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Abstract: Machine perfusion has developed rapidly since its first use in solid organ transplantation.
Likewise, reconstructive surgery has kept pace, and ex vivo perfusion appears as a new trend in
vascularized composite allotransplants preservation. In autologous reconstruction, fasciocutaneous
flaps are now the gold standard due to their low morbidity (muscle sparing) and favorable functional
and cosmetic results. However, failures still occasionally arise due to difficulties encountered with
the vessels during free flap transfer. The development of machine perfusion procedures would make
it possible to temporarily substitute or even avoid microsurgical anastomoses in certain complex
cases. We performed oxygenated acellular sub-normothermic perfusions of fasciocutaneous flaps
for 24 and 48 h in a porcine model and compared continuous and intermittent perfusion regimens.
The monitored metrics included vascular resistance, edema, arteriovenous oxygen gas differentials,
and metabolic parameters. A final histological assessment was performed. Porcine flaps which
underwent successful oxygenated perfusion showed minimal or no signs of cell necrosis at the end
of the perfusion. Intermittent perfusion allowed overall better results to be obtained at 24 h and
extended perfusion duration. This work provides a strong foundation for further research and could
lead to new and reliable reconstructive techniques.

Keywords: fasciocutaneous flaps; machine perfusion; ex vivo perfusion; vascularized composite
allotransplantation; intermittent perfusion; machine perfusion; extracorporeal perfusion
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1. Introduction

The advent of microsurgery was a turning point toward improving autologous re-
constructions, allowing vascularized tissue transfers to occur at a distance from the donor
site. Increasing anatomical knowledge and better microsurgery techniques have led to the
fasciocutaneous flaps gradually replacing muscle-based reconstructions [1,2]. Additionally,
the advent of perforator-based flaps [3–6] allowed for the reliability of these reconstruc-
tions to be increased while minimizing morbidity. Reliable perforator-based flaps used
in clinical practice include the deep epigastric inferior perforator (DIEP) flap, which has
surpassed rectus abdominis-based flaps for breast reconstruction [7], and antero-lateral
tight or superficial circumflex iliac perforator flaps, which have become standard in limb
reconstruction [8]. Nonetheless, reports suggest that 3 to 10% of free flaps still fail due
to vascular complications [9–15]. Surgical revisions can be successful, but these attempts
expose patients to delayed complications. Machine perfusion (MP) techniques could po-
tentially increase the possibility of flap salvation after an initial failure of conventional
microsurgery [16], for ex vivo thrombolysis [17,18], or even for fillet-flap preservation
after major trauma leading to amputation [19–21]. In addition, some patients awaiting
reconstruction are not eligible for free flap surgery because of their medical history. For
instance, patients with extensive surgical and radiation histories of the cervical region
(i.e., frozen necks) or diabetic patients with chronic wounds often present with unsuitable
vascular networks [22,23].

One solution to circumvent these obstacles would be to master extracorporeal perfu-
sion processes, thereby providing an exogenous supply of oxygen and nutrients to the flap
and bridging the period necessary to reach flap autonomization/neo-vascularization and
avoiding a vascularized transfer. Mastering a multi-day perfusion protocol [24] could be
used for microsurgery-free flap reconstruction, as described by Wolff et al. [16,25,26]. Until
now, they have been the first and only team to describe a clinical series of free fasciocu-
taneous flap reconstruction using exclusive extracorporeal perfusion. They were able to
perform reconstructions of complex head, neck, and shoulder defects using free flaps with
a fasciocutaneous component and no vascular anastomoses. Their innovative technique
used anterolateral thigh, soleus, medial sural, radial forearm, and fibular vascularized
fasciocutaneous paddles placed on the recipient site for 4 to 12 days until autonomization.
However, their innovative approach will require important optimization to overcome
the current limitations and lower the current complication rate of 67% observed in their
series on partial flap loss [16,25,26]. On the other hand, Brouwers and Kruit have explored
machine perfusion-based approaches in muscle flaps to study ex vivo thrombolysis in flap
salvage [27], as well as for extended preservation as a relevant model for vascularized
composite allotransplantation (VCA) [18,28]. Our team later explored subnormothermic
machine perfusion techniques in rat limbs, providing a proof of concept of the use of
machine perfusion in VCA, including bone components [29–32]. Overall, these techniques
inspired by solid organ transplantation are developing as promising approaches in plas-
tic and reconstructive surgery. However, experimental studies focusing on optimizing
machine perfusion in fasciocutaneous flaps are still missing.

