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Abstract: In response to the pressing need for robust disease diagnosis from gastrointestinal tract (GIT)
endoscopic images, we proposed FLATer, a fast, lightweight, and highly accurate transformer-based
model. FLATer consists of a residual block, a vision transformer module, and a spatial attention block,
which concurrently focuses on local features and global attention. It can leverage the capabilities
of both convolutional neural networks (CNNs) and vision transformers (ViT). We decomposed the
classification of endoscopic images into two subtasks: a binary classification to discern between
normal and pathological images and a further multi-class classification to categorize images into
specific diseases, namely ulcerative colitis, polyps, and esophagitis. FLATer has exhibited exceptional
prowess in these tasks, achieving 96.4% accuracy in binary classification and 99.7% accuracy in
ternary classification, surpassing most existing models. Notably, FLATer could maintain impressive
performance when trained from scratch, underscoring its robustness. In addition to the high precision,
FLATer boasted remarkable efficiency, reaching a notable throughput of 16.4k images per second,
which positions FLATer as a compelling candidate for rapid disease identification in clinical practice.

Keywords: gastrointestinal disease; lightweight; fast; accurate; transformer-based model

1. Introduction

Gastrointestinal tract (GIT) disease is a global health concern due to its high preva-
lence and impact on mortality rates, causing millions of health-related cases and deaths
annually [1,2]. The most common incidents include stomach, colorectal, and esophageal
cancers [3]. Despite alarming statistics, gastrointestinal disorders are frequently overlooked
and underdiagnosed. This results in a substantial disparity in detection rates for various
GIT diseases, for example, with around 20% of polyps being missed undergoing gastroin-
testinal endoscopy [4]. Among the various gastrointestinal diseases, some occur frequently,
such as ulcerative colitis, polyps, and esophagitis. Ulcerative colitis is a chronic condition
affecting the large intestine, characterized by inflammation and ulcers of the colon’s inner
lining [5]. Polyps are abnormal tissue growths that can occur in organs like the stomach
and colon [6], potentially developing into colon cancer over time. Esophagitis refers to
inflammation of the esophagus, often caused by acid reflux [7].

Diagnosis of these diseases mainly relies on endoscopic examination, which involves
inserting a flexible tube into the patient’s body to visualize the GIT [8]. However, this
procedure is often painful and uncomfortable for patients. Wireless Capsule Endoscopy
(WCE) has significantly improved this process, allowing direct visualization of the GIT by
having patients swallow a small camera capsule [9–12]. WCE has benefited around 1 mil-
lion patients in 2018 with less invasive and more comfortable procedure [13]. Despite these
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advancements, interpreting endoscopic images remains challenging, even for experienced
professionals, as some diseases’ images can be misleadingly similar [14]. For instance,
expert endoscopists can accurately identify high-grade neoplasia via gastroscopy, while
novices achieve only 69% sensitivity in detection [15]. Therefore, there is a critical need for
a swift, accurate, and automated diagnosis method to assist in detecting and classifying
gastrointestinal diseases. Rapid development and emerging application of artificial intelli-
gence (AI), particularly deep learning (DL), in the domain of medical imaging diagnosis
has garnered substantial attention. Among DL models, Convolutional Neural Networks
(CNNs) have shown promise in diverse applications, including GIT lesion analysis, and
they are usually superior to traditional methods [16–18].

Disease diagnosis based on medical images can often be translated into typical com-
puter vision tasks, including segmentation, classification, detection, and so on. CNNs use
an end-to-end architecture to extract local features, which contain a lot of information about
points and edges, color, and texture from input images [19]. With adequate training and suf-
ficient data, CNNs can potentially outperform humans in the above-mentioned vision task.
Focusing on GIT disease classification from WCE images, previous works have achieved
great performance based on the CNN framework. Majid et al. [20] proposed an ensemble
classifier for gastric infection recognition via WCE using a VGG16-based CNN framework,
including a fusion of features, which has achieved 96.5% accuracy. Komeda et al. [21] devel-
oped a ResNet-based AI model for diagnosing colorectal polyps, utilizing a large dataset of
polyp images and demonstrating high accuracy and diagnostic value. ECA-DDCNN [22]
employed efficient channel attention and deep dense convolutions and accurately clas-
sified esophageal gastroscopic images into four categories and seven sub-categories of
esophageal diseases. Yogapriya et al. [23] solved the classification problem by a hybrid
approach of adjusted pre-trained CNN models, with VGG16 achieving the highest results.
Wang et al. [24] presented a novel residual learning method with deep feature extraction for
diagnosing celiac disease through an analysis of video capsule endoscopy images, showing
significant potential. However, CNN-based models face challenges in capturing global
characteristics and long-range dependencies, which are crucial for disease recognition
precision in endoscopic images [25]. The inherent similarity in shapes and textures among
different GIT diseases, along with blurred lesions and normal tissue distinctions, limits
CNN-based approaches, hampering further improvements.

Recently, the transformer has revolutionized deep learning, utilizing attention mecha-
nisms for improved interpretability and performance in various domains, including natural
language processing and computer vision [26]. Vision Transformers (ViT), which employ
self-attention to capture global correlations among image patches, have been applied to GIT
disease diagnosis using WCE images, achieving state-of-the-art results [27,28]. However,
ViT outperforms CNNs mainly with ample data for pre-training, and their computational
demands can hinder efficiency, as observed in predicting esophageal variceal bleeding [29].

In this paper, we proposed a Fast, Lightweight, and Accurate Transformer-based model
(FLATer) for GIT endoscopic image disease classification. FLATer combines the strengths
of CNNs and transformers, utilizing residual convolutional blocks to extract local features
and introducing spatial attention for improved adaptability to limited datasets. To address
the prevalence of healthy regions in GIT endoscopic images, we augmented the “normal”
label in the dataset, ensuring a substantial proportion of normal data. FLATer incorporates
both binary and ternary classifiers to identify lesion areas and classify specific diseases,
streamlining the disease detection and classification process. We conducted a thorough
ablation study to validate each module’s effectiveness in FLATer and demonstrated superior
performance even without pre-trained parameters. Additionally, FLATer offers a more
lightweight alternative to most ViT models, maintaining comparable performance while
reducing inference time significantly. The workflow of this study is shown in Figure 1.
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Figure 1. The workflow of the proposed FLATer for GIT disease detection and classification.

