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Abstract: The complexity of cardiovascular disease onset emphasizes the vital role of early detection
in prevention. This study aims to enhance disease prediction accuracy using personal devices,
aligning with point-of-care testing (POCT) objectives. This study introduces a two-stage Taguchi
optimization (TSTO) method to boost predictive accuracy in an artificial neural network (ANN) model
while minimizing computational costs. In the first stage, optimal hyperparameter levels and trends
were identified. The second stage determined the best settings for the ANN model’s hyperparameters.
In this study, we applied the proposed TSTO method with a personal computer to the Kaggle
Cardiovascular Disease dataset. Subsequently, we identified the best setting for the hyperparameters
of the ANN model, setting the hidden layer to 4, activation function to tanh, optimizer to SGD,
learning rate to 0.25, momentum rate to 0.85, and hidden nodes to 10. This setting led to a state-of-
the-art accuracy of 74.14% in predicting the risk of cardiovascular disease. Moreover, the proposed
TSTO method significantly reduced the number of experiments by a factor of 40.5 compared to
the traditional grid search method. The TSTO method accurately predicts cardiovascular risk and
conserves computational resources. It is adaptable for low-power devices, aiding the goal of POCT.

Keywords: cardiovascular disease; two-stage Taguchi optimization method; artificial neural network;
point-of-care testing

1. Introduction

Cardiovascular diseases (CVDs) are some of the leading causes of death globally,
imposing significant health and economic burdens on individuals and societies. Common
CVDs include coronary artery disease, myocardial infarction, arrhythmias, heart failure
(HF), stroke, and atherosclerosis. These diseases affect the normal functioning of the heart
and blood vessels, leading to inadequate blood and oxygen supplies and causing severe
disruptions to systems throughout the entire body. Among them, coronary artery disease is
characterized by a narrowing or blockage of the coronary arteries, which are responsible
for supplying oxygen and nutrients to the heart. CVDs also include arrhythmias, where
the heart rhythm may become too fast, too slow, or irregular. HF refers to the inability of
the heart to effectively pump blood, leading to insufficient blood and oxygen supplies to
various organs, leading to symptoms such as fatigue, shortness of breath, and swelling.
Stroke is another CVD that occurs when the blood flow to a specific region of the brain
is interrupted by a clot or bleeding in cerebral blood vessels. This can result in impaired
brain functions, such as language and motor skills. Atherosclerosis is a progressive process
involving the accumulation of plaque and the hardening of arterial walls. Over time,
plaques can increase, further narrowing or blocking blood vessels, restricting blood flow,
and increasing the risk of CVDs [1].

CVD factors are typically interconnected. Multiple risk factors such as hypertension,
hyperlipidemia, and diabetes can coexist in an individual and influence each other [2].
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This comprehensive impact complicates the mechanisms underlying CVDs. Therefore, the
prevention and management of CVDs require a comprehensive consideration of these risk
factors and the development of corresponding prevention strategies. Additionally, CVD
risk factors are closely related to lifestyle. Unhealthy lifestyle habits such as an unhealthy
diet, a lack of exercise, smoking, and excessive alcohol consumption increase the risk of
developing CVDs [3–5]. This highlights the critical role of individual choices and behaviors
in cardiovascular health. Changing unhealthy lifestyle habits, following healthy dietary
guidelines, increasing physical activity, quitting smoking, and limiting alcohol intake can
effectively reduce the risk of developing CVDs. Early detection and management are also
crucial for preventing CVDs.

