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Abstract: The current study reports on the impact of a series of functional alkoxysilanes on the wettability and
structure of a well-established silicon/zirconium hybrid anticorrosion sol–gel coating. The selected functional
alkoxysilanes comprise tetra ethylorthosilicate (TEOS), 3-glycidyloxypropyltrimethoxysilane (GPTMS),
3-aminopropyltriethoxysilane (APTES) and vinyltriethoxysilane (VTES) and are incorporated at
various concentrations (1, 5, 10 and 20%) within the silicon/zirconium sol–gel material. The prepared
materials are successfully processed as coatings and cured at different temperatures in the range
of 100–150 ◦C. The characterisation of the structures and surfaces is performed by dynamic light
scattering (DLS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy
(FTIR), silicon nuclear magnetic resonance spectroscopy (29Si-NMR), atomic force microscopy (AFM)
and static water contact angle (WCA). Structural characterisations (DLS, FTIR,29Si-NMR) show that
the functional alkoxysilanes effectively bind at the surface of the reference sol–gel material, resulting
in the formation of functional core–shell nanoparticles. WCA results show that the hydrophobic
properties of all materials decrease with curing temperature, and AFM analysis demonstrated that
this behaviour is associated with a decrease in roughness. The physico-chemical processes taking
place are critically assigned and discussed.

Keywords: alkoxysilanes precursors; hybrid sol–gel materials; structural characterisations; surface
properties; wettability; coatings

1. Introduction

Nowadays, there is an ever-increasing request for the development of innovative multi-
functional hybrid materials for a wide range of applications, including optical devices [1–5],
(bio)sensors [6–8] and protective coatings [9–11]. Thanks to the unique combination of
organic and inorganic compounds, hybrid materials offer unlimited possibilities for the de-
velopment of multifunctional materials [12]. For example, the fabrication of complex optical
devices such as miniature 3D photonic crystals simultaneously requiring high resolution,
controllable refractive indexes and mechanical stability has become possible by two-photon
polymerisation of hybrid sol–gel materials [13], which has enabled the development of 3D
miniature medical devices [14]. To date, of the various preparation methods, the sol–gel
process is probably the most popular route for the preparation of hybrid materials [12].
The process consists of hydrolysis and condensation reactions of alkoxide precursors, with
the most widely used alkoxide precursors being the alkoxysilanes, which can be used
separately or in combination to achieve nanostructured hybrid materials with mesoporous
morphologies [12].
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For anticorrosion application, in addition to the chemical resistance, mechanical
strength and adhesion to metal substrates, coatings require hydrophobicity to reduce
interactions between the metal surface and corrosive agents, usually entrapped in wa-
ter [15–17]. Amongst the numerous anticorrosion sol–gel coatings reported in the state of
the art, a formulation based on the combination of 3-trimethoxysilylpropylmethacrylate
and a zirconium complex has been intensively investigated and has shown exceptional
performances for the protection of aluminium alloys against corrosion [18–27]. Different
strategies have been employed to improve the anticorrosion barrier properties of this for-
mulation, including varying the ratio of the Si/Zr [18,19], the hydrolysis conditions [20],
the nature of the chelating agent [21,22], the incorporation of anticorrosion compounds [23],
and silanes such as TEOS [24,26] and diphenylsilanediol [27].

To further advance the investigations of this well-established material, we propose
altering the wettability of the coatings by incorporating additional alkoxysilane precursors.
For this purpose, four hybrid alkoxysilane precursors containing different organic function-
alities were selected. These include tetraethylorthosilicate (TEOS), 3-glycidyloxypropyl-
trimethoxysilane (GPTMS), 3-aminopropyltriethoxysilane (APTES) and vinyltriethoxysi-
lane (VTES). While those precursors all have the potential to react with the reference
material via their alkoxysilane counterpart, they differ in the nature of the pendent func-
tional group (epoxy, amine and vinyl for GPTMS, APTES and VTES, respectively). This
may alter the surface properties of the initial nanoparticles and their condensation process
during the formation of the coating. Therefore, if effective binding at the surface of the
sol–gel nanoparticles takes place, functional core–shell nanoparticles [28] can be formed
with possible effects on the structural and wetting properties of the final coatings. The
structure of the materials was investigated via particle size analysis using dynamic light
scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and silicon nuclear mag-
netic resonance spectroscopy (29Si-NMR), while the wettability of the prepared coatings
will be determined using water contact angle (WCA).