2. Materials and Methods
2.1. Data Collection and Preprocessing

In order to validate the effectiveness of our model, we utilized datasets from the
study by Montalbo [30], which includes two publicly available gastrointestinal endoscopy
datasets: KVASIR [31] and ETIS-Larib Polyp DB [32]. Gathered through WCE, KVASIR
comprises GI images with verified labels from Vestre Viken Health Trust (Norway). All
data in KVASIR and ETIS-Larib Polyp DB have elaborate labels to ensure suitability for
deep learning research. The datasets consist of normal images and diseased images from
three categories: ulcerative colitis, polyps, and esophagitis. Each category had 1500 images,
totaling 6000 images.

In addition to the aforementioned datasets, Kvasir-V2 [33] expands upon the original
KVASIR dataset, encompassing eight distinct categories: normal-cecum, normal-pylorus,
normal-z-line, esophagitis, ulcerative colitis, polyps, dyed lifted polyps, and dyed resection
margins. Each category contained 1000 images. Within Kvasir-V2, we merged the ulcerative
colitis, polyps, and esophagitis images into the original dataset [30] and removed duplicates.
The data from normal-cecum, normal-pylorus, and normal-z-line was consolidated into
Kvasir-V1’s normal class, significantly augmenting the volume of normal images. This
equalizes the number of healthy images with those of the three disease categories, aligning
more closely with the typical distribution in endoscopic imaging under real scenes. As a
result, our image classification can be divided into two sub-tasks: a binary classification
determines if the image region is normal, and simultaneously, a ternary classification
identifies the specific disease category for non-normal images. The data distribution for
the binary classification achieves balance across the two categories. In total, we curated
approximately 10,000 gastrointestinal endoscopic images, with details on data samples and
the division into training, validation, and test sets provided in Table 1.

We conducted preprocessing on the original images of collected datasets. The images in
the raw dataset had resolutions ranging from 720 × 576 to 1920 × 1072. For the training set,
we applied operations including resize, random resized crop, random horizontal flip, and
normalize. For the test set, images underwent resizing, centered crop, and normalization.
In normalizing the images, we applied empirical parameters. The mean values for the RGB
channels were set to 0.485, 0.456, and 0.406, respectively, with corresponding variances
of 0.229, 0.224, and 0.225. Consistent normalization procedures were employed across
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the training, validation, and test sets. All images input into the network were set to the
resolution of 224 × 224.

Table 1. Dataset specifications.

Samples Class Train Validation Test Total
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2.2. Model Architecture
2.2.1. Vision Transformer

The Vision Transformer (ViT) [27] adapts transformer mechanism, traditionally applied
in natural language processing, to the domain of visual data and was originally designed
to solve image classification problems. Given an input image with height H, width W, and
C channels, it should be divided into some fixed-size, non-overlapping patches. The patch
size P can vary based on the application. In the case of the ViT-B/16 model, 16 × 16 sized
patches are used. Each patch is then linearly embedded into a vector whose dimension
is dim =P× P× C, by a trainable embedding matrix. The number of image patches can
be calculated as (H ×W)/P2. These embedded vectors are treated as token sequences,
analogous to the word or phrase tokens in text transformer. A “class” token (CLS) needs to
be added at the start of the token sequence for image classification. The total length of the
token sequence transformed from the input image is L = (H ×W)/P2 + 1. To overcome
transformer’s lack of inherent sensitivity to input data order, position embeddings (PE)
are used to provide spatial context for image patches. These learnable embeddings are
added to patch embeddings, allowing the model to recognize patch spatial arrangements.
Multi-head self-attention (MHSA) layers further enhance the model’s ability to focus on
important image regions, with the final image representation obtained from the CLS token
and used for classification.

2.2.2. Proposed Model—FLATer

The proposed FLATer consists of a residual block, a ViT backbone, and a spatial
attention block. Overall, the architecture of FLATer is shown in Figure 2. Given a GIT
endoscopic image I ∈ RH×W×C, we use the residual block to extract the local features
from the input image. The residual block introduces inductive bias; such prior knowledge
lowers the threshold of the subsequent training of VIT architecture. The image features are
divided into image patches and mapped through the linear projection operation to form
flattened embedding sequences with RL×dim. Afterward, these embeddings pass through
several transformer layers, enhanced with positional information. Specifically, we can load
the VIT-B/16 model as initial parameters for transformer layers, which is pre-trained with
the large-scared ImageNet-21k dataset. We utilize the output CLS token embedding as the
overall representation of the input image. Additionally, we leverage the spatial attention
block on the CLS embedding to further enhance the spatial information from a global
representation. Finally, the classification head, which consists of a binary classifier and
a ternary classifier, gives the probability prediction of preconfigured normal or disease
category labels.

Bioengineering 2023, 10, x FOR PEER REVIEW 6 of 17 
 

where US denotes the bilinear interpolation function for up-sampling. Besides, the input 
image is processed with a residual connection, which is made up of a 1 × 1 convolution 
block and a batch norm layer, and then is added to 𝑍 . 𝐹 = 𝑅𝑒𝐿𝑈(𝑧 + 𝐵𝑁(𝐶𝑜𝑛𝑣 (𝐼))) (3)

Transformations between the number of feature channels are indicated in Figure 2. 
The output feature 𝐹  of a residual block is converted into a patch token sequence and 
propagates forward through N transformer layers. As described in Section 2.2.1, the vision 
transform module can be formulated as follows. 𝑓 = 𝐶𝐸, 𝑇𝐸 , 𝑇𝐸 , … , 𝑇𝐸 + 𝑃𝐸 (4)𝑓 = 𝑀𝐻𝑆𝐴 𝐿𝑁(𝑓 ) + 𝑓  (5)𝑓 = 𝐹𝐹𝑁 𝐿𝑁(𝑓 ) + 𝑓  (6)

where 𝑓  denotes the output feature of the i-th transformer layer and 𝑓  denotes the in-
termediate feature. PE indicates position embeddings, while CE refers to the CLS embed-
ding. Each image patch 𝐸  is projected to a flattened vector by a linear mapping matrix 
T. 