We performed this study using a porcine saphenous flap [33] to assess the possibility
of using fasciocutaneous flap machine perfusion in a clinically relevant setting. We hy-
pothesized that acellular sub-normothermic machine perfusion (SNMP) would suit the
multiday perfusion of fasciocutaneous flaps. The objective was to optimize the ex vivo
machine perfusion of fasciocutaneous flaps, describe the critical monitoring parameters,
and compare the outcomes with continuous and intermittent perfusion.

2. Materials and Methods

Twelve female 30–35 kg Yorkshire pigs were used for these experiments (12 flaps were
included in the data). The authors followed the ARRIVE guidelines checklist [34]. Animals
were housed with access to food and water according to the local Center for Comparative
Medicine (CCM) conditions. After an acclimation period, the animals underwent unilateral
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procurement surgery under general anesthesia. The contralateral side was used by other
research teams that were able to procure tissues and solid organs before euthanasia, in order
to optimize the number of animals sacrificed within the research facility with authorization
from the Institutional Animal Care and Use Committee (IACUC). Following all harvesting
procedures, animals were euthanized according to the local veterinarian guidelines.

2.1. Flap Procurement Procedure

Unilateral axial saphenous fasciocutaneous flaps were harvested using our established
model [33]. Vascular dissection was extended to the femoral vessels to allow for single can-
nulation of the two small veins in the flap (Figure 1A,B). After systemic IV administration
of heparin (single dose of 100 UI/kg), the femoral vessels were dissected proximally and
distally to the origin of the saphenous pedicle, ligated, and then divided. An 18 G catheter
was inserted into the femoral vessels and secured with 3–0 silk ligatures. The flap was
flushed through the artery with 30 to 50 mL of cold (4 ◦C) saline heparin (100 UI/mL) until
clear venous return was achieved. Finally, the flap was weighed and transported to the
perfusion system on ice.
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Figure 1. Surgical model and perfusion system. (A) Saphenous fasciocutaneous flap during the
perfusion. (B) Schema of the flap vasculature. (C) Intra-operative ultrasound evaluation of the flow
(color Doppler and pulsed Doppler) in the saphenous artery (white arrow), with an estimate of the
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flow rate (red arrow). (D) Perfusion system: 1: peristaltic pump; 2: oxygenator; 3: oxygen flow;
4: bubble trap; 5: pressure sensor and inflow tap; 6: pressure monitor; 7: timer; 8: perfusate reservoir;
9: arterial cannula.