Thus, the current study focuses on the following: (i) preparing a series of functional
hybrid materials based on the introduction of different alkoxysilane precursors (TEOS,
GPTMS, APTES and VTES) within a reference Si/Zr sol–gel material; (ii) characterising the
structures and surface properties of the developed materials; (iii) discussing the role of the
alkoxysilane functional groups on the observed structures and properties.

2. Results and Discussion
2.1. Particle Size Analysis

The particle sizes of the sols were recorded 24 h after preparation, as displayed in
Figure 1. All spectra revealed a single distribution band in the 0–20 nm range that is centred
at 3.6 nm (±1 nm), regardless of the concentration of the functional alkoxysilane. On the
other hand, the reference material modified with 1% of functional silanes displayed no
variation in the maximum nanoparticle size, whereas, for the other concentrations, the
maximum particle size fluctuates around 3.6 nm within the error bar of 1 nm (Figure S1).
Thus, it can be concluded that the addition of the functional silane does not significantly
alter the particle size of the materials. In addition, the values of the full width at half
maximum (FWHM) were measured (Figure 2) and showed that they all range within
1.5 nm (from 4 to 5.5 nm). Nevertheless, at this stage, it is worth noting that, although
not significantly obvious, the DLS results tend to show that APTES exhibits a different
reactivity towards the reference material. Indeed, the minor decrease in the maximum
nanoparticle size for samples containing 5 and 10% APTES and the sudden increase for a
concentration of 20% along with a similar variation in the FWHM is an indication that the
APTES concentration may play a role in the structure of the reference material, probably
due to its double functionality (amine and alkoxysilane groups). To explain this behaviour,
one can speculate that for the concentrations below 20%, the APTES tend to form a shield
around the nanoparticles of the reference materials, which would aggregate the smallest
nanoparticles, as the maximum nanoparticle size is slightly decreased and the distribution
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band tending to shift towards smaller sizes. For a 20% APTES concentration, it is possible
that the aggregation process of larger particles takes place, thus explaining the minor
increase in the maximum nanoparticle sizes and FWHM as well as the enlargement of the
distribution towards larger sizes. These assumptions are further discussed below in the
FTIR study (Section 2.3). Therefore, based on the DLS data, it can be concluded that no
significant alteration of the nanoparticle distribution is evident, with the exception of the
material functionalised with APTES.
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2.2. Water Contact Angle (WCA)

WCA measurements were performed, and the average values for all materials at a
given concentration are illustrated in Figure 3. It can be observed that for the reference
material, the WCA values decrease by 10◦ from 72 to 62◦ when the curing temperature
increases from 100 to 130 ◦C and is stable up to 150 ◦C. Unlike the reference material,
the TEOS-modified coatings show WCAs in the range of 65–69◦, regardless of the curing
temperature and TEOS concentration. Of note, a slight tendency to WCA decrease at
high TEOS concentrations is observed within this range at concentrations of 10 and 20%.
Therefore, the wettability of the materials modified with TEOS appears to be less impacted
by the curing temperature than those observed for the reference material. Thus, it can be
anticipated that TEOS enables the maintenance of most of the hydrophobic siloxane groups
formed during the initial curing process, as sketched in Scheme 1.
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Scheme 1. A schematic representation of the impact of TEOS at the surface of sol–gel nanoparticles
before curing (a) and after curing (b).

Regardless of the used concentration, GPTMS and VTES showed a similar trend to
the reference coating with a progressive decrease in the WCAs from 100 to 130 ◦C and a
quasi-stabilisation up to 150 ◦C. However, the reference coating shows higher WACs than
those recorded for GPTMS and VTES, indicating that GPTMS and VTES would form a
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core around the nanoparticles that reduce their condensation ability to form hydrophobic
siloxane groups, as shown in Scheme 2.
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Scheme 2. A schematic representation of the effect of GPTMS (a) and VTES (b) on the formation of
stable sol–gel nanoparticles.