We denote the CLS vector of the last transformer layer’s output as 𝐹 , which can be 
considered as a global representation of the input image. After the propagation of several 
attention layers, we need to recognize the local information of the output feature again. 
To that end, we designed a spatial attention module after the transformer block. Firstly, 
the one-dimensional embedding 𝐹  should be reshaped into a patch feature map 𝐹  
with 𝑃 × 𝑃 × 𝐶 dimension. The following max pooling and average pooling are lever-
aged in extracting relevant spatial information from the feature map. Subsequently, the 
results from the max pooling and average pooling are concatenated along the channel 
dimension, followed by a 3 × 3 convolution layer. The final feature map is reshaped back 
to a one-dimensional feature F. The spatial attention module can be formulated as follows. 𝐹 = 𝐶𝑜𝑛𝑣( 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹 ), 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹 ) ) (7)𝐹 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐹 )  (8)

 
Figure 2. The model architecture of the proposed FLATer. 

Figure 2. The model architecture of the proposed FLATer.



Bioengineering 2023, 10, 1416 6 of 17

The residual block is a single encoder–decoder layer, which consists of three 3 × 3
convolution layers. The first convolution operation is followed with batch normalization
and ReLU activation function, which can be formulated as (1).

z1 = ReLU(BN(Conv1(I))) (1)

We set the stride of the first convolution layer to be greater than 1, which means it can
be considered as down-sampling. The second convolution block is followed with a batch
norm layer and up-sample operation. The sequential procedure is formulated as (2).

z2 = US(BN(Conv2(z1))) (2)

where US denotes the bilinear interpolation function for up-sampling. Besides, the input
image is processed with a residual connection, which is made up of a 1 × 1 convolution
block and a batch norm layer, and then is added to Z2.

F1 = ReLU(z2 + BN(Conv3(I))) (3)

Transformations between the number of feature channels are indicated in Figure 2.
The output feature F1 of a residual block is converted into a patch token sequence and
propagates forward through N transformer layers. As described in Section 2.2.1, the vision
transform module can be formulated as follows.

f0 =
[
CE, TE1, TE2, . . . , TEL

]
+ PE (4)

f ′i = MHSA(LN( fi−1)) + fi−1 (5)

fi = FFN
(

LN
(

f ′i
))

+ f ′i (6)

where fi denotes the output feature of the i-th transformer layer and f ′i denotes the inter-
mediate feature. PE indicates position embeddings, while CE refers to the CLS embedding.
Each image patch Ei is projected to a flattened vector by a linear mapping matrix T.

We denote the CLS vector of the last transformer layer’s output as F2, which can be
considered as a global representation of the input image. After the propagation of several
attention layers, we need to recognize the local information of the output feature again. To
that end, we designed a spatial attention module after the transformer block. Firstly, the one-
dimensional embedding F2 should be reshaped into a patch feature map F′2 with P× P× C
dimension. The following max pooling and average pooling are leveraged in extracting
relevant spatial information from the feature map. Subsequently, the results from the max
pooling and average pooling are concatenated along the channel dimension, followed by
a 3 × 3 convolution layer. The final feature map is reshaped back to a one-dimensional
feature F. The spatial attention module can be formulated as follows.

F′ = Conv
([

MaxPool
(

F′2
)
, AvgPool

(
F′2
)])

(7)

F = reshape
(
Sigmoid

(
F′
))

(8)

The spatial attention mechanism effectively modulates the importance of different
regions within the input feature, emphasizing regions of significance while suppressing
irrelevant or noisy information. The final feature is used for classification.

2.2.3. Comparison Models

In our study, we employ abundant comparison models to benchmark the performance
of FLATer with common standards. GoogLeNet [34] introduced the inception module,
optimizing computational cost while increasing the depth and width of neural networks.
DenseNet [35] employs dense connections between layers, enhancing gradient flow and
feature reuse. ResNet [36], particularly the 18-layer or 50-layer variants, utilizes skip con-
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nections to combat vanishing gradients in deep networks. ResNeXt50 [37] extends ResNet
by introducing grouped convolutions, increasing model capacity without added complexity.
VGG [38] is characterized by its simplicity, using only 3 × 3 convolutional layers stacked
on top of each other in increasing depth. EfficientNet [39] systematically scales the network
width, depth, and resolution for improved performance. MobileNet [40] employs depth-
wise separable convolutions, significantly reducing the number of parameters and catering
to mobile and embedded applications. Xception [41], inspired by Inception, replaces incep-
tion modules with depth-wise separable convolutions. The majority of the aforementioned
comparative models utilize CNN architectures. Similarly, the foundational architecture
of ViT [27], devoid of auxiliary components, serves as a baseline for comparison. In the
experimental setup involving loaded pre-trained parameters, all aforementioned models
underwent pre-training on the ImageNet dataset or its subsets [42]. ImageNet dataset is
known to contain over 14 million labeled images spanning approximately 21,000 object
categories. It is one of the largest and most widely used natural image datasets for training
and evaluating computer vision models.

2.3. Experimental Set Up

In our experiment, we used GIT endoscopic image datasets categorized into normal
and diseased, training a binary classifier on these categories. Within the diseased category,
we further divided the images into three specific disease types (ulcerative colitis, polyps,
and esophagitis) to train a ternary classifier. Both binary and ternary classification tasks
were trained simultaneously, sharing core network parameters with differences only in
the final classification layer. In scenarios where all models are initialized with pre-trained
parameters, we conducted training and comparative analyses involving FLATer and other
models. Additionally, we performed an ablation study to systematically evaluate the
effectiveness of FLATer’s individual sub-modules. We also evaluated FLATer’s performance
against ResNeXt50 and ViT models, all without pre-trained parameters. Additionally, we
examined FLATer’s ViT block with varying encoder layer configurations (12, 6, 4) to
investigate the impact of model size reduction. All experiments were performed on an
NVIDIA GeForce RTX 3090 GPU with 24GB VRAM and a system equipped with a 32-core
CPU and 64GB RAM, running Ubuntu 18.04 and Python 3.8.13 with the PyTorch 1.12.1
deep learning framework.

