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Abstract: β-glucosidases are a class of enzyme that are widely distributed in the living world, with
examples noted in plants, fungi, animals and bacteria. They offer both hydrolysis and synthesis
capacity for a wide range of biotechnological processes. However, the availability of native, or the
production of recombinant β-glucosidases, is currently a bottleneck in the widespread industrial
application of this enzyme. In this present work, the production of recombinant β-glucosidase from
Streptomyces griseus was optimised using a Design of Experiments strategy, comprising a two-stage,
multi-model design. Three screening models were comparatively employed: Fractional Factorial,
Plackett-Burman and Definitive Screening Design. Four variables (temperature, incubation time,
tryptone, and OD600 nm) were experimentally identified as having statistically significant effects on
the production of S.griseus recombinant β-glucosidase in E. coli BL21 (DE3). The four most influential
variables were subsequently used to optimise recombinant β-glucosidase production, employing
Central Composite Design under Response Surface Methodology. Optimal levels were identified as:
OD600 nm, 0.55; temperature, 26 ◦C; incubation time, 12 h; and tryptone, 15 g/L. This yielded a 2.62-fold
increase in recombinant β-glucosidase production, in comparison to the pre-optimised process.
Affinity chromatography resulted in homogeneous, purified β-glucosidase that was characterised in
terms of pH stability, metal ion compatibility and kinetic rates for p-nitrophenyl-β-D-glucopyranoside
(pNPG) and cellobiose catalysis.

Keywords: Streptomyces griseus; recombinant β-glucosidase; Fractional Factorial design
Plackett-Burman Design; Definitive Screening Design; Response Surface Methodology

1. Introduction

Recombinant protein expression has traditionally been an empirical process that required running
a large number of experiments to explore many influencing variables (e.g., expression vectors, hosts,
expression conditions and media compositions) [1]. The expression of recombinant β-glucosidase,
similar to other recombinant proteins, is influenced not only by the expression host strain, but also
by expression conditions and media composition [2,3]. β-glucosidase catalyses the hydrolysis of
β-1,4-glycosidic bonds, and its industrial applications are well documented [4,5]. However, low
yields of this enzyme have been a bottleneck for industrial applications, such as saccharification for
biofuels production, and enzymatic synthesis of alkyl-glycosides and oligosaccharides, where large
enzyme concentrations are needed [6,7]. In an attempt to address this issue of poor production yields,
this study applied a statistical approach, Design of Experiments (DoE), to enhance the production
of a recombinant β-glucosidase. The application of DoE to optimise protein production has been
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recently reviewed [8,9]. Enhanced production of recombinant β-glucosidase, following DoE, has been
detailed for recombinant β-glucosidases from a variety of sources, such as Pichia pastoris [3], A. niger
HN-2 [10] and A. niger [11]. However, to date, no attempt has been made to enhance the production
of β-glucosidase form Streptomyces sp.; a species known to be an effective source of β-glucosidase
genes [12,13], with limited sequence conservation compared to P. pastoris (18% conservation) and
A. niger (26% conservation). The aim of this study was to optimise the production of S. griseus
recombinant β-glucosidase in E.coli BL21 (DE3) by using multiple screening designs to validate the
variable selected for optimisation via a response surface methodology. The findings of this study are
explored in light of the existing literature and recommendations are offered for future applications of
Design of Experiments to enhance recombinant protein production.

2. Materials and Methods

2.1. Chemical and Materials

The recombinant pGEX-4T-1 vector containing S. griseus β-glucosidase gene (GST-tagged)
in E. coli BL21 (DE3) was developed in a previous study [14]. Ampicillin, glycerol,
Isopropyl-β-D-thiogalactopyranoside (IPTG), LB broth, p-nitrophenyl-β-D-glucopyranoside (pNPG),
p-nitrophenol (pNP), cellobiose, fructose sucrose, tryptone, yeast extract, beef extract, CaCl2, DTT,
KOH, MgCl2, (NH4)2S4, ZnSO4, Triton X-100, M PMSF, Lysozyme, Bradford reagent, and Glutathione
Sepharose 4B resin were purchased from Sigma Aldrich (Ireland).

2.2. Production of S. griseus Recombinant β-glucosidase

2.2.1. Preparation of Microbiological Media

The recombinant pGEX-4T-1 vector containing S. griseus β-glucosidase gene (GST-tagged) in
E. coli BL21 (DE3) was inoculated into 5 mL of Luria-Bertani (LB) medium containing ampicillin at a
final concentration of 50 µg·mL−1, and incubated at 37 ◦C for overnight at 220 rpm. The overnight
culture was used to inoculate 10% v/v of fresh medium for small-scale (10 mL) expression studies used
during the screening and optimisation processes.

2.2.2. Carbon and Nitrogen Sources for S. griseus Recombinant β-glucosidase Expression

Identification of good carbon and nitrogen sources for S. griseus recombinant β-glucosidase
expression was initially performed. Four carbon sources (glucose, fructose, galactose, and glycerol)
and six nitrogen sources (yeast extract, tryptone, beef extract, KNO3, NH4Cl, and (NH4)2SO4) were
selected based on their noted effect on recombinant expression in E-coli in general [15,16], and on
β-glucosidase in particular [17,18]. The effect of carbon and nitrogen sources was investigated in basal
medium supplemented with 0.5% (w/v) of the different carbon sources and 1% (w/v) of the different
nitrogen sources [19]. In each case, cells were grown until OD600 nm reached 0.5, and then induced
with 1mM IPTG for 6 h with subsequent culturing at 37 ◦C, 220 rpm.