Similarly to the reference coating and the coatings modified with GPTMS and VTES, at
concentrations of up to 5%, APTES experienced a regular WCA decrease with the increase in
the curing temperature. However, for concentrations of 10 and 20%, a hydrophobic recovery
is clearly observed, regardless of the curing temperature. This indicates that competition
between the formation of hydrophilic and hydrophobic takes place as a function of the
APTES concentration. Indeed, one can anticipate that below 10%, APTES may bind to the
surface of the reference material via its ethoxide groups, thus leaving intact its hydrophilic
amine groups at the surface (Scheme 3a). For the concentrations of APTES greater than 5%,
the formation of hydrophobic species such as siloxane and silicon–zirconium oxide groups
may be preferably favoured. Indeed, unlike TEOS, GPTMS and VTES, APTES contains an
amine group that may catalyse the condensation process silanol and zirconium hydroxide
group into siloxane and silicon–zirconium oxide groups but also react with the zirconium
atom to form complexes (Scheme 3b). FTIR results were undertaken to clarify this question
and better understand the physico-chemical process taking place.
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2.3. FTIR Spectral Measurements

To properly identify the impact of the chemical alterations and curing processes on
the structure of the materials, the FTIR spectra (800–1250 cm−1) of all materials were
recorded (Figure 4). All spectra displayed the characteristic vibrations of Si-O-C (810 and
1170 cm−1), Si-OH (840 cm−1), Si-O-Si (880 and 1000–1100 cm−1) and Si-O-Zr (940 cm−1)
in the reference materials [29–31]. The large band located in the 1000–1100 cm−1 spectral
range was safely assigned to the asymmetric siloxane vibrations, where in this region, the
four superimposed bands located at 1010, 1030, 1055 and 1090 cm−1 were identified in
purely inorganic silicate materials [29–31]. Those bands were also identified in similar
hybrid sol–gel materials prepared from combinations of zirconium complexes and single or
multiple hybrid alkoxysilanes, including MAPTMS and TEOS [32], GPTMS [33], GPTMS
and TEOS [34], octlytrimethoxysilane [35], VTES and methyltrimethoxysilane [36]. These
studies fully support our above assignments.
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The band located at 1090 cm−1 was attributed to the stretching vibration of the Si-O-Si
groups located at the interface between tetrahedral and octahedral units (called silicon
apical oxide units), whereas the other three bands at 1010, 1030 and 1055 cm−1 were
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safely assigned to stretching vibrations of siloxane bonds within symmetrical tetrahedral
units [29–31]. Thus, the observed vibration located at 1090 cm−1 (Figure 4) represents the
formation of high-energy siloxane bonds originating from the aggregation of nanostructures
of different sizes and possibly different densities, while bands located at 1010, 1030 and
1055 cm−1 represent siloxane bonds within networks of lower connectivity. It is worth
mentioning that, as the wavenumber of the vibration increases, the energy of the bond also
increases, symbolising a more connected network.

2.3.1. Analysis at 100 ◦C

Except for APTES, all modifiers provoke a decrease in the Si-O-Zr bond (940 cm−1).
All materials, except APTES at 1%, show a decrease in the high-energy siloxane (1090 cm−1)
and low-energy (1010 cm−1) bonds. In parallel, no significant change in the Si-O-C bond
(810 and 1170 cm−1) is observed for all materials, but a strong decrease in the Si-OH
bonds (840 cm−1) is noted. This indicates that at 100 ◦C, all materials favourably react
with the residual Si-OH groups of the reference material, forming preferably core–shell
nanoparticles, supporting our initial hypothesis in Section 2.2. Because the intensity of
the Si-O-Zr bond is stable in the APTES-modified materials and the Si-O-Si bonds are
decreasing, it indicates that APTES exhibits a greater reactivity with the residual Zr-OH
(and possibly Zr-O-C3H7) groups than the three other alkoxysilanes. This can only be
explained by the ability of the amine group to catalyse the condensation reactions of
alkoxysilanes [31,37], thus the formation of Si-O-Zr bonds, as proposed in Scheme 4.
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2.3.2. Analysis at 130 ◦C and 150 ◦C

The increase in the curing temperature provokes an increase in the intensity of all
siloxane bonds, translating the condensation of the residual silanol and un-hydrolysed
alkoxysilane groups. In parallel, except for the materials containing APTES, for all other
modifiers, the Si-O-C bonds (810 and 1170 cm−1) have dramatically decreased at 130 ◦C and
fully disappeared at 150 ◦C, suggesting their full condensation. Unlike the other material,
these results confirm that APTES forms preferably Si-O-Zr groups with the mechanism
proposed in Scheme 4 above. In addition, for the GPTMS-, TEOS- and VTES-modified
coatings, it can be seen that the intensity of the Si-O-Zr bond (940 cm−1) also increased
and generally overtook the reference material. This behaviour is attributed to the thermal
activation of the condensation reactions of the residual un-hydrolysed alkoxide groups
together or with the residual uncondensed silanol and zirconium hydroxide groups.