Early disease detection is a challenging task. Many scholars have conducted extensive
research on the early detection of various diseases [6–8]. However, in the early stages,
Cardiovascular Diseases (CVD) typically do not display obvious symptoms. Many indi-
viduals may experience mild discomfort, such as slight fatigue or chest tightness, in the
early development of the disease, and such symptoms are easily overlooked or attributed
to other causes. Due to the lack of clear warning signs, people often do not proactively
seek medical help, making the early detection of CVD even more difficult. Additionally,
the progression of certain CVDs is covert and gradual. For example, in the early stages,
atherosclerosis might not cause obvious symptoms, but, over time, fat and plaque can
gradually accumulate within the blood vessels, ultimately leading to vessel blockage or my-
ocardial ischemia. As a result, many individuals only become aware of the problem when
the disease has progressed to a more severe stage, which increases the difficulty of treatment
and recovery. The risk of CVDs is often influenced by interactions between multiple factors.
However, individually assessing each risk factor might not comprehensively evaluate an
individual’s overall risk, making it more complex to identify early signs of CVD. The early
detection of CVDs requires effective screening tools and resources. Many cardiovascular
examinations, such as electrocardiograms, blood tests, and cardiac ultrasounds, require
specialized equipment and trained professionals for interpretation. However, in certain
regions or under resource-limited conditions, these examinations might not be widely
available, further increasing the difficulty of detecting CVDs early.

The effective prediction of CVDs can help physicians identify high-risk individuals.
By studying various CVD risk factors, models can be developed to predict an individual’s
probability of developing a CVD. This aids in identifying individuals who require closer
monitoring and preventive measures, and they can then be provided with appropriate
medical interventions and health management recommendations. Identifying the risks of
developing CVDs at an early stage offers more opportunities for treatment [9]. For example,
targeted lifestyle changes such as adopting a healthy diet, engaging in moderate exercise,
and reducing work-related stress can be implemented for individuals identified as high-risk.
Additionally, pharmacological treatments to reduce the incidence of cardiovascular events
may be considered. These early intervention measures contribute to reducing the incidence
and severity of CVD. Predicting CVD also helps raise public health awareness, enabling
individuals to better understand and evaluate their own cardiovascular health status. This
could encourage people to proactively adopt healthy lifestyles and seek timely medical
help and advice. Predicting CVDs also assists healthcare professionals in allocating and
managing patients more effectively with limited resources. Predictive models can help
healthcare institutions anticipate demand in advance and develop preventive measures and
treatment plans, thereby reducing hospitalization times and medical costs and improving
the efficiency of healthcare resource utilization. Simultaneously, the early identification of
high-risk individuals and effective intervention measures can help alleviate the pressures
on healthcare systems and reduce long-term healthcare costs.

However, inaccurate prediction results can also lead to overdiagnosis and overtreat-
ment [10]. A prediction wrongly identifying an individual as being at high risk when
they may actually have a low risk of developing a CVD can result in unnecessary medical
interventions, the wastage of resources, and an increased psychological burden for the
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patient. On the other hand, if the prediction fails to accurately identify individuals who are
actually at risk of developing a CVD, they may miss the opportunity for timely intervention
and treatment, thus missing the chance to prevent disease progression. Furthermore, when
the accuracy of the prediction results is low, people may doubt the effectiveness of the
prediction and even develop mistrust towards the entire predictive model. This can lead
to public disregard for prediction results and reduce their willingness to take subsequent
action based on the predictions. Therefore, improving the accuracy of CVD predictions is
an important research direction.

Currently, numerous experts and scholars are conducting predictive research on
cardiovascular diseases. Arroyo and Delima (2022) [11] have enhanced cardiovascular
disease prediction using a genetic algorithm (GA) to optimize artificial neural networks
(ANN), improving their accuracy by 5.08%. Kim (2021) [12] utilized smartwatch data from
the Korea National Health and Nutrition Examination Survey to predict cardiovascular
disease prevalence. The support vector machine model achieved the highest accuracy,
offering crucial insights for early and accurate diagnosis. Khan et al. (2023) [13] employed
machine learning algorithms, including random forest, for the accurate prediction of
cardiovascular disease (CVD). The random forest algorithm showed the highest accuracy
(85.01%) and sensitivity (92.11%) among various methods tested. Moon et al. (2023) [14]
used a literature embedding model and machine learning to predict cardiovascular disease
(CVD) susceptibility accurately. With 96% accuracy, the model identifies related factors and
genes, improving CVD prediction.