2.2.3. Effect of Culture Aeration on S. griseus Recombinant β-glucosidase Expression

Subsequently, the influence of culture aeration, via baffled culture flasks, on the protein expression
was also investigated by cultivating cells with medium supplemented with the selected carbon and
nitrogen sources, 0.5% w/v fructose, 1% w/v yeast extract and tryptone (see Section 2.2.2), in baffled
and non-baffled flasks, at 37 ◦C, 220 rpm for 6 h post 1 mM IPTG induction.

2.2.4. Screening of Most Significant Medium Components and Induction Condition Using Multiple
Screening Designs

Fractional Factorial Design (FFD), Plackett-Burman Design (BBD), and Definitive Screening
Design (DSD) were employed to comparatively screen for the most significant medium components
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and induction conditions affecting S. griseus recombinant β-glucosidase production in E. coli BL21
(DE3). A total of seven factors, including four induction related conditions (OD, IPTG, temperature,
incubation time) and three medium components (yeast extract, tryptone, fructose) were considered
for the screening experiments. All factors were studied at two levels; high and low, denoted by
(+) and (−) signs, respectively (see Table 1). The FFD was created using the main effects only and
confounding all interactive effects by using Resolution 4 within JMP. For the DSD, two centre-point
replicates were used to verify the variation in the screening process and to validate that the two level
design linear assumption was true. The multiple screening designs used in this study, along with
their responses, are summarised in Tables 2–4. A statistical analysis of the experimental data was
performed and a densitometry analysis of sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) of the expressed β-glucosidase was carried out using ImageJ densitometry software,
http://rsb.info.nih.gov/ij/ [20].

Table 1. The minimum and maximum ranges for different factors studied during screening process.

Factors Types Factors Codes Factors Levels
−1 (Low) +1 (High)

Induction condition

X1 OD (Abs600 nm) 0.3 0.9
X2 IPTG (mM) 0.1 1.0
X3 Temperature (◦C) 18 36
X4 Incubation time (h) 4.0 20

Media Composition
X5 Yeast Extract (g/L) 5.0 10
X6 Tryptone (g/L) 10 20
X7 Fructose (g/L) 1.0 5.0

Table 2. Plackett-Burman Design. Multiple screening designs for identification of most influential
factors on the production of S.griseus recombinant β-glucosidase. It depicts coded values of the designs,
along with the observed experimental response (β-glucosidase activity (BGL); U/mL).

Coded Values Response

Runs X1 X2 X3 X4 X5 X6 X7 BGL (U/mL)

1 1 1 1 1 1 1 1 39.301
2 −1 −1 1 −1 −1 1 −1 39.781
3 −1 1 −1 −1 1 −1 1 40.681
4 1 −1 −1 1 −1 1 1 39.761
5 −1 −1 1 −1 1 1 1 39.801
6 1 1 −1 −1 −1 1 −1 40.631
7 1 −1 1 1 1 −1 −1 39.271
8 −1 1 −1 1 1 1 −1 39.621
9 −1 1 1 1 −1 −1 −1 39.181
10 1 1 1 −1 −1 −1 1 40.211
11 −1 −1 −1 1 −1 −1 1 39.811
12 1 −1 −1 −1 1 −1 −1 40.791

http://rsb.info.nih.gov/ij/
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Table 3. Fractional Factorial Design. Multiple screening designs for identification of the most influential
factors on the production of S.griseus recombinant β-glucosidase. It depicts coded values of the designs,
along with the observed experimental response (β-glucosidase activity (BGL); U/mL).

Coded Values Response

Runs X1 X2 X3 X4 X5 X6 X7 BGL (U/mL)

1 1 1 1 −1 −1 −1 −1 41.641
2 −1 −1 −1 −1 −1 −1 −1 40.471
3 1 −1 −1 1 1 −1 −1 40.571
4 1 −1 −1 −1 −1 1 1 39.821
5 1 −1 1 −1 1 −1 1 41.601
6 −1 1 1 1 1 −1 −1 40.561
7 1 1 1 1 1 1 1 39.411
8 −1 −1 −1 1 1 1 1 40.388
9 1 −1 1 1 −1 1 −1 40.281
10 1 1 −1 −1 1 1 −1 39.631
11 −1 1 −1 1 −1 1 −1 40.421
12 1 1 −1 1 −1 −1 1 40.311
13 −1 −1 1 −1 1 1 −1 41.379
14 −1 1 −1 −1 1 −1 1 40.651
15 −1 1 1 −1 −1 1 1 41.691
16 −1 −1 1 1 −1 −1 1 40.380

Table 4. Definitive Screening Design. Multiple screening designs for identification of most influential
factors on the production of S.griseus recombinant β-glucosidase. It depicts coded values of the designs,
along with the observed experimental response (β-glucosidase activity (BGL); U/mL).