Owing to these results, one can conclude that at low temperatures, the coatings are
formed of pendant functional groups that reduce the condensation of the reference material,
likely leading to coatings with higher porosity and roughness. The increase in the curing
temperature provokes an increase in the condensation of the reference material, likely
leading to denser coatings with a lesser roughness. Nevertheless, the FTIR results would
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suggest that the hydrophobic properties should increase for all materials as a function of
the curing temperature. However, the opposite trend is shown in the WCA results. This
requires AFM analysis to clarify this point.

2.4. AFM Analysis

AFM analysis was performed to identify if the curing process within the investigated
range of temperature could alter the morphology of the coatings. Typical recorded AFM
images are presented in Figure 5 (an example of the 5% GPTMS-modified material). AFM
images of other 5% modified samples are available in the Electronic Supplementary In-
formation (Figure S2). The roughness of the coatings is measured from the AFM images
and is presented in Table 1. The black holes on some of the images are certainly due to
impurities originating from the ambient atmosphere, although care was taken to minimise
contamination during the processing and deposition of the coatings. Surprisingly, some
irregular peaks with heights of several tens of nm are seen at the surface of some coatings,
which can be due to a vertical growth of the sol–gel probably initiated by the solvent
evaporation phase. It is difficult, however, to identify if those are impacted by the curing
temperature. The measured roughness values of the coatings show a decrease of 50% from
100 ◦C to 150 ◦C, suggesting that the coatings undergo a levelling process definitely due to
the condensation of the material, as shown by FTIR results. Consequently, by corroborating
the FTIR analysis with the AFM results, it may be concluded that the decrease in the rough-
ness due to the condensation process could be the prevalent factor observed for this series
of materials. These conclusions are in agreement with a number of studies summarised in
an excellent review article in the field [38].
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Figure 5. AFM analysis of the 5% GPTMS modified coatings cued at 100 ◦C (A), 130 ◦C (B) and
150 ◦C (C).

Table 1. Roughness values for the 5% GPTMS coatings as a function of curing temperature.

Sample Curing Temperature (◦C) Surface Roughness (nm) Error Bar (nm)

APTES 5%

100 120 ±10

130 92 ±10

150 84 ±5

GPTMS 5%

100 80 ±10

130 52 ±5

150 45 ±5

TEOS 5%

100 100 ±10

130 85 ±5

150 65 ±5

VTES 5%

100 68 ±10

130 57 ±5

150 35 ±5
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2.5. 29Si-NMR
29Si-NMR spectra of the pure functional alkoxysilanes were initially recorded to

characterise the purity and chemical shifts before the reaction with the reference sol–gel
material, as shown in Figure 6A. A well-defined and sharp single peak was easily observed
at −42.6, −82.5, −59.5, −45.4 and −42.4 ppm for MAPTMS, TEOS, VTES, APTES and
GPTMS, respectively. This translates to high-purity precursors with no hydrolysed species.
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Figure 6. 29Si-NMR spectra of pure four alkoxysilane precursors (A) and the reference material (B).

The 29Si-NMR spectrum of the reference sol–gel material is shown in Figure 6B, and
29Si-NMR spectra for all materials are shown in Figure 7. Tn and Qn notations are used
to identify the number of Si-O-Si units in tri-alkoxysilanes and tetra-alkoxysilanes-based
materials, respectively. The subscript n represents the number of connected Si-O-Si units.
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The content of Tn and Qn species within each material is presented in Figure 8. The
reference sol–gel material contains no T0, 3% of T1, 42.5% of T2, and 54.5% of T3 species.
Thus, any T0 signals in the 29Si-NMR spectra (Figure 7) can only be attributed to the
alkoxysilanes precursors added to the reference material. For better clarity, the NMR results
for each of the materials are analysed separately in the following sub-sections.
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2.5.1. Material modification by APTES