2.4. Model Evaluation

In medical imaging, the assessment of diagnostic performance for GIT diseases relies
on the examination of a confusion matrix, encompassing key elements including True
Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). The
classification performance of the proposed model is comprehensively evaluated through
five metrics based on the confusion matrix. These metrics include accuracy (11), precision
(9), recall (10), F1-score (12), and AUC [43]. In the ternary classification, we employ the
macro-average calculation method to compile statistics across multiple disease class labels.
These general evaluation indicators are defined as:

precision =
TP

TP + FP
(9)

recall =
TP

TP + FN
(10)

accuracy =
TP + TN

TP + FP + TN + FN
(11)

F1_score = 2
precicion× recall
precision + recall

(12)
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The AUC reflects the area under the ROC curve. The ROC curve is generated by
plotting the True Positive Rate (TPR), also known as sensitivity, against the False Positive
Rate (FPR), which is calculated as 1 minus specificity at various threshold values. Each
point on the ROC curve represents the model’s performance at a specific threshold for
classifying data points.

3. Results
3.1. Binary Classification Results

We categorized the dataset into normal and disease images, training a binary classifier
to effectively distinguish between them, specifically identifying abnormal images with
lesions in gastrointestinal endoscopic images. We conducted a comprehensive comparison
between FLATer and various widely used classification models, including DenseNet121,
EfficientNetB0, MobileNetV2, ResNet18, Resnet50, ResNeXt50, VGG16, Xception, and
GoogLeNet. FLATer consistently outperformed these models, achieving an accuracy score
of 96.63%, a precision score of 96.40%, a recall score of 98.07%, and an F1 score of 97.21%
on the test dataset, highlighting its strong generalization capability. The results in Table 2
demonstrate the superior performance of FLATer in comparison to these counterparts.

Table 2. The binary classification comparison results between FLATer and other models from the
validation (left) and test (right) sets.

Model
Validation Set Test Set

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

FLATer 0.9623 0.9647 0.9747 0.9697 0.9663 0.9640 0.9804 0.9721

ViT-B/16 0.9206 0.9139 0.9212 0.9175 0.9169 0.9434 0.9162 0.9296

DenseNet
121 0.9090 0.9473 0.8580 0.9004 0.9075 0.9792 0.8639 0.9179

EfficientNetB0 0.8130 0.8425 0.7504 0.7938 0.8088 0.9075 0.7579 0.8260

MobileNet
V2 0.8844 0.9044 0.8488 0.8757 0.8911 0.9471 0.8665 0.9050

ResNet18 0.8822 0.9044 0.8436 0.8730 0.8832 0.9489 0.8508 0.8972

ResNet50 0.9153 0.9197 0.9022 0.9109 0.9060 0.9435 0.8966 0.9195

ResNeXt50-
32x4d 0.9244 0.9475 0.8919 0.9188 0.9216 0.9729 0.8940 0.9318

VGG16 0.9001 0.9106 0.8781 0.8940 0.9013 0.9443 0.8874 0.9150

Xception 0.8756 0.8710 0.8695 0.8702 0.8879 0.9355 0.8730 0.9032

GoogLeNet 0.8497 0.8803 0.7947 0.8353 0.8433 0.9338 0.7945 0.8586

Figure 3 depicts the predictions generated by the proposed FLATer model, as illus-
trated through confusion matrices, utilizing both the validation and test datasets. The
model’s performance is notably commendable, with only 106 misclassified samples out
of 2813 within the validation dataset and 43 misclassified samples out of 1276 within the
test dataset. Figure 4 presents the ROC curves for FLATer and the comparative methods,
reflecting their respective performances on the validation and test datasets. Remarkably,
our proposed model achieves an impressive AUC of 98.93% on the validation dataset and
99.36% on the test dataset, surpassing the performance of the comparative methods in
terms of AUC.

The generalization capability of FLATer is investigated through a progressive dataset
extension strategy. This approach involves the consolidation of the validation and test
datasets, resulting in a merged dataset comprising 4089 samples. Specifically, training is
conducted using the entire training dataset, which consists of 5645 samples. Subsequently,
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the model’s performance is assessed when utilizing 20%, 40%, 60%, 80%, and 100% of the
samples from the merged dataset. The results in Table 3 demonstrate that FLATer exhibits
robust inference performance, achieving an accuracy of 96.36%, a precision of 96.45%, a
recall of 97.64%, and an F1 score of 97.04% at a 100% sample rate of the merged dataset.
Moreover, it is noteworthy that FLATer’s performance remains stable across datasets of
varying scales, consistently yielding an F1 score exceeding 97%.
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Table 3. The evaluation results of binary classification on the progressive dataset extension.

Sample Rate Quantity Accuracy Precision Recall F1-Score

20% 817 0.9633 0.9607 0.9800 0.9702
40% 1635 0.9645 0.9600 0.9830 0.9713
60% 2453 0.9645 0.9670 0.9753 0.9711
80% 3271 0.9633 0.9649 0.9755 0.9702

100% 4089 0.9636 0.9645 0.9764 0.9704

3.2. Ternary Classification Results

After effective identification of abnormal images by the binary classifier, the multi-
classifier can predict the specific disease type corresponding to the abnormal images. In our
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experiments, a ternary classifier was utilized for category prediction on several typical GIT
diseases, including ulcerative colitis, polyps, and esophagitis. The ternary classification
comparison result is shown in Table 4. Our proposed model attains an accuracy score of
99.77%, a precision score of 99.78%, a recall score of 99.78%, and an F1 score of 99.78% on
the validation dataset. Likewise, on the test dataset, FLATer achieves an accuracy score of
99.61%, a precision score of 99.60%, a recall score of 99.61%, and an F1 score of 99.60%. This
near-100% performance on ternary classification highlights the significant capabilities of
FLATer in handling the disease classification problem of GIT endoscopic images.

Table 4. The ternary classification comparison results between FLATer and other models from the
validation (left) and test (right) sets.