Coded Values Response

Runs X1 X2 X3 X4 X5 X6 X7 BGL (U/mL)

1 −1 1 1 0 −1 −1 −1 40.111
2 0 0 0 0 0 0 0 41.221
3 −1 0 1 1 1 1 −1 39.033
4 −1 1 0 1 −1 −1 1 40.621
5 1 −1 1 1 0 −1 −1 39.121
6 −1 −1 1 −1 −1 1 1 39.961
7 1 −1 −1 0 1 1 1 40.511
8 1 1 −1 1 1 −1 −1 40.611
9 1 1 1 −1 1 −1 1 40.261

10 1 1 −1 1 −1 1 0 40.011
11 1 0 −1 −1 −1 −1 1 40.561
12 −1 1 −1 −1 0 1 1 39.451
13 −1 −1 −1 1 1 −1 1 40.651
14 0 1 1 1 1 1 1 39.106
15 −1 −1 −1 1 −1 1 −1 39.981
16 −1 1 −1 −1 1 0 −1 39.791
17 1 1 1 −1 −1 1 −1 40.021
18 1 −1 1 1 −1 0 1 39.190
19 −1 −1 1 −1 1 −1 0 39.841
20 1 −1 0 −1 1 1 −1 41.211
21 0 −1 −1 −1 −1 −1 −1 39.781
22 0 0 0 0 0 0 0 41.231
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2.2.5. Optimisation of S. griseus Recombinant β-glucosidase Production by Response Surface
Methodology

A Central Composite Design (CCD) was applied to identify the optimum levels of the most
effective variables (temperature, induction time, tryptone, and OD600 nm) previously identified in the
screening process. Each variable in the design was examined at three levels, low (−), central (0), and
high (+; see Table 5).

Table 5. The most influential factors (X1, X3, X4, X6), as identified through the screening process,
were examined at three levels; low (−1), central (0), and high (+1), for the optimisation of S. griseus
recombinant β-glucosidase expression in E. coli BL21 (DE3).

Factor code Factors (unit) Levels

−1 0 +1

X1 OD (Abs600 nm) 0.3 6.0 0.9
X3 Temperature (◦C) 18 27 36
X4 Incubation time (h) 4 12 20
X6 Tryptone (g/L) 10 15 20

Central Composite Design was the preferred Response Surface Methodology, due to the fact that
this design permitted full, or fractional, factorial modes, with the potential to add central points to
evaluate the experimental error [21]. In this experiment, the total number of runs was calculated using
Equation (1).

N = k2 + 2k + Cp (1)

where k is the number of factors and Cp the number of centre points [22]. An experimental design
by CCD was developed with a total number of 28 runs, including four replicates at the central point.
The full experimental plan comprising maximum, central and minimum ranges of the screened
variables is provided in Table 6.

2.2.6. Statistical Analysis

JMP 13 (SAS Institute, Wittington House, UK) was utilised to design experiments and to analyse,
through regression analysis, the experimental data. The response obtained (BGL activity: U/mL) was
also subjected to ANOVA. A second-order polynomial equation was then fitted to the data using a
multiple regression procedure (Equation (2)).

Y = β0 +
∑

βiXi +
∑

βiiX
2
i +
∑

βi jXiX j (2)

where Y is the predicted response, β0, βi, βii, and βij are coefficients for the intercept, linear, square or
quadratic, and interactive terms, respectively. Xi and Xj are the independent variables [23]. The fit of
the model was also evaluated through ANOVA (see Table 7). The coefficient value (R2) was used to
define how well the data fit the model used; whilst the p-value and “lack of fit” were used to estimate
the appropriateness of the model [24]. The significance of regression coefficients were also examined
(see Table 8). Finally, the experimental and predicted values were compared to determine the validity
of the developed model.

2.2.7. Optimum Determination and Validation

To determine the optimum factor levels for maximal yields of recombinant β-glucosidase, surface
contour plots were utilised. In these 3-D plots, two test factors were utilized, whilst the other
factors were maintained at their respective zero levels [25]. The optimum conditions were verified
by conducting validation experiments comprising three independent experiments examining the
responses generated in comparison to the model-predicted results.
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2.2.8. Purification of S. griseus Recombinant β-glucosidase by Affinity Chromatography

Following six hours of induced S. griseus recombinant β-glucosidase, the cell mass was pelleted by
centrifugation at 7000 ×g for 10 min at 4 ◦C. The pellet was lysed by resuspension in lysis buffer (10 mM
Na2HPO4, 1.8 mM KH2PO4, 140 mM NaCl, 1% (v/v)) Triton X-100, 1mM DTT, 1mM PMSF, 10 mg·mL−1

Lysozyme) and sonication at an amplitude of 40 for 30 s using an Ultrasonic processor Sonicator
(QSONICA, Newtown, CT, USA). The resultant slurry was centrifuged at 14,000 ×g for 30 min at 4 ◦C
and the cleared lysate was further filtered through an Amicon® Ultra centrifugal filter to concentrate
the lysed protein mixture. The concentrated lysed protein mixture was loaded onto a Glutathione
Sepharose 4B resin column and incubated for 30 min at 4 ◦C with gentle shaking. Subsequently, the
S. griseus recombinant β-glucosidase was fractionally collected at a flow rate of 0.5 mL/min, using a
gravity flow column. The GST-tag was on-column cleaved from the purified S. griseus recombinant
β-glucosidase by PreScission protease using a washing (50 mM Tris, 150 mM NaCl, pH 8) and elution
buffer (50 mM Tris, 150 mM NaCl, 12 mM reduced glutathione, pH 8) combination [26]. The eluted
enzyme was dialysed against 1.0 L of 50 mM potassium phosphate buffer, pH 7 at 4 ◦C for 24 h with
constant, gentle stirring. The protein purity was verified by 10% (v/v) SDS-PAGE [27].