The above-mentioned literature discusses the accuracy of cardiovascular disease pre-
diction; however, it does not explore techniques for consistently achieving high accuracy
with limited resources. This study develops a method that significantly reduces the compu-
tational resources needed for accurate cardiovascular disease (CVD) prediction. The goal is
to enhance early detection accessibility, revolutionizing cardiovascular health monitoring.
By meeting the demands of point-of-care testing (POCT) with a resource-efficient artificial
neural network (ANN) model, this approach enables the more precise prediction of indi-
vidual CVD risks. This advancement allows for timely interventions, ultimately improving
cardiovascular health and quality of life.

2. Materials and Methods
2.1. Mathematical Background
2.1.1. Artificial Neural Network (ANN)

The artificial neural network (ANN) is a fundamental machine learning model. Its
structure comprises multiple neurons (or nodes), in which each neuron is connected to all
neurons in the previous layer, forming a fully connected network [15]. In this structure,
each neuron receives inputs from all the neurons in the previous layer and generates an
output [16]. Such a design enables neural networks to learn complex nonlinear relationships.
An artificial neural network consists of the following components [17,18]:

(1) Input Layer: the first layer of the neural network, responsible for receiving raw data
or features.

(2) Hidden Layers: layers located between the input and output layers, responsible for
further feature extraction and learning representations.

(3) Output Layer: the final layer of the neural network, responsible for generating the
ultimate output. Figure 1 shows an ANN comprised of three layers of neurons.

(4) Weights and Biases: The strength of the connections between neurons is represented
by weights. Each neuron also has a bias that affects its activation state.

(5) Activation Function: A function that transforms the weighted sum of neuron in-
puts into an output, introducing nonlinearity. Common activation functions include
logistic, tanh, and ReLU (Rectified Linear Unit), which are explained as follows:

(i) Logistic function (sigmoid function): The logistic function maps inputs to
a range between (0, 1), and its output represents probability values. It is
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commonly used in binary classification problems. However, when inputs are
significantly far from the origin (too large or too small), the gradient of the
function becomes very small. This issue can lead to the problem of vanishing
gradients, making it challenging to train neural networks effectively.

σ(x) =
1

1 + e−x (1)

(ii) Tanh function: The tanh function maps inputs to the range (−1, 1). Compared
to the logistic function, its output is more symmetric around the origin. Al-
though it still faces the vanishing gradient problem, the tanh function’s outputs
have an average closer to zero than the logistic function. This property helps
mitigate the issue of vanishing gradients.

tanh(x) =
ex − e−x1
ex + e−x (2)

(iii) ReLU function (Rectified Linear Unit): The ReLU function outputs the input
value when it is positive and outputs zero when it is negative. It is a straightfor-
ward activation function, often leading to faster convergence during training.
Unlike Sigmoid and tanh functions, ReLU does not suffer from the vanishing
gradient problem.

ReLU(x) = max(0,x) (3)

(6) Loss Function: Used to measure the disparity between the model’s predicted output
and the actual output, the loss function is a critical aspect of the training process.
Common loss functions include Mean Squared Error and Cross-Entropy.

(7) Optimizer: Responsible for updating the weights and biases of the neural network
based on the gradients of the loss function, optimizers play a key role in the train-
ing process. Popular optimizers include lbfgs, sgd (stochastic gradient descent),
and Adam.

(i) lbfgs (limited-memory broyden-fletcher-goldfarb-shanno): lbfgs combines the
benefits of gradient descent with the advantages of quasi-Newton methods,
allowing for efficient convergence to the optimal solution.

(ii) SGD (stochastic gradient descent): SGD is a fundamental optimization algo-
rithm used in training artificial neural networks. Unlike traditional gradient
descent, which computes gradients using the entire dataset, SGD updates
the model’s parameters using only a single data point (or a small batch of
data points) at a time. This stochastic nature introduces randomness into the
optimization process.

(iii) Adam (adaptive moment estimation): Adam is an adaptive learning rate opti-
mization algorithm that combines the ideas of both momentum and RMSprop.
Adam dynamically adjusts the learning rates based on the magnitude of the
past gradients, providing faster convergence and better performance compared
to fixed learning rate methods like traditional gradient descent.