2.2. Machine Perfusion System

A customized machine perfusion system was designed using a roller pump (DRIVE
MASTERFLEX L/S, Cole-Parmer, Vernon Hills, IL, USA), a hollow-fiber oxygenator (Affin-
ity Pixie, Medtronic, Dublin, Ireland), inflow and outflow silicon tubing (Masterflex L/S 16,
Cole-Parmer, Vernon Hills, IL, USA), a bubble trap (Radnoti 130149, Radnoti L.T.D, Dublin,
Ireland), and a pressure transducer linked to a portable pressure monitor (PM-P-1, LSI,
St Albans City, VT, USA). Filtration of potential debris was achieved by the hollow-fiber
oxygenator, and no further filtration was performed during the perfusion. An oxygen
tank (95% O2, 5% CO2) was connected to the dedicated valve on the oxygenator by silicon
tubing, and the oxygen flow was set to 0.5 L/min. The pressure transducer was connected
to the system upstream of the arterial cannula. A valve downstream of the pressure trans-
ducer was used to collect samples for the biochemical inflow measurements. The flap was
suspended over a stainless-steel bowl filled with perfusate and laid on top of a perforated
rack, allowing the outflow to collect in the solution reservoir freely (Figure 1D). A similar
setup has been described for other models [31,32]. Samples of the outflow used in the
biochemical analysis were procured from the venous cannula (18 G). The perfusion system
(Figure 1D) was contained in a Class II biosafety cabinet. The tubing and the surgical bowl
were autoclaved before each perfusion, and the flap was manipulated with sterile gloves
and instruments. Perfusate solution was initially sterilized by filtration. Temperature was
monitored using an external thermometer (Cole-Parmer, Traceable IR Thermometer) and
was kept in the target range (19–21 ◦C) without intervention. Before the flap perfusion, the
system pressure was measured at incremental flows from 0.5–4 mL/min using the same
perfusate to correct the measurements with the system’s pressures.

2.3. Perfusate Solution

A custom-modified acellular Steen+ solution was used. Our team previously opti-
mized this solution for vascularized composite allotransplant (VCA) preservation [28,31].
The main differences from the original Steen solution were the albumin concentration
(increased to 15% in the Steen+, versus 7%) and the addition of 0.5% of 35 kDa polyethy-
lene glycol [28] (Sigma-Aldrich, Saint-Louis, MO, USA). A Steen solution (7% bovine
serum albumin), improved by adding broad-spectrum antibiotics (vancomycin 1 g/L and
piperacillin–tazobactam 1 g/L), was used for the intermittent perfusion experiments. The
perfusate was recirculated in a closed loop and exchanged every 24 h for the multi-day
perfusion. Sodium bicarbonate (8.4%) was added to the solution to correct the pH. The
optimal pH levels of the solution were between 7.1–7.4, varying with the CO2 levels.

2.4. Perfusion Monitoring

The following metrics were monitored throughout the perfusion period:

– Weight gain of the flap every 6 h;
– Perfusion parameters, including flow (mL/min) and measured and corrected pres-

sures (mmHg);
– Resistances were calculated according to the formula R = P/Q (R: resistance (mmHg.

min/mL), P: corrected pressure (mmHg), and Q: flow rate (mL/min));
– Biochemical parameters were repeatedly measured using a handheld analyzer (iStat 1,

Abbott, Chicago, IL, USA). Inflow and outflow samples were collected for each time
point and assessed the following measurements: pH, pO2 (mmHg), pCO2 (mmHg),
lactate (mmol/L), [K+] (mmol/L), [Na+] (mmol/L), [HCO3

−] (mmol/L), base excess
(mmol/L), and glucose (mmol/L). Oxygen consumption was measured based on the
difference in partial pressure between the inflow and outflow, the flow rate, and the
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initial weight using a modified Fick equation [35]. Similarly, glucose consumption
was estimated as the inflow–outflow difference.

2.5. Determination of Flow Rates for Experiments

Two preliminary flap perfusions (not included in the data) were conducted for 12 h,
allowing for the fine tuning of several perfusion parameters. The baseline flow rate
of the saphenous artery was measured in vivo by ultrasound (Figure 1C), with artery
identification by color Doppler and mean velocity quantification over time by pulsed
Doppler. This optimization allowed for successful subsequent perfusions.

2.6. Continuous Versus Intermittent Perfusion Protocols

Two non-pulsatile sub-normothermic perfusion regimens were compared. The first
group received continuous perfusion (CP) with Steen+. The flow rate was manually
adapted throughout the perfusion to keep the measured pressure between 30 and 55 mmHg
based on our previous experience in other models [27,28]. A second group received
intermittent perfusion (IP) with Steen. The perfusion rates chosen were based on a prior
work of Wolff et al. [25], assuming a tolerance of the skin to ischemia. To address the
ischemic complications observed in their series, the perfusion time/ischemic time ratio
was increased to 30–45 min of perfusion followed by 75–90 min of ischemia. The perfusion
parameters were assessed every 10 min during the perfusion phases, and the mean value
per cycle was used for each time point.

