident electrons are trapped without internal reflections that occur when they are
confined inside the QDs [27,28]. In our case, the confinement occurs outside them, between
the left and right QDs, and results from the vanishing of the inter-dot hopping when we
vary DLR.
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Figure 5. Valley-resolved LDOS in the presence of QDs. Panels (a,b) show the LDOS of confined
states for SQDs, while panels (c–h) for AQDs. The blue (green) dotted circle highlights the location of
the gated dots with C3v (C6v) symmetry. The current mapping is plotted for EF = 0.035t and a weak
staggered SOC λI = 0.02t.

Now, when considering AQDs we may obtain results similar to those for SQDs. As
shown in Figure 5c,d, when the left QD has C3v symmetry (blue dotted circle) and the
right QD has C6v symmetry (green dotted circle), we have confined valley quasi-bound
states but with an asymmetric distribution. However, when we change the location of the
QDs (which is similar to reversing the current direction), the states in both valleys are not
simultaneously confined, the confinement depends on the valley index. In this case, as
shown in Figure 5d,e the pure valley-confined states are more more easily obtained using
AQDs with specific shapes and point group symmetries. Altering the confinement of a
given valley state is then ensured by changing the sign of EF as shown in Figure 5g,h.

The valley confinements, shown in Figure 5e–f, could be advantageous for valley
optical selection. Indeed, such specific circular dots with broken inversion symmetry giving
rise to confined valley quasi-bound states in a specific region, could be used to obtain
a valley optical selection. The region with strong valley confinement can be optically
probed and trigger valley polarization with right (left)-handed circularly polarized light.
The presence of only one confined state would be coupled uniquely with either right- or
left-handed polarized light.
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3.3. Disorder and Robustness of the Valley Confined States

It is of interest to check the robustness of the valley-confined states in the presence of
disorder. There are several types of disorder but we will consider only on-site (of strength
D0) and vacancy (of percentage Dv) disorder. For more details we refer to Appendix C.

From an experimental point of view, gating is used to operate valley confinement
controlled by the sign of EF, as in Figure 5e,f, but it may introduce disorder to the system.
In this regard, it is important to show the robustness of the valley-confined states against a
disordered potential.

We consider an on-site disorder of strength D0 in the range 0t < D0 < 0.08t. The
valley-resolved LDOS is plotted versus D0 in Figure 6a–c.

Max Min

Max MinMax Min

Max Min

Max Min

Vacancy disorder Dv (%)

Dv=0.025%

Dv=0.05%

Dv=0.1%

(d)

(e)

(f)

Max Min

On-site disorder D0

D0=0.05t

K1

K1

K1

K1

K2

K2

K2

K2

D0=0.07t

K1

K2

D0=0.08t

K1

K2

(a)

(b)

(c)

Figure 6. Valley resolved LDOS in the presence of QDs: as in Figure 5, but with on-site disorder
included in the (left) panels and vacancy disorder in the (right) panels.

The results show that adding a perturbative potential disorder to the system does not
impact the process of confining pure valley states. For several perturbed disorder strengths,
as displayed in the left part of Figure 6, we observe that a valley confinement is always
present and robust against on-site disorder except when D0 > 2λI . Though within limits,
such a robustness against potential disorder is promising for the experimental realization
of devices with applications in valleytronics and valley optical selection.

Next, it would be also interesting to consider the effect of vacancies in the sample and
observe whether the confinement is affected or not. Regarding the vacancy disorder, we
include the influence of vacancies in graphene sites in between the embedded QDs and
consider no defect within the QDs (preserve induced proximity symmetry). We observe a
behaviour similar to that of an on-site potential but the results are more sensitive to the
strength (%) of defects. This is because vacancies in the lattice would generally confine the
carriers around them. The results plotted in Figure 6d–f show that the valley confinement
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is sensitive to the defect compared to the potential disorder. A vacancy disorder larger than
0.05% could destroy the confinement process in the sample.

4. Summary

Using a tight-binding formalism we investigated the possibility of achieving valley-
dependent tunnelling and confinement using proximity-induced SOCs in graphene-based
heterostructures with gate-tunable QDs. We showed that AQDs, with C3v and C6v sym-
metries, lead to a direct control over the valley driven current with some sensitivity to the
model parameters. The results emphasized that AQDs might allow a valley selection of
the current though the charge current is neutral. As such, they can provide an efficient
way to generate a (1) pure valley-Hall polarized conductivity or (2) confine pure valley
quasi-bound states. Indeed, the shape of the system, defined by the space in-between the
left and right QDs (or the distance, DLR) plays a major role in dealing with either option (1)
or (2). A valley-Hall current is ensured, in the presence of asymmetric QDs, with inter-dot
distance DLR = 4RQD and quantum confinement of the valley quasi-bound states for
DLR = 8RQD.