Model
Validation Set Test Set

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

FLATer 0.9977 0.9978 0.9978 0.9978 0.9961 0.9960 0.9961 0.9960

ViT-B/16 0.9839 0.9841 0.9844 0.9842 0.9895 0.9894 0.9894 0.9894

DenseNet121 0.9448 0.9596 0.8803 0.9182 0.9594 0.9782 0.9032 0.9392

EfficientNetB0 0.8712 0.8199 0.8440 0.8318 0.9045 0.8846 0.8554 0.8697

MobileNetV2 0.9344 0.9618 0.8499 0.9024 0.9503 0.9692 0.8871 0.9263

ResNet18 0.9103 0.9316 0.8112 0.8673 0.9215 0.9130 0.8537 0.8824

ResNet50 0.9339 0.9635 0.8535 0.9051 0.9398 0.9554 0.8629 0.9068

ResNeXt50-32x4d 0.9500 0.9474 0.9091 0.9278 0.9503 0.9489 0.8956 0.9215

VGG16 0.9097 0.9720 0.7635 0.8553 0.9149 0.9697 0.7773 0.8629

Xception 0.9563 0.9645 0.9172 0.9403 0.9516 0.9496 0.9150 0.9320

GoogLeNet 0.9086 0.8602 0.8910 0.8753 0.9346 0.9032 0.9106 0.9069

Figure 5 depicts the confusion matrices for the ternary classification of the validation
and test datasets. Remarkably, the validation dataset exhibited only 4 misclassified sam-
ples out of 1144, while the test dataset had just 3 misclassified samples out of 764. This
exceptional performance indicates FLATer’s superiority in ternary classification compared
to its binary classification results. Figure 6 presents the ROC curves for FLATer in ternary
classification, demonstrating its performance on the validation and test datasets. Classes 0,
1, and 2 correspond to GIT image datasets for ulcerative colitis, polyps, and esophagitis.
Notably, the graph shows an average AUC of 1.00 for both datasets, confirming the model’s
outstanding capability to handle diagnostic tasks effectively across various thresholds. This
consistent performance on both datasets underscores the model’s robustness and reliability,
regardless of the types of diseases considered.

We also execute the progressive dataset extension strategy in the ternary classification.
The results, detailed in Table 5, reflect FLATer’s remarkable generalization capabilities.
Notably, all performance indicators exceed 99%, underscoring the model’s robustness and
capacity to generalize effectively.

Table 5. The evaluation results of ternary classification on the progressive dataset extension.

Sample Rate Quantity Accuracy Precision Recall F1-Score

20% 499 0.9980 0.9980 0.9979 0.9980
40% 1000 0.9960 0.9961 0.9960 0.9960
60% 1501 0.9967 0.9967 0.9967 0.9967
80% 2002 0.9970 0.9970 0.9970 0.9970

100% 2503 0.9972 0.9972 0.9972 0.9972
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In conclusion, the pre-trained transformer model can acquire rich prior knowledge
during pre-training on large-scale datasets. It enables ViT to grasp a comprehensive
understanding of general image representations compared to the CNN-based model. When
fine-tuned for a specific task, such as endoscopic image classification, the pre-trained
ViT module included in FLATer not only accelerates the model’s convergence but also
significantly enhances performance.

3.3. Ablation Study Results

We conducted a thorough ablation study to assess each module’s effectiveness in
FLATer, examining variants of the model without specific components. The experiments
aimed to emphasize FLATer’s architectural design and the contributions of the additional
residual block and spatial attention module in enhancing accuracy and robustness for
GIT disease classification. Table 6 presents the results of our ablation study, where we
removed the residual block and spatial attention modules and even used the ViT model
without additional structures. The findings revealed that removing these modules from
FLATer resulted in varying degrees of reduced classification accuracy for both binary
and ternary classification, with the original ViT model experiencing the most significant
performance degradation. Notably, the performance drop was smaller when removing only
the spatial attention compared to removing only the residual block. In the test set of ternary
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classification, it achieved results identical to the full FLATer structure (99.6% accuracy),
indicating its robustness with minor struggles against outliers. This underscores the
critical role of a CNN-based local feature extraction network in enhancing model accuracy.
Additionally, Figure 7 illustrates the saliency maps of diseased samples after passing
through the residual block, demonstrating CNN’s ability to highlight pathological regions.

Table 6. Ablation results on the validation and test sets.

Task Model
Validation Set Test Set

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Binary
Classification

FLATer 0.9623 0.9647 0.9747 0.9697 0.9663 0.9640 0.9804 0.9721

w/o residual
block 0.9366 0.9309 0.9373 0.9341 0.9350 0.9583 0.9319 0.9449

w/o spatial
attention 0.9470 0.9469 0.9425 0.9447 0.9491 0.9641 0.9503 0.9572

ViT backbone 0.9206 0.9139 0.9212 0.9175 0.9169 0.9434 0.9162 0.9296

Ternary
Classification

FLATer 0.9977 0.9978 0.9978 0.9978 0.9961 0.9960 0.9961 0.9960

w/o residual
block 0.9885 0.9889 0.9888 0.9888 0.9869 0.9870 0.9866 0.9867

w/o spatial
attention 0.9914 0.9916 0.9915 0.9916 0.9961 0.9960 0.9961 0.9960

ViT backbone 0.9839 0.9841 0.9844 0.9842 0.9895 0.9894 0.9894 0.9894
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4. Discussion

In this work, we aim to tackle the challenge of accurate disease classification of
GIT endoscopic images under the condition that the data distribution is closer to the
real scene. The proposed FLATer leverages the capabilities of both CNNs and ViT. It
concurrently extracts local features while establishing the global correlation. In extensive
experiments, FLATer has achieved 96.23% accuracy in binary classification and 99.77%
in ternary classification, outperforming various pre-trained CNN models and ViT. The
ablation study underscored the effectiveness of each FLATer’s module in reaching the
optimal results of disease classification on gastrointestinal endoscopic images.