For both groups, termination criteria were edema greater than 50% of the initial flap’s
weight or inflow decreased to 50% of the initial value [17].

2.7. Statistical Analysis

All data were recorded in Excel (Microsoft, Redmond, WA, USA), and all statistical
analyses were performed using Prism (v. 9.5.0, GraphPad Software, La Jolla, CA, USA).
The alpha risk was fixed at 5%. For each variable measured during monitoring, the
mean and standard error of the mean were determined. Linear regression was used to
assess the stability over time in each group. Mann–Whitney U tests were performed to
compare continuous quantitative variables between groups (non-paired, non-Gaussian,
non-parametric rank distribution comparison).

3. Results

Six continuous and six intermittent sub-normothermic porcine flap perfusions were
performed. The average surgical duration was 2.6 ± 0.5 h. The average skin paddle surface
before the incision was 55.9 cm2 in the CP group and 64.5 cm2 in the IP group. The mean
initial weight was 22.61 ± 3.98 g in the CP group and 30.95 ± 8.28 g in the IP group. All CP
were stopped at t = 24 h due to reaching the termination criteria (weight at 24 h > 150% of
the initial weight). The IP flaps were kept in the perfusion system for 24 to 72 h.

3.1. Perfusion Parameters

The perfusion parameter results are presented in Figure 2. The mean initial flow was
1.15 ± 0.27 mL/min in the CP group and 1.26 ± 0.48 mL/min in the IP group. The mean
flow values at 24 h were 1.60 ± 0.59 and 1.14 ± 0.40 mL/min for the CP and IP groups,
respectively. Comparison between groups showed no difference (p-values of 0.90 at t = 0 and
0.33 at t = 24 h). The mean initial vascular resistance was 45.78 ± 15.30 mmHg.min/mL
in the CP group and 39.72 ± 20.33 in the IP group. The mean resistance at 24 h was
42.08 ± 23.17 and 51.48 ± 33.90 for the CP and IP groups, respectively. A trend showed
an increase in resistance after 12 h, but the analyses at 0, 6, 12, and 24 h showed no
significant differences between groups (p values of 0.39, 0.17, 0.07, and 0.70, respectively).
In most flaps, high resistance was observed during the first 45 min before stabilization.
Other perfusion models, such as the rat hindlimbs, showed evidence of similar patterns [31].
Interestingly, flaps perfused with the intermittent protocol showed lower vascular resistance
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during the perfusion cycles after repeated ischemia durations. Weight gain showed a
nonsignificant increase after 12 h of perfusion (mean: 101.5% of the initial weight) in
both groups, followed by a drastic rise at 24 h (164.1%) in the CP group, whereas the IP
group showed very low edema at 24 h (109.92%, p = 0.04). At 48 h, the IP group showed
interesting results, with mean flow, resistance, and weight values of 1.14 ± 0.40 mL/min,
54.72 ± 38.8 mmHg.min/mL, and 111.10 ± 80.66%, respectively.
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Figure 2. Perfusion parameters. The first, second, and third rows display the continuous perfusion
group, the intermittent perfusion group, and the statistical analysis between groups, respectively.
(a,d,g) Flow (b,e,h), resistance, and (c,f,i) weight variation are shown. Overall flow and resistances
were comparable between groups. Edema was statistically lower in the I.P. group at 24 h. Mean
weight gain at 36 and 48 h was lower in the I.P. group compared to the C.P. group at 24 h. Please
note that the x-axis is split in (a,b) (continuous) into 0–3 h and 3–24 h to allow for better viewing
of the initial three-hour results. For the I.P. group, the flow and resistance were the mean value per
perfusion cycle (4 values per cycle). Values for the I.P. were collected for 48 h of perfusion. The third
row shows mean values ± S.E.M. * statistically significant.