The characteristics signal of the pure precursor at −45.4 ppm was found absent at all
concentrations of the materials modified with APTES, suggesting the full reaction of the
APTES with the sol–gel material. At concentrations of 1 and 5%, two singlet peaks located
at −45.9 and −47.0 ppm were observed. These two signals are located at higher chemical
shifts than the one of the precursor, indicating that the electronic environment of the silicon
is increased. The chemical shift located at −47.0 ppm is attributed to T1 species, whereas
the peak found at −45.9 was safely assigned to T0 species where the silicon is an obstructed
environment [38]. The saturation of the surface of the reference sol–gel nanoparticles by
APTES molecules, leading to unbound but closely entrapped molecules, is more likely to
account for this trend, as sketched in Scheme 5. For the 10% APTES sample, an additional
signal at −44.6 ppm is observed, which is located at a lower chemical shift than the pure
APTES precursor (−45.4 ppm), indicating that the electronic environment of the silicon
atom has decreased and that this signal can only be recognised as T0 species in a less
obstructed environment probably associated with the substitution of an ethoxy group by a
hydroxyl group (Si-OH) [39].
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Scheme 5. A schematic representation of saturated reference sol–gel nanoparticle surrounded by
unbound APTES.

At a concentration of 20% of APTES, an additional signal is observed at −43.4 ppm,
and the duplication of the chemical shift at −44.6 ppm into two doublets was observed,
confirming the de-shielding effect observed at the 5% sample. Thus, the additional signal
located at −44.6 ppm is safely attributed to the T0 species with two silanol groups Si(OH)2,
while the signal at −43.4 ppm would translate the formation of T0 species with three silanol
groups Si(OH)3. Thus, it can be concluded that APTES is effectively covalently bound
to the surface of the reference sol–gel nanoparticle, and at 1% APTES concentration, it
fully saturates the surface of the nanoparticles of the reference sol–gel material. The extra
addition of APTES provokes the formation of free hydrolysed APTES molecules.

2.5.2. Material Modification by GPTMS

In all spectra of the pure GPTMS precursor, the signal is absent, suggesting its interac-
tion or reaction with the sol–gel matrix. The appearance of the T1 species between −50 and
−52 ppm, and their growth (2.0, 4.0, 9.0 and 19.0%), as the content of GPTMS increases (1.0,
5.0, 10 and 20.0%), represents the main difference with the NMR spectrum of the sol–gel
matrix. Thus, GPTMS is fully bound to the surface of the sol–gel matrix, and at high GPTMS
concentration, T0 species appeared at −41.9, −43.2 and −44.9 ppm, signifying the presence
of free GPTMS molecules in a less obstructed environment. Similarly to the APTES, the
explanation for this phenomenon is the hydrolysis at different degrees involving Si(OH)1,
Si(OH)2 and Si(OH)3, signifying that the GPTMS can be fully bound at concentrations up
to 10% and that the additional GPTMS molecules are present as free hydrolysed molecules
within the overall system. In comparison with APTES, GPTMS has the ability to link with
the sol–gel matrix from 10% concentration, whereas the APTES can bind with the sol–gel
matrix even at 1% concentration of free APTES; hence, it can be postulated that the APTES
would form an electron-rich shell around the sol–gel matrix via the free pair of electrons on
the N atom of the amino group, thus provoking electronic repulsion of additional APTES
molecules leaving them as free and unreacted hydrolysed molecules.
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2.5.3. Material Modification by VTES

Regardless of the concentration, the addition of VTES precursor into the sol–gel
matrix displayed a peak at −60 ppm, related to the T0 species of the VTES precursor.
The condensed species of the VTES overlap with the T3 band of the sol–gel, and at low
concentrations, they cannot be distinguished. However, with the addition of 10 and 20%
concentrations of VTES into the sol–gel matrix, three bands at −65.3, −66.8 and −73 ppm
are observed, signifying the condensation of the VTES precursor with the reference sol–gel.
These bands are safely assigned to T1, T2 and T3 groups within the VTES organosilane,
respectively, supporting functionalisation of the surface of the reference matrix with VTES.

2.5.4. Material Modification by TEOS

Similarly to GPTMS, Qo signals are present at a concentration of 3.5% of the precur-
sor for the highest concentration of TEOS. The four signals observed at −78.61, −79.50,
−80.41 and −81.33 ppm are most likely corresponding to various hydrolysed species of
TEOS that do not contain any bridging Si-O-Si groups [29]. Importantly, at concentrations of
3.4 and 2.3% TEOS, Q1 and Q2 species were observed, whereas Q3 species were not clearly
detected at 0.4%. These species correspond to mono-, di- and tri-substituted bridging
Si-O groups [29] and suggest the binding of TEOS with the reference sol–gel nanoparticles.
Thus, the functional alkoxysilanes are effectively bound to the reference material, enabling
the formation of core–shell nanoparticles and confirming the suggested hypothesis on the
formation of surface functionalised nanoparticles and coatings.