Additionally, in an artificial neural network (ANN), there are two crucial hyperpa-
rameters: the learning rate and momentum rate, both of which have a significant impact
on the performance of the ANN model. The learning rate determines the magnitude of
the adjustments made to the model parameters during each step of optimization. If the
learning rate is too large, the model may oscillate around the minimum and fail to converge.
On the other hand, if it is too small, the model may converge very slowly or even get
stuck in local minima [19,20]. As for the momentum rate, it introduces information from
past gradients, helping to smooth the adjustment process of the weights. This prevents
drastic fluctuations in weights during training, leading to a more stable learning process.
Additionally, the momentum rate assists the model in escaping local minima, making it
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more likely to find the global minimum. This characteristic is particularly important in
high-dimensional optimization problems, where local minima are more prevalent.
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Figure 1. The architecture of A three-layer neural network.

The artificial neural network involves two main steps: Forward Propagation and
Backpropagation. Here is a detailed explanation including all relevant formulas:
Step 1. Forward Propagation:

(i) Linear Combination: For the l-th neural layer, compute the linear combination
output z(l):

z(l) = W(l)a(l−1) + b(l) (4)

Here, W(l) represents the weight matrix of the l-th layer, a(l−1) is the activation output
from the (l − 1)-th layer, and b(l) is the boas of the l-th layer.

(ii) Activation Function: Apply the activation function σ to obtain the output a(l) for the
l-th layer:

a(l) = σ
(

z(l)
)

(5)

Common activation functions include Sigmoid, ReLU, tanh, and Softmax.
(iii) Repeat Steps (i) and (iii): Iterate the linear combination and activation process until

the output layer is reached.
(iv) Activation Function for the Output Layer.

Step 2. Backpropagation:

(i) Compute Loss: Utilize the loss function to calculate the error between the predicted
and actual values. Common loss functions include Mean Squared Error (MSE) or
Cross-Entropy, as follows: Mean Squared Error (MSE) (used in regression problems):

MSE =
1
n∑n

i=1(yi − ŷi)
2 (6)

Cross-Entropy (used in classification problems):

Cross − Entropy = − 1
n∑n

i=1 yilog(ŷi) (7)

where yi represents the actual values, and ŷi represents the predicted values.
(ii) Compute Gradients: Calculate the gradients of the loss with respect to weights W(l)

and biases b(l), typically through partial differentiation, as follows:

∂Loss
∂W(l)

and
∂Loss
∂b(l)

(iii) Gradient Descent: Utilize the gradient descent to update weights and biases, aiming
to minimize the loss function. The update rules are as follows:

W(l) = W(l) − α· ∂Loss
∂W(l)

(8)
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b(l) = b(l) − α·∂Loss
∂b(l)

(9)

Here, α represents the learning rate.
(iv) Repeat Steps (i) to (iii): Iterate the process of computing loss, gradients, and gradient

descent until the network’s parameters converge to optimal values.

There have been numerous studies using ANNs for modeling and prediction. Mal-
hotra et al. (2022) utilized deep neural models in image segmentation tasks, specifically
focusing on medical image datasets, evaluation metrics, and the performance of CNN-
based networks [21]. Pantic et al. (2022) investigated the potential of ANNs in toxicology
research, specifically for their ability to predict toxicity and classify chemical compounds
based on their toxic effects, highlighting recent studies that demonstrated the scientific
value of ANNs in evaluating and predicting the toxicity of compounds [22]. He et al. (2022),
used an ANN algorithm to develop a lung cancer recognition model, which included
determining the lesion area and employing an image segmentation algorithm to isolate
and visualize the lung cancer lesion area, followed by a comparison experiment to validate
the model’s accuracy [23]. Poradzka et al. (2023) adopted an ANN as a reliable prognostic
method in diabetic foot syndrome (DFS) ulcers to aid in predicting the course and the
outcome of treatment, particularly in identifying non-healing individuals [24]. Krasteva
et al. (2023) [25] optimized DenseNet-3@128-32-4 with 137 features, ensuring the accurate
classification of rhythms, including AF.