3.2. Biochemical Parameters

Lactate was measured in the venous outflow, and the recirculating lactate measured in
the inflow was subtracted. In the CP group, flaps #5 and #6 showed higher lactate values
(up to 1.9 mmol/L), and these flaps were considered ischemic (Figure 3a). The drop in these
two curves was due to the partial perfusate exchange. The mean initial lactate values were
0.60 ± 0.49 mmol/L in the CP and 0.18 ± 0.22 mmol/L in the IP group (Figure 3e). The
mean values at 24 h were 0.55 ± 0.48 and 2.47 ± 3.93 mmol/L for the groups, respectively.
A comparison between groups showed statistically significantly higher lactate values in
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the IP group, related to intermittent oxygenation (Figure 3i). The initial pH values varied
between 7.1 and 7.4 depending on the pCO2 of the solution. Interestingly, the pH tended to
stabilize over time to around 7.2 in both groups, except for the ischemic flaps (Figure 3b),
due to metabolic acidosis. The potassium concentration (Figure 3c,g) measured in the
outflow slightly increased during the first 24 h of perfusion, but not outside of average
physiological values (3.5–5 mmol/L), apart from one flap (#1) in the CP group, which
was determined to be contaminated with cleaning solution residues. The mean initial
potassium concentration was 4.75 ± 0.75 mmol/L in the CP group and 4.56 ± 0.24 mmol/L
in the IP group. The mean potassium concentrations at 24 h were 5.23 ± 1.07 mmol/L and
5.61 ± 0.50 mmol/L in the CP and IP groups, respectively. No statistical difference was
found between groups during the 24 h period (Figure 3k). Figure 3d shows an increased
O2 consumption beyond 12 h of perfusion in the CP group, but no statistical difference
was found between the groups (Figure 3l). Oxygen consumption dropped after 8 h in flap
#4 (CP group) due to bacterial growth in the bubble trap. Glucose consumption typically
decreased during the first hour of perfusion before stabilizing at low values. The glucose
consumption in flap #4 (CP group) reached high values after 7 h, and this was associated
with bacterial infection.
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Figure 3. Biochemical analyses. The first, second, and third rows represent the continuous perfusion
group, the intermittent perfusion group, and the statistical analysis between groups, respectively.
(a,e,i) Lactate release showed higher values in the I.P. group, which was expected because of the ischemic
periods. (b,f,j) pH levels were comparable between groups until t = 18 h, where the pH was higher in
the I.P. group, which was linked to bicarbonate adjunction in one ischemic replicate. (c,g,k) Potassium
levels were comparable between groups. (d,h,l) Oxygen consumption was measured with the following
formula: O2cons = 100 × (Inflow O2-Outflow O2) × Flow rate × 0.0314/[initial weight of the flap] with
O2cons in mlO2/min/g, InflowO2 and OutflowO2 in mmHg, flow rate in mL/min, and initial weight in
grams. Please note that the x-axis is split in (a–d) (continuous) (0–3 h and 3–24 h), to allow for better
viewing of the initial three-hour results. Values for the I.P. were collected for 48 h of perfusion. The third
row shows mean values ± SEM.
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4. Discussion

In this work, we presented the setup and the main parameters for the ex vivo perfusion
of fasciocutaneous flaps. Continuous perfusion was performed for 24 h in the first group
(CP). Intermittent perfusion (IP) was studied in the second group until perfusion failure
was reached. This study design allowed for a comparison of the two different groups in
the first 24 h (Figure 4). A key goal was to show that acellular perfusion can be used for
perfusing this type of flap. Preserving fasciocutaneous flaps for short durations (12–24 h)
could be used for immediate clinical applications, such as complex free flap surgeries or
revision surgeries, to decrease the ischemic time during preparation of the recipient site [36].
Ex vivo perfusion could also be used to preserve fillet flaps procured on amputated limbs
following major traumas as an example of a tissue-sparing procedure [19–21]. Another
application is ex vivo thrombolysis in compromised flaps, as previously described in
a swine musculocutaneous flap model [17]. Our work can also inform future ex vivo
perfusion studies, which is a current trend in the field of reconstructive surgery [37].
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Figure 4. Macroscopic aspect of the cannulated femoral vessels following 24 h of intermittent
perfusion. The vein was cannulated to facilitate the procurement of the outflow sample from both
veina comitans. Note that the positioning of the femoral vessels was adjusted while monitoring the
system’s pressure to allow for perfusion with minimal mechanical resistance.