2.2.9. Determination of Protein Concentration

The protein concentration was determined according to the Bradford Method [28], using an
adapted 96-well plate approach. Bovine serum albumin was used as standard, with a working protein
concentration linear range of 0 to 1 mg·mL−1, in 50 mM Potassium phosphate buffer (pH 7). The
protocol entailed, in triplicate, 5 µL of the protein standard/diluted sample was added to an individual
well. The negative control was 5 µL of the buffer (50 mM Potassium phosphate, pH 7) in place of the
protein standard/diluted sample. Subsequently, 250 µL of the Bradford reagent (Sigma) was added to
each well sequentially, using a multichannel pipette, and the mixtures were thoroughly mixed by using
the mixing cycle on the microplate spectrophotometer (Bio-Tek PowerWave) for 10 s and incubated at
room temperature for 20 min. The resulting absorbance was measured at 595 nm against the blank and
the absorbance of the unknown protein concentration was determined in comparison to the standards.

2.2.10. Determination of S. griseus Recombinant β-glucosidase Activity

The recombinant β-glucosidase activity was measured using a standard enzyme activity assay
by determining the hydrolysis of the substrate p-nitrophenyl-β-D-glucopyranoside (pNPG) using a
96-well-plate-based protocol. In brief, 20 µL the purified recombinant β-glucosidase (0.5 mg·mL−1)
was mixed with 120 µL potassium phosphate buffer (50 mM, pH 7) and 30µL pNPG (7 mM) substrate,
and incubated at 37 ◦C for 20 min. A negative control comprised the same components with the
enzyme volume replaced with buffer. The reaction was terminated by adding 30 µL of 1 M Na2CO3

and the total reaction volume was 200 µL. The release of p-nitrophenol (pNP) was measured at 405 nm
using a microplate spectrophotometer (Bio-Tek PowerWave). All experiments were performed as three
independent experimental runs, themselves as triplicates. The colour developed was translated to
µmol pNP using a standard curve in the range of 0 to 0.5 mM, prepared as outlined [29]. One unit (IU)
of β-glucosidase activity was defined as the amount of enzyme required to release 1 µmol of product
(pNP) per minute under the standard assay conditions.

2.2.11. Stability Studies and Characterisation

Characterisation studies, unless otherwise stated, utilised the standard enzyme assay (see
Section 2.2.10). To examine the effect of pH on the β-glucosidase activity, the pH stability was
performed by incubating the enzyme in the reaction buffers: citrate buffer (pH 5.0), phosphate buffer
(pH 6.0–8.0) at 37 ◦C for 0 to 180 min [30]. The effect of metal ions on the enzyme was determined
using 1 mM of several metal ions (Ca2+, Mg2+

, N+, K+, ZnSO4, and (NH4)2SO4) at 37 ◦C, for 60 min
and 240 min. The kinetic parameters were determined from Michaelis–Menten plots of reaction rate of
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three independent experiments at 37 ◦C, using varying pNPG substrate concentrations between 4 mM
to 32 mM, and cellobiose from 5 mM to 50 mM, under standard assay conditions. For cellobiose, the
determination of glucose released was measured using a Colourimetric Assay Kit (Invitrogen, Thermo
Scientific, Cork, Ireland), according to manufacturer’s instructions. The values of Vmax and Km were
determined by non-linear regression analysis, using GraphPad Prism (Version 7, GraphPad Software,
San Diego, CA, USA).

3. Results and Discussion

Recombinant β-glucosidases from different sources, heterologously expressed in prokaryotic and
eukaryotic systems have typically utilised the traditional One Factor At a Time (OFAT) method to
optimise yield [18]. However, this classical approach requires a significant number of experiments
and fails to account for interactions between variables, which can result in low yields [8,31]. In this
study, the production of S. griseus recombinant β-glucosidase has been optimised, instead, by Design
of Experiments with the emphasis on optimising parameters that affected expression. Prior to Design
of Experiments, preliminary investigations on carbon and nitrogen sources, along with the effect
of aeration, were performed to reduce the number of factors to be explored through DoE. This
permitted the comparative screening process to cover a more targeted experimental space, facilitating
the selection of the most influential factors, whilst simultaneously ensuring a validated screen and
effective subsequent optimisation [32].

3.1. Effect of Carbon and Nitrogen Sources

Carbon is important to all living organisms and the breakdown of the carbon source liberates
energy, which is utilised by the organism for growth and development [33]. The most commonly
used carbon sources in heterologous protein expression are glucose, starch, glycerol, fructose, maltose,
arabinose, sucrose, lactose, and xylose [33–36]. In this study, the effect of six different carbon sources
(glucose, lactose sucrose, galactose, fructose and glycerol) on the expression of S. griseus recombinant
β-glucosidase was investigated (see Figure 1a). As expected, glucose was found to significantly repress
expression, by 23% (p-value ≤ 0.01); the repressive effect of glucose on β-glucosidase could be the
catabolic repression of glucosidase synthesis, which was reported in literature [37,38]. In contrast,
fructose significantly enhanced the expression of S. griseus recombinant β-glucosidase, by 17%
(p-value ≤ 0.01), and echoes previous studies [39].