In addition, we took into account the effect of disorder and showed that the valley-
confined states are robust against on-site disorder but less so against a weak impurity
disorder due to vacancies in graphene. We also presented a mechanism for obtaining valley-
Hall conductivity, with valley-neutral currents, and sustaining pure valley-Hall signals
or valley confinement. The main features for achieving these goals were specified. One,
however, could consider a non-linear valley-Hall effect [39,40], arising from contrasting
Berry curvatures and inversion symmetry breaking, that may provide even richer results.
Such considerations will be addressed in future work.

Our work emphasizes that valley-centered properties are sensitive to the locally
induced SOCs. Indeed, with an appropriate choice of the proximity effects, one might
process and attain a pure valley-Hall conductivity and confinement with zero charge
currents. This provides more options towards valley-dependent features.

In summary, combining AQDs with C3v and C6v symmetries in QDs on graphene
does provide an alternative option for creating valley-polarized currents and valley optical
selection that could be useful in valley-dependent electron optics.
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Appendix A. Valley-Dependent Conductance

Below we outline the derivation of the valley-dependent conductance. To derive the
scattering matrix with a given valley channel [41], we define the propagating modes in the
leads depending on their velocity and momentum direction using the Kwant package [35].
We consider only propagating states for which Φ(v < 0). These states have both spin and
valley degrees of freedom. We focus on the valley degree and lift the valley dependence by
defining the propagating wave functions Φ−K = Φ(k < 0), ΦK = Φ(k > 0). These wave
functions resolve the scattering problem in reciprocal space, separately. Then the Green’s
function formalism [42–46] incolves the scattering matrices Smn = Smn

−K + Smn
+K with Smn

±K
given by

Sm,n
±K = Trace[G±KΓmG†

±KΓn], (m, n = L, R or R, L); (A1)
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The Green’s function and Γ matrices are given by

G(ϵ,±K) =
[
(ϵ + ιη)I − HAQD(±K)− Σ

]−1 (A2)

Γ = ι(Σ − Σ†). (A3)

Γ defines the self-energy of the contact to the left and right of the scattering region and
the relevant Hamiltonian is HAQD, cf. Equation (1). Then for each valley mode the valley
conductance is given, at the Dirac cones, by Equation (6).

Appendix B. Valley-Resolved Local Density of States and Current

To obtain the LDOS and current per valley we evaluate the wave functions (propagat-
ing modes) Φ. For a given translational symmetry a pair of objects contains the propagating
modes at a given energy E on a single site. The propagating wave functions are therefore
stored in different objects per site depending on their momentum {Φ(−K), Φ(K)} and
their spin degree of freedom.

The resulting LDOS, at a given sample site i, is defined as

LDOS±K(E) = ∑
l

∣∣∣⟨i|Φ±K
l ⟩

∣∣∣2δ(E − El) (A4)

where the sum is over all electron eigenstates |Φl >= c†
l |0 > of the Hamiltonian HAQD in

Equation (1) with energy El . Separating the stored pair of objects with either positive or
negative momentum leads to separate valley-dependent eigenstates by Φ(±K) and hence to
a valley-resolved LDOS in Equation (A4); it is calculated using Chebyshev polynomials [47]
and damping kernels [48].

The density operator and continuity equation are expressed as

ρq±K = ∑
a

Φ∗
a
±K Hh

q Φ±K
a ,

∂ρ±K
a

∂t
− ∑

b
J±K
a,b = 0. (A5)

where q refers to all sites or hoppings in the scattering region and J±K
ab is the valley-

resolved current.
For a given site of density ρa, we sum over its neighbouring sites b. Then the valley

current J±k
ab takes the form

J±K
a,b = Φ∗(v < 0)±K

(
i ∑

γ

H∗
abγHh

aγ − Hh
aγHabγ

)
Φ∗(v < 0)±K. (A6)

Appendix C. Disorder in a Tight-Binding Approach

Within the tight-binding approach, we define the disordered Hamiltonian HD to be
included in the Hamiltonian given by Equation (1). The effect of vacancies (impurities) is
described by HDv and that of the on-site disorder HD0 given as

HDv = Dv ∑
⟨i,j⟩

d†
i di − δ ∑

⟨i⟩

(
d†

i ci + H.c
)
+ H.c), (A7)

HD0 = D0 ∑
i

c†
i ci, (A8)

Dv and D0 are the corresponding strengths. Further, c† (c) is the creation (annihilation)
operator of an electron in either sublattice (A) or (B) that contains the disorder. The
summation for ⟨i, j⟩ goes over the nearest neighbours.
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