2.6. SEM Analysis

SEM analyses were performed on coatings deposited on AA2024-T3 aluminium sub-
strates. All coatings showed similar structures and were found to be continuous and homoge-
neously deposited on aluminium substrates with a coating close to 1.2 micron ± 0.25 micron.
The thickness fluctuation is due to the likely alteration of the viscosity of the sols. A rep-
resentative SEM image is shown in Figure 9 (of the reference sol–gel material containing
1% APTES).
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3. Conclusions

In the search for strategies to increase the hydrophobic properties of an established
silicon/zirconium hybrid anticorrosion sol–gel coating, APTES, GPTMS, TEOS, and VTES
were selected thanks to their potential hydrophobic functional groups. Those alkoxysilane
modifiers were successfully incorporated within the reference coating, and structural
characterisations were undertaken. FTIR and 29Si-NMR results concord to show that
surface functionalisation of the reference material is effective by the formation of core–shell
nanoparticles and that the condensation process of the inorganic network relies on the
applied curing temperature. The WCA values were seen to decrease with the curing
temperature, while the formation of hydrophobic species was identified by FTIR. AFM
results showed that this behavior can be attributed to the decrease in surface roughness.
Although the achieved WCA values were found to range in the hydrophilic domain, it
appears that TEOS would be the most suitable modifier to maintain the wetting properties
of the reference material, especially for coatings exposed at temperatures greater than
100 ◦C.

4. Materials and Methods
4.1. Preparation of the Hybrid Sol–Gel

Preparation of the reference hybrid sol–gel material was reported by MacHugh et al.,
2019 [29], and the experimental steps are depicted in the Electronic Supplementary In-
formation (Figure S3). This scheme employs a four-step sol–gel process as follows: Step
1: 3-trimethoxysilylpropylmethacrylate (MAPTMS) is hydrolysed employing an aqueous
solution of HNO3 (0.1 M) at a 25% hydrolysis rate vs. the reactive alkoxysilane precursors
for 45 min, while zirconium (IV) propoxide (ZPO) is complexed with methacrylic acid
(MAAH) in equimolar conditions for the same duration; Step 2: the mixture of the two
solutions is stirred for a period of 10 min; Step 3: the mixture is hydrolysed with deionised
water to achieve a 50% hydrolysis rate of the total alkoxide groups and left to stir for 24 h.
The final molar composition of the reactive precursors is MAPTMS/ZPO/MAAH: 2.5/1/1.
Step 4: the mother batch of the synthesised reference material, as described above, is then
divided into 4 equal fraction volumes in four separate beakers to which the functional
alkoxysilanes are added.

The concentration of the various alkoxysilanes is 1, 5, 10 and 20 mol.% against the
methoxy groups of the MAPTMS, as detailed in Table S1. Each concentration of alkoxysilane
was added to an equal molar quantity of matter under constant stirring and under ambient
conditions, and the prepared materials were finally stirred for 24 h before use. All chemicals
used here are detailed in Table 2.

Table 2. Origin and purity of the employed chemicals.