Nitrogen sources have been previously reported to influence the production of protein in
general [40] and β-glucosidase in particular [17]. In this study, the effect of six nitrogen sources
(yeast extract, tryptone, beef extract, ammonium sulfate, ammonium chloride, and potassium nitrate)
on S. griseus recombinant β-glucosidase were explored (see Figure 1b). Tryptone and yeast extract
exhibited a significant effect (p-value ≤ 0.01) on the expression of S. griseus recombinant β-glucosidase;
23% and 17% increase in production, respectively, mirroring previous reports [18,41]. In contrast,
potassium nitrate exhibited a significant repressive effect by 15% (p-value ≤ 0.05) of production, while
beef extract, ammonium sulphate, and ammonium chloride did not show any significant effect on the
production of this recombinant enzyme.
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Figure 1. The effect of various carbon (a) and nitrogen (b) sources on S. griseus recombinantβ-glucosidase
expression. Recombinant β-glucosidase was expressed by supplementing basal medium with 0.5%
(w/v) and 1% (w/v) of different carbon and nitrogen sources, respectively. The control was performed
using only basal medium. In each case, cells were grown until OD600 nm reached 0.5, and then induced
with 1 mM IPTG for 6 h at 37 ◦C, 220 rpm. Enzyme activity of crude lysate was performed using 7 mM
pNPG as the substrate in 50 mM potassium phosphate buffer, pH 7 (see Section 2.2.2). The data plotted
represent the mean of three independent experiments, with standard deviation shown as error bars: *
p-value ≤ 0.05, ** p-value ≤ 0.01 represent a significant and a very significant difference, respectively,
based on two-tailed t-test and in comparison to the control.

3.2. Effect of Aeration on S. griseus Recombinant β-glucosidase Expression

Aeration is an important parameter known to effect recombinant protein expression and
baffled flasks are a common approach to enhance protein synthesis through enhanced oxygenation
efficiency [42]. To understand the effect of aeration on expression of S. griseus recombinantβ-glucosidase,
the expression was carried in baffled and non-baffled flasks with basal medial supplemented with
optimum carbon and nitrogen sources (Section 3.1). No statistically significant difference was noted
between a baffled and non-baffled flaks culture (see Figure 2) and chimes with results previously
reported on the production on β-glucosidase in Pichia pastoris [3]. Baffled culture phenomena,
such as foaming [43] or reduced metabolite production [44,45], may result in similar yields to a
non-baffled culture.
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Figure 2. The effect of baffled versus non-baffled flask on the production of S. griseus recombinant
β-glucosidase. Recombinant β-glucosidase was expressed in basal medium supplemented with 0.5%
(w/v) fructose, 1% (w/v) yeast extract and tryptone at 37 ◦C for 6 h, following 1 mM IPTG induction.
Enzyme activity was used as a proxy to enzyme production. The data represented are the mean of
three independent experiments, with the standard deviations noted as error bars. Both baffled and
non-baffled flasks show no significant difference between them (p-value ≥ 0.235) based on two-tailed
t-test.

3.3. Screening of most Significant Media Components and Induction Conditions

Multiple screening designs (PBD, FFD, DSD) were simultaneously used to identify the most
influential variables and validate the reliability of the screening matrix through inter-screen correlation.
The average response ranged from 39.21 U/mL to 41.24 U/mL (see Tables 2–4), providing a rationale
to optimise the medium constituents and induction conditions for maximal S. griseus β-glucosidase
production. Experimental data were statistically interrogated to identify and categorise the most
influential variables (see Figure 3). In all cases, the multiple screening processes identified the same
important factors as most influential; temperature (X3) and incubation time (X4) were highly statistically
significant (p-value < 0.001), whereas tryptone (X6) and OD600nm (X1) were statistically significant
(p-value < 0.05). These results align with previous studies that employed factorial design to enhance
β-glucosidases expression [46,47]. Other factors, namely IPTG (X2), yeast extract (X5) and fructose (X7),
were not statistically significant (p-value > 0.05). The interaction effect of X3*X4, and the quadratic
effects of X3*X3, X4*X4, were found to be highly significant (p-value < 0.001; see Figure 3b,c), indicating
that these factors interact, and any change in one would affect the other, as well as the response. These
affects were also visualized via SDSPAGE (see Figure 4).
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Figure 4. A 10% (w/v) SDS-PAGE stained with Coomassie Brilliant Blue. The figure depicts various
band sizes of crude β-glucosidase expressed in accordance with the 12 experimental runs, according
to Plackett-Burman Design (see Section 2.2.4). An equal volume of crude extract (15 µL) was loaded
into each lane. Lanes 2, 3, 6, 10, 11, and 12 display larger over-expressed protein bands at the expected
molecular weight for the recombinant β-glucosidase/GST fusion protein (~65 kDa), as based on ImageJ
densitometric analysis. This result mirrors the increased enzyme activity (U/mL) observed in these
experimental runs (see Table 2). Note: M = protein marker (14.4–116 kDa).
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3.4. Optimisation of Screened Variables for Maximal Production

A three level Central Composite Design was used to optimise the production of S. griseus
recombinant β-glucosidase. Table 4 details the experimental design and corresponding response
(actual, predicted, and residuals) of the production β-glucosidase.

Table 6. CCD for production optimisation of S. griseus recombinant β-glucosidase. The table depicts
coded values, along with the experimental response: BGL (U/mL), actual, predicted, and residuals
(the difference between the actual and predicted values).