2.1.2. Taguchi Method

The Taguchi method was created in 1950 by Dr. Genichi Taguchi, a Japanese expert.
It gained rapid popularity in Japan and received significant attention from international
quality professionals, leading to its recognition as the Taguchi method in the 1980s in the
European and American quality management communities [26]. Through research work
conducted in the 1950s and early 1960s, Dr. Taguchi developed the theory of robust design
and achieved the successful development of many new products [27,28]. Additionally,
by integrating technology and statistical methods, Dr. Taguchi enabled the attainment
of optimal conditions in product design and manufacturing processes, leading to rapid
improvements in cost and quality.

Traditional experimental design methods typically focus only on controllable factors,
neglecting uncontrollable noise factors such as climate variations or inherent instrument in-
stability. The application of the Taguchi method aims to eliminate effects caused by various
factors, including the incorporation of noise factors in the experimental environment and
actively identifying the optimal parameter settings. Moreover, Taguchi suggested employ-
ing orthogonal arrays in experimentation, which offers several benefits. First, it enables a
reduction in the number of experiments required while still providing comprehensive and
dependable information. Additionally, the use of orthogonal arrays ensures experimental
reproducibility, enhancing the reliability of the results obtained.

In full factorial designs, as the number of variables increases, the number of required
experiments also increases, which can lead to the increased complexity of the experimental
approach. Taguchi proposed the use of orthogonal arrays in experimentation due to their
advantageous features. By employing main-effects orthogonal arrays, researchers can
achieve comprehensive and reliable experimental data while minimizing the number of
required experiments. Furthermore, the use of orthogonal arrays ensures experimental
reproducibility, thereby enhancing the reliability and validity of the obtained results. The
symbols used in orthogonal arrays are explained as follows:

La(bc)
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where L is the first letter of the Latin square, a is the overall number of the experiments
conducted (rows), b is the number of levels assigned to the experimental settings, and c is a
count of parameters that can be arranged (columns).

Table 1 shows an L9(34) Taguchi orthogonal array. In the orthogonal array, A to D
represent different hyperparameters, and the numbers 1, 2, and 3 within the table indicate
levels of hyperparameter settings: levels 1, 2, and 3, respectively. Each column in the
L9(34) orthogonal array represents a variation in the setting of a specific hyperparameter
for the experiments. The L9(34) orthogonal array has a total of four columns, indicating
that it can accommodate up to four hyperparameters. The rows correspond to the num-
ber of experiments in the orthogonal array, so the L9(34) orthogonal array has a total of
nine experiments.

Table 1. L9(34) orthogonal array.

No A B C D

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

A to D represent different hyperparameters, and the numbers 1, 2, and 3 within the table indicate levels of
hyperparameter settings: levels 1, 2, and 3, respectively.

In addition, to determine the impacts of parameters on product quality, Dr. Genichi
Taguchi adopted the concept of signal-to-noise (SN) ratio from the telecommunications
industry, which is measured in decibels (dB) [26]. By calculating the SN ratio, it is possible
to identify which attributes have the greatest influence on product quality during the pro-
duction process, thus optimizing the manufacturing process. A higher SN ratio indicates a
more stable production process and better product quality, while a lower SN ratio indicates
an unstable production process that requires measures for improvement. There are three dif-
ferent types of SN ratios based on different quality requirements: nominal-the-better (NTB),
smaller-the-better (STB), and larger-the-better (LTB), as shown in Formulas (10)–(12) [29].
In these formulas, y represents the average value of each set of treatments, m is the target
value for quality, S2 is the variance of each set of treatments, yi is the value of the treatment
i, and n is the number of treatments.

(a) NTB refers to a type of SN ratio in which a precise target value is established, and the
greater the proximity of the quality characteristic value to the target value, the more
desirable the outcome. The ultimate objective of the quality characteristic is to attain
the target value, representing the optimal functionality. The formula used for NTB is
as follows:

SNNTB = −10log

[
∑n

i=1
(
yi − m)2

n

]
= −10log

[
(y − m)2 + S

2]
. (10)

(b) STB is an additional SN ratio category that aims for lower values of the quality
characteristic. In STB, the ideal value for the quality characteristic is zero, representing
the optimal condition. The formula used for STB is as follows:

SNSTB = −10log
∑n

i=1 y2
i

n
= −10log(y2 + S2). (11)