In our experiments, we tested FLATer, a CNN-based model (ResNeXt50-32x4d), and
ViT with randomly initialized model parameters, demonstrating FLATer’s adaptability
without pre-training. FLATer consistently outperformed all metrics in binary and ternary
classification across validation and test datasets (as shown in Table 7). For binary classi-
fication, FLATer achieved 91.72% accuracy on the validation set and 92.24% on the test
set, while for ternary classification, it reached 95.86% on the validation set and 96.60% on
the test set. ResNeXt50 had slightly lower performance, while ViT exhibited a significant
drop in performance when trained from scratch. This highlights the transformer’s lack
of inductive bias compared to CNNs, impacting its performance with limited training
data. When training on a relatively limited dataset with randomly initialized parame-
ters, such as endoscopic images, the CNN module within FLATer introduces an inductive
bias. Simultaneously, the inclusion of the attention block proves instrumental in capturing
long-range dependencies and establishing global correlations among the local features.
The synergistic collaboration between CNNs and transformers in FLATer thus ensures
robust performance across various scenarios, demonstrating the model’s efficacy in both
pre-trained and scratch-trained settings.

Table 7. The comparison results of FLATer and several typical models without pre-training.

Task Model
Validation Set Test Set

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Binary
Classification

FLATer 0.9172 0.9363 0.9293 0.9328 0.9224 0.9427 0.9267 0.9347

ResNeXt50 0.9068 0.9354 0.8654 0.8990 0.8934 0.9591 0.8586 0.9061

ViT 0.8786 0.8887 0.8539 0.8710 0.8723 0.9238 0.8573 0.8893

Ternary
Classification

FLATer 0.9586 0.9602 0.9597 0.9597 0.9660 0.9655 0.9654 0.9654

ResNeXt50 0.9356 0.9584 0.8550 0.9037 0.9450 0.9602 0.8750 0.9156

ViT 0.8752 0.8534 0.7757 0.8127 0.8835 0.8419 0.7912 0.8157

We conducted experiments with varying numbers of transformer layers in FLATer,
as shown in Table 8. Reducing the number of layers from 12 (standard ViT-B/16 [27]) to
6 resulted in comparable classification performance for GIT endoscopic image classification,
making FLATer efficient for faster model inference. However, further reducing the number
of layers to 4 led to a more significant decline in classification performance. Efficiency
comparisons in Figure 8 demonstrate that the 6-layer FLATer maintained high accuracy
while significantly reducing inference time. For binary classification with 2813 validation
samples and 1276 test samples, the 6-layer FLATer achieved a total inference time of 249 ms,
while the 4-layer model took 185 ms. The lightweight FLATer achieved an impressive
throughput of 16.4k images per second, slightly below VGG16 and ResNet18. However,
VGG16 and ResNet18 experienced accuracy drops compared to FLATer. Furthermore,
Figure 8 displays the total number of trainable parameters for each model, highlighting
FLATer’s fewer parameters compared to VGG16 and ViT, making it comparable to ultra-
lightweight CNN models. These results underscore FLATer’s capability for rapid and
accurate disease classification in real medical scenarios.
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Table 8. The comparison results of FLATer with different number of transformer layers.

Task Model
Validation Set Test Set

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Binary
Classification

12-layers 0.9623 0.9647 0.9747 0.9697 0.9663 0.9640 0.9804 0.9721

6-layers 0.9520 0.9718 0.9500 0.9607 0.9389 0.9610 0.9359 0.9483

4-layers 0.9250 0.9494 0.9281 0.9386 0.9279 0.9565 0.9215 0.9387

Ternary
Classification

12-layers 0.9977 0.9978 0.9978 0.9978 0.9961 0.9960 0.9961 0.9960

6-layers 0.9896 0.9902 0.9899 0.9899 0.9948 0.9948 0.9946 0.9947

4-layers 0.9724 0.9742 0.9731 0.9731 0.9817 0.9822 0.9813 0.9814
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There are several limitations to our proposed method. Firstly, our dataset primarily
includes only three gastrointestinal diseases. Future research should prioritize the collection



Bioengineering 2023, 10, 1416 15 of 17

of data encompassing a broader spectrum of gastrointestinal diseases to enhance the
model’s diagnostic capabilities. Secondly, our study lacks external independent testing,
and further validation of the model’s generalizability should be conducted using non-
public datasets from multiple medical centers. Additionally, our study predominantly
focuses on the classification problem, and future research should explore the integration of
segmentation and other common medical image visualization tasks to expand our model’s
functionality. Finally, we have not developed a deployable software system with a user-
friendly graphical interface. We will consider developing such a system to facilitate its
clinical application.

5. Conclusions

In this study, we introduced FLATer, a transformer-based model designed for accurate
and efficient GIT disease diagnosis using endoscopic images. FLATer leverages both CNNs
and transformer structures to deliver exceptional performance. Our experiments demon-
strate that FLATer outperforms a variety of comparison models while maintaining efficiency
in inference times. The results underscore the clinical potential of FLATer, offering rapid
and precise disease type prediction suitable for real-world medical applications. Future
work will involve expanding the dataset to include a broader range of gastrointestinal
diseases, conducting external independent testing with non-public datasets, exploring ad-
ditional medical imaging tasks like segmentation, and developing a user-friendly software
system for practical clinical deployment.

Author Contributions: Conceptualization, S.W. and L.W.; methodology, S.W. and L.W.; software,
S.W.; validation, S.W. and R.Z.; formal analysis, S.W. and J.Y.; investigation, L.W. and S.W.; re-
sources, H.W. and C.L.; data curation, S.W. and R.Z.; writing—original draft preparation, S.W.;
writing—review and editing, S.W., L.W. and H.W.; visualization, S.W. and J.Y.; supervision, H.W. and
Q.L.; project administration, S.W. and R.Z.; funding acquisition, H.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded through the Shenzhen Science and Technology Project under
Grant (JCYJ20220818101001004).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The model presented in this study and the released code is available at
https://github.com/bisawsb/FLATer (accessed on 4 December 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. Cancer J.