Coded values Response: BGL (U/mL)

Runs X1 X3 X4 X6 Actual Predicted Residuals

1 0 0 0 −1 41.633 41.583 0.050
2 −1 1 1 −1 39.072 39.049 0.023
3 1 −1 −1 1 39.899 39.903 −0.004
4 −1 0 0 0 41.263 41.313 −0.050
5 1 1 1 1 39.089 39.052 0.037
6 0 0 1 0 41.213 41.230 −0.017
7 −1 −1 1 1 40.433 40.354 0.079
8 −1 −1 −1 1 39.988 40.043 −0.055
9 1 −1 1 −1 39.804 39.907 −0.103

10 1 −1 1 1 40.232 40.218 0.014
11 1 1 −1 −1 39.824 39.883 −0.059
12 0 1 0 0 40.430 40.558 −0.128
13 0 0 0 0 41.804 41.789 0.015
14 1 1 1 −1 39.023 38.963 0.060
15 0 0 0 1 41.587 41.734 −0.147
16 0 0 0 0 41.900 41.789 0.111
17 −1 1 −1 −1 39.965 39.974 −0.009
18 0 −1 0 0 41.100 41.069 0.031
19 1 0 0 0 41.153 41.200 −0.047
20 −1 −1 1 −1 40.024 40.045 −0.021
21 −1 1 −1 1 40.087 39.964 0.123
22 0 0 0 0 41.890 41.789 0.101
23 −1 −1 −1 −1 39.813 39.830 −0.017
24 1 1 −1 1 39.902 39.877 0.025
25 1 −1 −1 −1 39.763 39.686 0.077
26 0 0 −1 0 41.455 41.535 −0.080
27 0 0 0 0 41.852 41.789 0.063
28 -1 1 1 1 39.062 39.134 -0.072

The model adequacy was verified by multiple regression analyses, utilising a second-order
polynomial fitted to Equation (3).

Y = 41.7891− 0.0566 X1− 0.2557 X3− 0.1524 X4 + 0.0754 X6 − 0.5328 X1∗X1
−0.9758 X3∗X3− 0.4068 X4∗X4 − 0.1308 X6∗X6 + 0.0133 X1∗X3
+0.0014 X1∗X4 + 0.0008 X1∗X6− 0.285 X3∗X4− 0.0557 X3∗X6
+0.0239 X4∗X6

(3)

where Y is response, X1 is OD600 nm, X3 is Temperature, X4 is Incubation time, X6 is Tryptone. The data
were analysed by analysis of variance (ANOVA, see Table 7), with the model F-value noted as being
highly significant (p-value < 0.001). The model “goodness of fit” (R2

adjusted = 0.9885) confirmed the
appropriateness of the model to predict the response [48]. The “model lack of fit” F-value was not
significant (6.87; p-value > 0.05), confirming the accuracy of the model [49]. The predicted R2 (0.9945)
indicates a good agreement between the value predicted by the model and the experimental data
(see Figure 5a). A plot of residual values versus predicted values also revealed no trends (see Figure 5b),
implying homogeneity of variance in the data and absence of outliers in the experimental runs [25].
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Table 7. Analysis of Variance was used to confirm the adequacy of the model used in this study.

Source DF Adj SS Adj MS F-Value p-Value

Model 14 24.5007 1.75005 167.32 <0.001
Residuals (error) 13 0.1360 0.01046

Lack-of-Fit 10 0.1303 0.01303 6.87 0.070
Pure Error 3 0.0057 0.00190

Total 27 24.6366

Note: R2 = 99.45%; Adj-R2 = 98.85%; Pred-R2 = 97.04%. Abbreviations: DF = Degree of Freedom; SS = Sum of
Square; MS = Mean Square.
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accuracy of the regression model.

The regression coefficient significance under a student t-test (see Table 8) indicated that temperature
and incubation time were constantly found to be the most influential factors and highly significant
(p-value < 0.001). All of the square terms, except X6*X6, were also found to be highly significant
(p-value < 0.001). Interaction coefficients were significant with the order of X3*X4 > X3*X6, indicating
the importance of the interacting variables.

Three dimensional response surface and contour plots [50,51] were used to predict optimum factor
levels for maximal production of S.griseus recombinant β-glucosidase (see Figure 6). The response
surface and contour plots between OD600 nm and temperature (Figure 6a,a’), and OD600 nm and
incubation time (Figure 6b,b’), displayed curved relationships, indicating these variables significantly
influenced the production of S. griseus recombinant β-glucosidase, with maximum enzyme activity
observed at central variable levels. The response surface and contour plots between temperature
and incubation time (Figure 6c,c’) indicate a direct correlation between the production of S. griseus
recombinant β-glucosidase and both variables. The maximum enzyme activity was determined
at central levels and decreased at the extreme levels. The relationship between temperature and
tryptone presented an elliptical shape and was significant (see Figure 6d,d’ and Table 6). Increasing the
tryptone concentration (to 15 g/L) resulted in increased enzyme production, with the optimum noted
at temperature central point. A relationship between the 3D response surface and the statistically
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significant factors (at p-value < 0.05) optimised in this study indicates that the statistical model
developed was appropriate to cover all independent variable ranges investigated in this study.

Table 8. Regression coefficients significance: Coef, SE Coef, t-value, and p-value of the model terms
(X1, X2, X3, X4) and their interactions are noted. The t- and p-values were determined by using JMP 13
(SAS Institute, Wittington House, UK).