To assess the micro-vascularization of the skin paddle, fluorescein angiography was
performed (Figure A1, Appendix A). It is interesting to note that the initial fluorescent
surface was not 100%. The model itself could explain this: the microvessels dedicated
to the flap are known to be highly dynamic, as described by Saint-Cyr and Rohrich with
the perforasome theory [38]. Machine perfusion leads to increased resistance in other
models [31,39], and this could explain the limited area reached by the fluorescence. It is also
likely that the fluorescein angiography itself may cause this result, as it has been reported
that fluorescein only assesses the deep dermal plexus [40]. It would be interesting to
improve this microvasculature assessment by performing indocyanine green angiography
(ICG) [40]. Histology showed no difference between any of the flaps in either perfused
group (Figure A2, Appendix A), revealing edema, but no signs of apoptosis.

These preliminary experiments showed us the importance of the initial flow value
on resistance in the flaps, reflective of the microvasculature. Since each flap has its own
specific vascular compliance and anatomy, we recommend an intra-operative ultrasound
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examination for each new flap model to confirm its quality and estimate the initial arterial
rate [41]. Biochemical measurements indicated potential ischemia, even in flaps with no
muscle. Elevated lactate may also suggest a bacterial infection consuming oxygen, as seen
in two preliminary flap perfusions where antibiotics corrected a drop in inflow oxygen
(data not included). Untreated, prolonged low oxygenation of the inflow could result in
lactic acidosis due to anaerobic metabolism [42]. This last point shows that critical care
must be taken to prevent the perfusate from becoming contaminated. Therefore, for clinical
applications, the perfusate should be micro-filtrated and discarded, and should not be
recirculated. We used biochemical metrics such as potassium, lactate, pH, and oxygen
consumption by translation from other VCA models [31,32,43]. These metabolic outcomes
have been shown to be relevant in solid organ preservation [35,44], but other parameters
may be suitable for fasciocutaneous flaps. Changes in ATP levels have been described in
several models [45,46] and could be of interest to improve perfused flap monitoring, but
this seems to be difficult to implement in clinical settings. All parameters described in our
methods can be monitored using handheld and light devices, making them relevant for
bedside applications.

Meyers et al., have recently shown that weight gain is an early marker of perfusion
failure [47]. The overall analysis of our presented data suggests that both continuous and
intermittent oxygenated acellular perfusion can be successful for short durations of less
than 12 h, and that intermittent perfusion seems better for longer durations, potentially
because it preserves the vascular tree, allowing for lower vascular resistance and edema. A
correlation between these two parameters has been described previously by Dr. Pomahac’s
team in a pig hindlimb model [48]. Our findings confirmed their results by showing a
gradual parallel increase in weight gain and vascular resistance. In order to reach several
days of optimized perfusion, further studies should therefore focus on better protecting the
microvasculature to prevent interstitial edema and increased resistance.

We chose to compare continuous and intermittent perfusion regimens for several
reasons: Current machine perfusion techniques in solid organs, but also in vascularized
composite allografts, all use continuous perfusion to constantly provide oxygen and nutri-
ents while constantly clearing toxic metabolites. On the other hand, intermittent perfusion
in the specific case of fasciocutaneous flaps is interesting to explore: (i) the absence of
muscle makes the ischemic phases acceptable; (ii) the intermittent perfusion allows for
ischemic preconditioning on the flap, which can expedite the neo-vascularization process
and ensure autonomization at the end of the machine perfusion period; and (iii) the logis-
tics at the patient’s bedside would gain convenience, since intermittent perfusion would
allow for mobilization and walking during the OFF phases, helping to decrease decubitus
complications. Therefore, it seemed critical to compare both perfusion settings.