Chemical Name Acronym Supplier Purity

3-trimethoxypropyltrimethoxysilane MAPTMS Safic-Alcan 98

Zirconium n-propoxide ZPO ABCR 70

Methacylic acid MAAH Merck 99

Tetraethyl Orthosilicate TEOS Merck 98

Vinyltriethoxysilane VTES Merck 97

3-Glycidyloxypropyltrimethoxysilane GPTMS Merck 98

3-Aminopropyltriethoxysilane APTES Merck 99

4.2. Coatings Preparation

The coatings were prepared in a clean-room environment to achieve particle-free
coatings on glass substrates using the WS-650-23B spin-coater from Laurell. With this spin-
coater, coating deposition can be performed by a multi-step deposition process in a precisely
controlled atmosphere. The glass substrates were initially sonicated and rinsed in isopropyl
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alcohol (IPA) and dried in an oven to ensure no humidity or particles were present on the
glass surface. Prior to deposition, the spin-coater chamber was fully saturated with IPA to
control the evaporation of the solvents and minimise this effect on the surface roughness.
The sols were initially filtered using a 0.45 µm syringe filter and processed by spin-coating,
employing the following three-step deposition process: Step 1—deposition of the sols:
the sols are deposited, and the substrate is immediately rotated at 200 rpm to ensure a
slow and full coverage of the glass substrate. Step 2—thickness adjustment: the speed
of the spin-coater is increased to 900 rpm for 35 s. Step 3—solvent evaporation: a small
circular slot of 1 cm of diameter located on the spin-coater lid is opened, and the speed
of the spin-coater is decreased to 250 rpm for 90 s to enable a slow removal of the solvent
and achieve coatings with optical quality. Following deposition, the coatings were left to
dry at ambient temperature for 1 h before undergoing the final curing for 1 h at various
temperatures in the range of 100–150 ◦C, using a Binder drying oven (FD series).

4.3. Characterisation
4.3.1. DLS

A Malvern Nano Zs instrument was used to determine the particle size of the mate-
rials. To avoid scattering and to achieve a system where particles are in a quasi-isolated
environment, the sols were diluted in IPA in a ratio of 95:5% v/v, IPA: sol and filtered
using a 0.45 µm Whatman syringe filter prior to each run. All sol–gel materials were
prepared 5 times during a period of a week, and DLS spectra were recorded 24 h after
synthesis completion. For reproducibility and statistical analysis, the prepared samples
were run 5 times, and the presented spectra are the average of the 5 recorded spectra. The
measurement uncertainty on the DLS instrument is 1 nm.

4.3.2. Contact Angle Measurements

In this experiment, the static sessile drop method was used to measure the WCAs
of the coatings using deionised water under ambient conditions. An electronic syringe
and an FTA200 (First Ten Angstroms goniometer, software 2.0, Newark CA 64560, USA)
were used to drop 5 microliters of deionised water onto the surface of the coatings, which
were allowed to stabilise for 10 s before recording the digital images of the droplets.
The images were then analysed using FTA32 Video 2.0 software, where 6 contact angle
measurements were taken for each sample, and the average measurement was calculated
as average ± standard deviation.

4.3.3. FTIR

A Perkin Elmer GX instrument FTIR (4000–650 cm−1) was used for recording the
FTIR spectra (4000–650 cm−1) in the reflection ATR configuration to allocate the different
vibrational modes of the chemical species and also to assign the impact of the functional
silanes on the structure of the reference sol–gel material. To enable a proper comparison of
the spectra in terms of materials sol–gel reactions and condensations of the reactive silanes
and zirconium species, all recorded spectra were normalised in the range 800–1225 cm−1

using the OriginLab 2024 software.

4.3.4. AFM

A scanning AFM (Pacific Nanotechnology: Nano–RTM, Santa Clara, CA, USA) was
used to characterise the surface topography and roughness of the coatings. At least three
measurements were taken of the same scan size of 80 × 80 µm from three different areas of
the sample surface. The root mean square roughness was measured, and the average value
of the surface roughness was calculated.

4.3.5. 29Si-NMR

A Bruker Avance II 400 MHz spectrometer was used to record the 29Si-NMR spectra to
identify the chemical reactions between the silane modifiers and reference sol–gel at room
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temperature. An INEPTRD pulse sequence was used to record the NMR spectra using
deuterated dimethylsulfoxide (DMSO) as a lock solvent.

4.3.6. SEM

SEM images were performed on the cross-section of the coatings deposited on alu-
minium surfaces to identify their thickness, homogeneity and adhesion. The SEM images
were recorded employing a Hitachi SU-70 SEM with an electron energy of 2–10 keV. Prior
to analysis, the samples were sputter coated with a palladium layer of approximately 6 nm
in thickness using a Cressington 208HR sputter coater.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/gels10050315/s1, Figure S1: Variation of the maximum
particle size versus the concentration of silane modifier. Figure S2: AFM images of 5% silane modified
coatings cured at 100, 130 and 150 ◦C. Figure S3: A scheme describing the four steps of the preparation
of the reference hybrid sol-gel material by MacHugh et al., 2019 [29]. Table S1: Material formulations
for functionalized alkoxysilanes at various concentrations (1.0–20 mol. %) against the methoxy groups
of the MAPTMS.
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