Model Term Coef SE Coef t-Value p-Value

Constant 41.7891 0.0354 1181.70 <0.001
X1 −0.0566 0.0241 −2.35 0.035
X3 −0.2557 0.0241 −10.61 <0.001
X4 −0.1524 0.0241 −6.32 <0.001
X6 0.0754 0.0241 3.13 0.008

X1*X1 −0.5328 0.0637 −8.37 <0.001
X3*X3 −0.9758 0.0637 −15.32 <0.001
X4*X4 −0.4068 0.0637 −6.39 <0.001
X6*X6 −0.1308 0.0637 −2.05 0.061
X1*X3 0.0133 0.0256 0.52 0.613
X1*X4 0.0014 0.0256 0.05 0.958
X1*X6 0.0008 0.0256 0.03 0.977
X3*X4 −0.2851 0.0256 −11.15 <0.001
X3*X6 −0.0557 0.0256 −2.18 0.048
X4*X6 0.0239 0.0256 0.93 0.367

Abbreviations: Coef = coefficient; SE Coef = standard error of the coefficient.
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production using a three level Central Composite Design. The plots depict the interactive effects of:
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(c,c’); and temperature and tryptone (d,d’). The remaining variables remained at constant zero levels.

3.5. Validation of Central Composite Design for Optimisation

Experiments were carried out independently at the identified optimal levels of the statistically
significant variables (OD600 nm, 0.55; temperature, 26 ◦C; incubation time, 12 h; and tryptone, 15 g/L) and
at the middle levels of the other variables to verify the validity of the optimisation model. Subsequently,
the experimental results were compared with the predicted results and a control experiment utilising
the pre-optimised process parameters in basal medium. The observed value of enzyme activity
(41.900 U/mL) was in good agreement with the predicted value (41.789 U/mL; see Table 6). The
CCD optimisation of S. griseus recombinant β-glucosidase production reached 42 U/mL enzyme
activity, representing a 2.62-fold increase in β-glucosidase production when compared to pre-optimised
conditions (see Table 9). This fold increase in production is similar to production increases for
recombinant β-glucosidases from different sources following DoE –based optimization, 2.21-fold [30]
and 2.2-fold [10]; however, larger fold increases, up to 5.7-fold, have also been reported [46].
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Table 9. Comparison of S. griseus recombinant β-glucosidase production under optimised and
pre-optimised conditions. The non-optimised expression was carried out using basal medium (LB
broth) overnight at 37 ◦C, 220 rpm and cells were induced with 1 mM IPTG when OD600 nm reached 0.6.

Production
Method Fraction

Fraction
Volume

(mL)

Fraction
Volume

(mL)

Total
Protein

(mg)

Enzyme
Activity

U/mL

Total
Activity (IU)

Optimised Crude extract 10 9.94 99.40 42.00 420

Non-optimised Crude extract 10 3.80 38.00 16.06 160

3.6. Affinity Purification of S. griseus Recombinant β-glucosidase

An overall yield of 47%, with a specific activity of 9.13 U/mg against pNPG as the substrate,
was noted following Glutathione S-Transferase (GST) tag purification and on-column tag cleavage.
Successful purification was verified through SDS-PAGE analysis (Figure 7a) and activity assay
(see Table 10). The final purified enzyme showed a single band with a molecular mass of approximately
42kDa (Figure 7b).

Table 10. S. griseus recombinant β-glucosidase purification table.

Purification Step Total Protein
(mg)

Total Activity
(IU)

Specific Activity
(IU/mg) Yield (%) Purification

(Fold)

Crude extract 99.40 420 4.23 100 1.00
Ultrafiltration 71.82 392 5.46 93 1.29

Affinity chromatography 31.70 259 8.17 62 1.93
GST-tag cleavage 21.47 196 9.13 47 2.16
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Figure 7. The 10% (w/v) SDS-PAGE gels stained with Coomassie Brilliant Blue: (a) Lane M, protein
marker (18.4–116 kDa); lane 1, crude extract; lane 2, run-through; lane 3, 4, 5, are elute one, two, and
three of purified GST-tagged β-glucosidase, respectively. (b) Lane M, protein marker (18.4–116 kDa);
lane 1, crude extract; lane 2, purified GST-tagged β-glucosidase; lane 3, purified β-glucosidase (post
GST-tag cleavage).

3.7. Fundamental Characterisation

The purified S. griseus recombinant β-glucosidase and commercial almond β-glucosidase (Sigma)
were previously used to evaluate the effect of pH, effector molecules, and natural substrate, and have
been documented [14]. Here, following detailed pH stability profiling, purified S. griseus recombinant
β-glucosidase was noted to retain >95% activity at pH 7, decreasing to 78% at pH 8 over a period
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of 180 min, and 50% at pH 6 after 75 min at 37 ◦C (see Figure 8). An optimal range of pH 6 to 8 is a
common feature of β-glucosidase enzymes isolated from diverse bacterial strains [52–56].
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3.8. Effect of Metal Ions and Chemical Reagent on Purified S. griseus β-glucosidase

Metal ions can elicit inhibitory effects β-glucosidase [57,58]. Several metal ions were examined
(see Table 11), with modest activation noted in Ca2+, Mg2+, N+, and K+ after 6 h incubation. These
results echo reports of β-glucosidase enhancement, through conformational change, by Ca2+ and Mg2+

ions [59,60].

Table 11. The effect of metal ions or additive on purified S.griseus recombinant β-glucosidase was
determined spectrometrically after 1-h and 6-h of incubation in the presence of 1 mM of each ion
in potassium phosphate buffer, pH 7. The residual activity (%) was calculated in comparison to the
activity obtained from enzyme in the same condition, but in the absence of any metal ion or additive.
The results are the average of three independent experiments with standard derivation (±SD) noted
(* p-value ≤ 0.05 and ** p-value ≤ 0.01 represent significant and very significant difference, respectively,
based on two-tailed t-test).