To our knowledge, this work is the first description of ex vivo perfusion of fasciocuta-
neous flaps in a large animal model. Muscle-sparing flaps seem to be the most clinically
relevant to modern reconstructive techniques in plastic surgery [1,2,49]. Kruit et al. [28,50]
first demonstrated perfusion success in porcine musculocutaneous flaps, allowing for
18 h of preservation before replantation. They compared two different commercialized
perfusates, but their work did not focus on the perfusion parameters. Moreover, muscu-
locutaneous flaps differ from pure fasciocutaneous flaps due to the presence of multiple
perforator vessels that provide adequate vascularization to the skin paddle, but with a lower
tolerance of the muscle to ischemia. Performing machine perfusion of fasciocutaneous flaps
appears to be safe for reconstructive surgery applications, and this was the focus of our
study because of the potential for immediate implementation in plastic surgery [2,51,52].
Ozturk et al., described the perfusion of five freshly harvested DIEP flaps on patients
undergoing abdominoplasty [53]. They used fresh whole blood and were able to keep
the flaps perfused for 4 to 5 days. However, they did not address the ideal flow rate or
pressure parameters, which are critical for reproducibility. Additionally, the use of whole
blood could be limiting, both in terms of safety and logistics for clinical use. We expect that
acellular perfusion would be preferable for fasciocutaneous flap perfusion, limiting the cost
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and risk of infectious disease transmission, as shown by Wolff et al., in vivo [25]. To address
this last point, it seems necessary to compare different perfusate solutions, including testing
of potential artificial oxygen carriers.

This preliminary study has several limitations that should be addressed in the future.
Firstly, a larger cohort would have provided better power for statistical analysis. Addition-
ally, the contributions of angiography (Figure A2, Appendix A) were minor and limited to
confirming arterial flow. Using ICG for such ex vivo flap perfusions could permit better
monitoring of skin perfusion. Another point is the temperature, which was set as sub-
normothermic (19–21 ◦C) and could have influenced the flap’s micro-vascularization [54].
Normothermic perfusion could improve the skin paddle’s vascularization. However, choos-
ing a sub-normothermic perfusion permits using an acellular perfusate solution because of
the lower metabolism [55,56], avoiding safety-related concerns regarding blood products.
Moreover, the bacterial hazard needs to be addressed carefully. We modified our protocol
by using piperacillin–tazobactam and vancomycin in our perfusate based on preliminary
cases in which likely bacterial infections were observed. Another limitation is the absence
of microscopic assessment of endothelial injuries following perfusion, which could po-
tentially explain the edema and the perfusion duration limitation. Adding a sequence
of normothermic blood reperfusion at the end of the preservation period could unveil
ischemia–reperfusion injuries and increase the significance of this work, and should be
explored in subsequent studies. To date, only a few publications have focused on endothe-
lial cells during MP [57,58]. Finally, comparing extracorporeal perfusion protocols with
conventional microsurgery could be interesting (outcomes, safety, cost-effectiveness. . .), but
it seems that this innovation should be, at least initially, exclusively restricted to patients
disqualified for microsurgical free flaps or for free flap salvage attempts (thrombolysis).
Therefore, no comparison should be performed yet between these approaches during the
optimization process.

This study was inspired by pioneering works by Wolff et al., who described the cases
of six patients who benefited from extracorporeal perfusion techniques for reconstruction of
the neck with fasciocutaneous flaps [16,25,26]. The patients in their series eventually healed,
but four of six experienced partial or subtotal flap loss. This study did not evaluate certain
parameters, such as perfusion rhythm, frequency, solute type, and total perfusion duration,
which could have added benefits to avoid partial ischemic complications. Our objective was
to optimize perfusion in a clinically relevant model. We found that intermittent perfusion
seemed more suitable than continuous perfusion for multi-day perfusion based on vascular
resistance and edema monitoring.