Clin. 2016, 66, 115–132. [CrossRef]
2. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 2018, 68, 394–424. [CrossRef]
3. Lee, J.M.; Park, Y.M.; Yun, J.S.; Ahn, Y.B.; Lee, K.M.; Kim, D.B.; Lee, J.M.; Han, K.; Ko, S.H. The association between nonalcoholic

fatty liver disease and esophageal, stomach, or colorectal cancer: National population-based cohort study. PLoS ONE 2020, 15,
e0226351. [CrossRef]

4. Leufkens, A.M.; van Oijen, M.G.H.; Vleggaar, F.P.; Siersema, P.D. Factors influencing the miss rate of polyps in a back-to-back
colonoscopy study. Endoscopy 2012, 44, 470–475. [CrossRef] [PubMed]

5. Rogler, G. Chronic ulcerative colitis and colorectal cancer. Cancer Lett. 2014, 345, 235–241. [CrossRef] [PubMed]
6. Khan, M.A.; Khan, M.A.; Ahmed, F.; Mittal, M.; Goyal, L.M.; Hemanth, D.J.; Satapathy, S.C. Gastrointestinal diseases segmentation

and classification based on duo-deep architectures. Pattern Recognit. Lett. 2020, 131, 193–204. [CrossRef]
7. Gomez Torrijos, E.; Gonzalez-Mendiola, R.; Alvarado, M.; Avila, R.; Prieto-Garcia, A.; Valbuena, T.; Borja, J.; Infante, S.; Lopez,

M.P.; Marchan, E. Eosinophilic esophagitis: Review and update. Front. Med. 2018, 5, 247. [CrossRef] [PubMed]
8. Sumiyama, K. Past and current trends in endoscopic diagnosis for early stage gastric cancer in Japan. Gastric Cancer Off. J. Int.

Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2017, 20 (Suppl. S1), 20–27. [CrossRef]

https://github.com/bisawsb/FLATer
https://doi.org/10.3322/caac.21338
https://doi.org/10.3322/caac.21492
https://doi.org/10.1371/journal.pone.0226351
https://doi.org/10.1055/s-0031-1291666
https://www.ncbi.nlm.nih.gov/pubmed/22441756
https://doi.org/10.1016/j.canlet.2013.07.032
https://www.ncbi.nlm.nih.gov/pubmed/23941831
https://doi.org/10.1016/j.patrec.2019.12.024
https://doi.org/10.3389/fmed.2018.00247
https://www.ncbi.nlm.nih.gov/pubmed/30364207
https://doi.org/10.1007/s10120-016-0659-4


Bioengineering 2023, 10, 1416 16 of 17

9. Rahim, T.; Usman, M.A.; Shin, S.Y. A survey on contemporary computer-aided tumor, polyp, and ulcer detection methods in
wireless capsule endoscopy imaging. Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. 2020, 85, 101767. [CrossRef]
[PubMed]

10. ASGE Technology Committee; Wang, A.; Banerjee, S.; Barth, B.A.; Bhat, Y.M.; Chauhan, S.; Gottlieb, K.T.; Konda, V.; Maple, J.T.;
Murad, F.; et al. Wireless capsule endoscopy. Gastrointest. Endosc. 2013, 78, 805–815. [CrossRef]

11. Dey, N.; Ashour, A.S.; Shi, F.; Sherratt, R.S. Wireless Capsule Gastrointestinal Endoscopy: Direction-of-Arrival Estimation Based
Localization Survey. IEEE Rev. Biomed. Eng. 2017, 10, 2–11. [CrossRef]

12. Iddan, G.; Meron, G.; Glukhovsky, A.; Swain, P. Wireless capsule endoscopy. Nature 2000, 405, 417. [CrossRef] [PubMed]
13. Liaqat, A.; Khan, M.A.; Shah, J.H.; Sharif, M.; Yasmin, M.; Fernandes, S.L. Automated ulcer and bleeding classification from WCE

images using multiple features fusion and selection. J. Mech. Med. Biol. 2018, 18, 1850038. [CrossRef]
14. Hong, T.C.; Liou, J.M.; Yeh, C.C.; Yen, H.H.; Wu, M.S.; Lai, I.R.; Chen, C.C. Endoscopic submucosal dissection comparing with

surgical resection in patients with early gastric cancer—A single center experience in Taiwan. J. Formos. Med. Assoc. 2020, 119,
1750–1757. [CrossRef]

15. Ishihara, R.; Takeuchi, Y.; Chatani, R.; Kidu, T.; Inoue, T.; Hanaoka, N.; Yamamoto, S.; Higashino, K.; Uedo, N.; Iishi, H.; et al.
Original article: Prospective evaluation of narrow-band imaging endoscopy for screening of esophageal squamous mucosal
high-grade neoplasia in experienced and less experienced endoscopists. Dis. Esophagus Off. J. Int. Soc. Dis. Esophagus 2010, 23,
480–486. [CrossRef] [PubMed]

16. Sindhu, C.P.; Valsan, V. Automatic detection of colonic polyps and tumor in wireless capsule endoscopy images using hybrid
patch extraction and supervised classification. In Proceedings of the 2017 International Conference on Innovations in Information,
Embedded and Communication Systems (ICIIECS), Coimbatore, India, 17–18 March 2017; pp. 1–5.

17. Yeh, J.-Y.; Wu, T.-H.; Tsai, W.-J. Bleeding and Ulcer Detection Using Wireless Capsule Endoscopy Images. J. Softw. Eng. Appl. 2014,
7, 422–432. [CrossRef]

18. Liu, Y.; Lin, D.; Li, L.; Chen, Y.; Wen, J.; Lin, Y.; He, X. Using machine-learning algorithms to identify patients at high risk of upper
gastrointestinal lesions for endoscopy. J. Gastroenterol. Hepatol. 2021, 36, 2735–2744. [CrossRef]

19. Khan, S.H.; Shah, N.S.; Nuzhat, R.; Majid, A.; Alquhayz, H.; Khan, A. Malaria parasite classification framework using a novel
channel squeezed and boosted CNN. Microscopy 2022, 71, 271–282. [CrossRef]

20. Majid, A.; Khan, M.A.; Yasmin, M.; Rehman, A.; Yousafzai, A.; Tariq, U. Classification of stomach infections: A paradigm of
convolutional neural network along with classical features fusion and selection. Microsc. Res. Tech. 2020, 83, 562–576. [CrossRef]