Compounds Residual Activity % ± SD (1 h) Residual Activity % ± SD (6 h)

Control 100 ± 0.044 100 ± 0.074
Ca2+ 105.57 ± 2.91 116.28 ± 3.90 **
Mg2+ 106.55 ± 2.57 118.45 ± 4.11**

N+ 101.98 ± 2.91 116.57 ± 1.54 **
K+ 101.01 ± 1.65 113.53 ± 3.38 *

ZnSO4 86.99 ± 2.01 * 11.56 ± 0.58 **
(NH4)2S4 86.27 ± 1.36 * 99.74 ± 2.69
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3.9. Kinetic Parameters

Two substrates (synthetic pNPG, and natural cellobiose) were used to determine the kinetic
parameters for the purified recombinant S.griseus β-glucosidase (see Table 12). A higher affinity for a
synthetic substrate in comparison to a natural β-glucosidase substrate has been previously reported for
β-glucosidases from Thermoanaerobacterium [56] and Phoma sp KCTC11825BP [61]. The high Km and
Vmax indicated that this enzyme has less affinity for pNPG and cellobiose compared to other reports for
cellobiose, with Km 1.0 mM, Vmax 144 µmol·min−1

·mg−1 [62], and for pNPG, with Km 3.3 mM, Vmax

43.68 µmol·min−1
·mg−1 [63]. Further kinetic parameters on β-glucosidases from various sources are

given in Table 13.

Table 12. Kinetic constants determined for purified β-glucosidase activity towards pNPG and
cellobiose, as determined by non-linear regression analysis, using GraphPad Prism 7 (GraphPad
Software, San Diego, CA, USA).

Substrate Km (mM) Vmax (µmol·min−1·mg−1)

pNPG 8.7 ± 0.42 243 ± 6.22
Cellobiose 15.8 ± 0.62 275 ± 7.12
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Table 13. Kinetic parameters for β-glucosidases from various sources towards pNPG and cellobiose; n/d is not defined.

Microorganism Substrate Vmax Km Optimum Temp. and pH References

Thermoanaerobacterium
thermosaccharolyticum

pNPG 64 U/mg 0.62 mM 70 ◦C, pH 6.4 [56]
cellobiose 120 U/mg 7.9 mM

Phoma sp. KCTC11825BP pNPG n/d 0.3 mM 60 ◦C, pH 4.5 [61]
cellobiose n/d 3.2 mM,

Pyrococcus furiosus pNPG 700 U/mg 0.15 mM 105 ◦C, pH 5 [64]
Celobiose 470 U/mg 20 mM

Thermoascus aurantiacus
pNPG n/d 0.1137 mM 80 ◦C, pH 4.5 [65]

cellobiose n/d 0.6370 mM

Aureobasidium pullulans (NRRL
Y-1297)

pNPG 897 µmol·min−1
·mg−1 1.17 mM 75 ◦C, pH 4.5 [66]

cellobiose 800 µmol·min−1
·mg−1 1.00 mM

Monascus purpureus NRRL1992 pNPG 6.51 U/mg 0.39 mM 50 ◦C, pH 5.5 [47]
cellobiose 4.71 U/mg 2.86 mM

Aspergillus fumigatus Z5 pNPG 141.60 µmol·min−1
·mg−1 1.73 mM 60 ◦C, pH 6 [67]

cellobiose 52.37 µmol·min−1
·mg−1 1.75 mM

Stachybotrys strain pNPG 78 U/mg 0.27 mM 50 ◦C, pH 5 [68]
cellobiose 59.4 U/mg 2.22 mM

Neosartorya fischeri NRRL181 pNPG 886 µmol·min−1
·mg−1 68 mM 40 ◦C, pH 6 [69]

Aspergillus niger pNPG 166 µmol·min−1
·mg−1 8.0 mM 50 ◦C, pH 8 [70]
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4. Conclusions

The production of functional recombinant enzymes in sufficient concentration for industrial
applications is often a bottle-neck. Production optimisation can, however, result in significant increases
in yield. Here, the statistical Design of Experiments approach was used as an efficient technique
to identify the key factors and levels required for optimised production of S.griseus recombinant
β-glucosidase in E. coli BL21 (DE3). The use of multiple screening designs in this study internally
validated the selection of the most influential factors as temperature and incubation time, followed by
tryptone and OD600 nm for induction. These variables were optimised, through a Central Composite
Design, resulting in a 2.62-fold increased yield. Previous characterisation data were supplemented
in this study and concluded that the S. griseus recombinant β-glucosidase purified enzyme exhibited
optimum activity at pH 7, had a temperature optimum of 69 ◦C and displayed increased activity in the
presence of Mg2+, N+, Ca2+

, and K+, whilst it had a higher affinity for the artificial substrate pNPG in
comparison to the natural cellobiose substrate.

With this increased production capacity, a more detailed understanding of stability and substrate
specificity, this S. griseus recombinant β-glucosidase could be useful for a variety of applications,
including hydrolysis of biomass into fermentable sugars, hydrolysis of lactose during processing
lactose containing products, and enzymatic synthesis of alkyl glycosides, where β-glucosidases of
similar characteristics have been reported to be useful [7,18,71,72].
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