To further optimize the promising approach of intermittent flap perfusion, it is crucial
to investigate the impact of perfusion/ischemia rates on flap perfusion quality. Several
preclinical models already exist [59–61], and the new perspectives on reconstruction should
push researchers to delve into this matter. Further research should also explore the healing
capacity of flaps following extended perfusion preservation, as well as the endothelial
injuries provoked by machine perfusion shear stress, which could explain the current
limitation in perfusion duration due to weight gain by extravascular perfusate leakage.
This study acts as a strong foundation for more studies, which will be needed in order to
provide a reliable protocol allowing fasciocutaneous flap perfusions for extended durations,
therefore enabling microsurgery-free reconstruction without ischemic complications.

5. Conclusions

Fasciocutaneous flaps can be preserved using continuous acellular subnormothermic
machine perfusion for 12 h. Intermittent perfusion permitted up to 48 h of flap preservation.
This strategy can allow for flap salvage using ex vivo thrombolysis, or even flap preservation
before replantation in complex cases. Further research should aim for longer perfusion
durations, eventually leading to optimizing anastomoses-free flap transfer reconstructions.
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Appendix A

(1) Perfusion quality assessment through vascular angiography.

Methods: To monitor the flap microvasculature, angiographies were performed by
manually injecting 0.3 mL of 5% fluorescein through the arterial cannula and exposing
the flap to a Wood UV light (365 nm peak wavelength). High-resolution photographs
of the skin paddle fluorescence were then taken at t = 0, t = 12 h, and t = 24 h. Pixel-
analyzing software (v. 2.10., GNU Image Manipulation Program, Berkeley, CA, USA) was
used to measure the percentage of fluorescent pixels inside the flap at each time point. A
pre-injection photograph was taken before each angiograph in order to exclude residual
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fluorescence from the previous time point. The outflow was discarded for 30 s after the
angiography to minimize fluorescein recirculation. Flap angiography was performed in the
continuous perfusion group and was not repeated in the intermittent group.
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Figure A1. Flap fluorescein angiography. Aspects of the flap angiographies at (A) t = 0; (B) t = 12 h
and (C) t = 24 h. (D) A non-paired t-test showed no statistically significant difference between the
3 time points. Mean initial angiographies in the C.P. group (t = 0) showed 55.80 ± 14.39% green
fluorescent pixels on the whole flap skin paddle, confirming that the arterial flow reached the skin
paddle. Mean values at 12 h and 24 h were 48.30 ± 16.90% and 32.20 ± 18.10%, respectively.

(2) Tissue samples and Histology:

Methods: Full-thickness punch biopsies were collected at t = 0 (initial skin controls)
and t = end of perfusion (24, 48, or 72 h) on the perfused flaps. Biopsies were fixed in
10% formalin, embedded in paraffin, and stained with hematoxylin and eosin (H&E) for
basic pathology assessment. Further control flaps consisted of native skin (t = 0), static
cold-stored flaps (4 ◦C, in Custodiol, Essential Pharmaceuticals LLC, Durham, NC, USA),
and non-perfused flaps kept at room temperature (19–21 ◦C) for 24 h. The slides were
analyzed by an experimented pathologist. A pathologic component scoring system was
used to compare the samples [62]. Apoptotic cells per field (C.P.F) were counted and
showed negative results in all flaps of both experimental groups at the end of the perfusion
(24 h (Figure A2(1)), 48 or 72 h), in static cold-stored flaps at 4 ◦C (n = 3), and in native
control flaps (n = 3). Only the non-perfused control flaps (n = 3) that were static and stored
at room temperature (21 ◦C) showed minor apoptosis (Figure A2(2)). The component
pathology score showed no difference between any of the groups. This limited contribution
of histology may be due to the absence of normothermic blood reperfusion, which will be
incorporated into our future experiments.
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