21. Komeda, Y.; Handa, H.; Matsui, R.; Hatori, S.; Yamamoto, R.; Sakurai, T.; Takenaka, M.; Hagiwara, S.; Nishida, N.; Kashida,
H.; et al. Artificial intelligence-based endoscopic diagnosis of colorectal polyps using residual networks. PLoS ONE 2021, 16,
e0253585. [CrossRef]

22. Du, W.; Rao, N.; Dong, C.; Wang, Y.; Hu, D.; Zhu, L.; Zeng, B.; Gan, T. Automatic classification of esophageal disease in
gastroscopic images using an efficient channel attention deep dense convolutional neural network. Biomed. Opt. Express 2021, 12,
3066–3081. [CrossRef] [PubMed]

23. Yogapriya, J.; Chandran, V.; Sumithra, M.G.; Anitha, P.; Jenopaul, P.; Dhas, C.S.G. Gastrointestinal Tract Disease Classification
from Wireless Endoscopy Images Using Pretrained Deep Learning Model. Comput. Math. Methods Med. 2021, 2021, 5940433.
[CrossRef]

24. Wang, X.; Qian, H.; Ciaccio, E.J.; Lewis, S.K.; Bhagat, G.; Green, P.H.; Xu, S.; Huang, L.; Gao, R.; Liu, Y. Celiac disease diagnosis
from videocapsule endoscopy images with residual learning and deep feature extraction. Comput. Methods Programs Biomed. 2020,
187, 105236. [CrossRef] [PubMed]

25. Tang, S.; Yu, X.; Cheang, C.F.; Liang, Y.; Zhao, P.; Yu, H.H.; Choi, I.C. Transformer-based multi-task learning for classification and
segmentation of gastrointestinal tract endoscopic images. Comput. Biol. Med. 2023, 157, 106723. [CrossRef] [PubMed]

26. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30. [CrossRef]

27. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

28. Krenzer, A.; Heil, S.; Fitting, D.; Matti, S.; Zoller, W.G.; Hann, A.; Puppe, F. Automated classification of polyps using deep learning
architectures and few-shot learning. BMC Med. Imaging 2023, 23, 59. [CrossRef]

29. Wang, Y.; Hong, Y.; Wang, Y.; Zhou, X.; Gao, X.; Yu, C.; Lin, J.; Liu, L.; Gao, J.; Yin, M.; et al. Automated Multimodal Machine
Learning for Esophageal Variceal Bleeding Prediction Based on Endoscopy and Structured Data. J. Digit. Imaging 2023, 36,
326–338. [CrossRef]

30. Montalbo, F.J.P. Diagnosing gastrointestinal diseases from endoscopy images through a multi-fused CNN with auxiliary layers,
alpha dropouts, and a fusion residual block. Biomed. Signal Process. Control. 2022, 76, 103683. [CrossRef]

31. Pogorelov, K.; Randel, K.R.; Griwodz, C.; Eskeland, S.L.; de Lange, T.; Johansen, D.; Spampinato, C.; Dang-Nguyen, D.T.;
Lux, M.; Schmidt, P.T.; et al. Kvasir: A multi-class image dataset for computer aided gastrointestinal disease detection. In
Proceedings of the 8th ACM on Multimedia Systems Conference, Taipei, Taiwan, 20–23 June 2017; pp. 164–169. Available online:
https://www.kaggle.com/datasets/francismon/curated-colon-dataset-for-deep-learning (accessed on 24 May 2023).

32. Silva, J.; Histace, A.; Romain, O.; Dray, X.; Granado, B. Toward embedded detection of polyps in WCE images for early diagnosis
of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 283–293. [CrossRef]

https://doi.org/10.1016/j.compmedimag.2020.101767
https://www.ncbi.nlm.nih.gov/pubmed/32966967
https://doi.org/10.1016/j.gie.2013.06.026
https://doi.org/10.1109/RBME.2017.2697950
https://doi.org/10.1038/35013140
https://www.ncbi.nlm.nih.gov/pubmed/10839527
https://doi.org/10.1142/S0219519418500380
https://doi.org/10.1016/j.jfma.2020.08.027
https://doi.org/10.1111/j.1442-2050.2009.01039.x
https://www.ncbi.nlm.nih.gov/pubmed/20095991
https://doi.org/10.4236/jsea.2014.75039
https://doi.org/10.1111/jgh.15530
https://doi.org/10.1093/jmicro/dfac027
https://doi.org/10.1002/jemt.23447
https://doi.org/10.1371/journal.pone.0253585
https://doi.org/10.1364/BOE.420935
https://www.ncbi.nlm.nih.gov/pubmed/34221645
https://doi.org/10.1155/2021/5940433
https://doi.org/10.1016/j.cmpb.2019.105236
https://www.ncbi.nlm.nih.gov/pubmed/31786452
https://doi.org/10.1016/j.compbiomed.2023.106723
https://www.ncbi.nlm.nih.gov/pubmed/36907035
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1186/s12880-023-01007-4
https://doi.org/10.1007/s10278-022-00724-6
https://doi.org/10.1016/j.bspc.2022.103683
https://www.kaggle.com/datasets/francismon/curated-colon-dataset-for-deep-learning
https://doi.org/10.1007/s11548-013-0926-3


Bioengineering 2023, 10, 1416 17 of 17

33. Kvasir v2. A Gastrointestinal Tract Dataset. Available online: https://www.kaggle.com/datasets/plhalvorsen/kvasir-v2-a-
gastrointestinal-tract-dataset (accessed on 24 May 2023).

34. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

35. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

37. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.

38. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
39. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.
40. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
41. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
42. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 84–90. [CrossRef]
43. Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag.

Process 2015, 5, 1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.kaggle.com/datasets/plhalvorsen/kvasir-v2-a-gastrointestinal-tract-dataset
https://www.kaggle.com/datasets/plhalvorsen/kvasir-v2-a-gastrointestinal-tract-dataset
https://doi.org/10.1145/3065386

	Introduction 
	Materials and Methods 
	Data Collection and Preprocessing 
	Model Architecture 
	Vision Transformer 
	Proposed Model—FLATer 
	Comparison Models 

	Experimental Set Up 
	Model Evaluation 

	Results 
	Binary Classification Results 
	Ternary Classification Results 
	Ablation Study Results 

	Discussion 
	Conclusions 
	References