Bioengineering 2023, 10, 1286 8 of 24

(c) LTB is another SN ratio type that prioritizes higher values for the quality characteristic.
In LTB, the ideal functionality for the quality characteristic is considered infinite,
indicating the most desirable outcome. The formula used for LTB is as follows:

SNLTB = −10log
∑n

i=1
1
y2

i

n
. (12)

Currently, many studies use the Taguchi method for the optimal improvement of
engineering problems. Kaziz et al. (2023) conducted an L8(25) Taguchi orthogonal array
and analysis of variance to minimize biosensor detection times under an alternating current
electrothermal force [30]. Tseng et al. (2022) used the Taguchi method with an indigenous
polymethyl methacrylate (PMMA) slit gauge to optimize the image quality of brain gray and
white matter [31]. Safaei et al. (2022) applied the Taguchi method to test the antimicrobial
properties of an alginate/zirconia bionanocomposite [32]. Lagzian et al. (2022) used the
Taguchi method and a SN ratio to identify key characteristics and optimize their agent-
based model for the accurate analysis of cancer stem cells and tumor growth, with migration,
tumor location, and cell senescence identified as the most important features [33].

2.1.3. Analysis of Variance (ANOVA)

When researchers want to consider multiple categorical independent variables and
test differences between multiple groups’ means, they need to use an ANOVA [34]. If these
independent variables are categorical variables, and the dependent variable is a continuous
variable, statistical analysis is required to handle the relationships between multiple groups’
means. In other words, the variation in the dependent variable may be influenced by
different levels of the independent variables. This study used a two-factor experimental
design as an example, as shown in Table 2.

Table 2. Two-factor experimental design.

Independent Variable Dependent Variable

A B Y

1 1 A1B1
1 2 A1B2
1 3 A1B3
2 1 A2B1
2 2 A2B2
2 3 A2B3

In a multiple-factor design, the testing of means requires the use of an ANOVA to
compare variations in different means. In Table 2, there are two independent variables,
namely factors A and B. Factor A has two levels, A1 and A2, while factor B has three levels,
B1, B2, and B3. The effects of these two independent variables on the dependent variable
must be examined using a two-factor ANOVA. The difference in means for factor A is
referred to as the “main effect of A”, while the difference in means for factor B is referred to
as the “main effect of B”. The significance of these two effects can be determined through
F-tests. If the F-test demonstrates a notable disparity in means across each level of factor A
or factor B, it signifies a substantial impact of factor A or factor B on the dependent variable.

A two-factor ANOVA is used to compare two group means. Each mean is calculated
from a set of small samples representing a population parameter. Therefore, the two-
factor ANOVA is a hypothesis test for multiple populations. Variability in the dependent
variable across all observations is represented by the “total sum of squares” (SST), which is
calculated by subtracting each observation’s raw data from the overall mean and summing
the squared differences. Variability of the raw data can be partitioned into the “between-
group effect SSF” (differences in the dependent variable caused by the grouping of levels in
the independent variables) and the “within-group effect SSE”, which represents the random
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error in the response. The between-group effect can be further divided into contributions
from factors A and B, as shown in the following Equation (13) [34]:

SST = SSF + SSE = (SSA + SSB) + SSE. (13)

Each sum of squares (SS) corresponds to specific degrees of freedom (DF). When the
number of observations is M, the degrees of freedom for SST are M − 1. For the dependent
variable with a levels for F, the degrees of freedom for SSF are a − 1. Finally, the degrees of
freedom for the error are M − a. Dividing the SS by its corresponding DF provides a reliable
source of variation assessment, known as the mean of squares (MS). In a multiple-factor
ANOVA, the F-value is obtained by dividing the mean of squares (MS) of the variability
within each factor’s levels by the Mean Squared Error (MSE). If the probability value
associated with the F-value exceeds the significance level (in this study, α = 0.1), then the
effect is significant.

Currently, many researchers use ANOVAs to assess their studies. Blanco-Topping
(2021) analyzed patient satisfaction, measured by the HCAHPS survey, across different
years in the Maryland Global Payment implementation cycle using a one-way ANOVA of
nine variables [35]. Mahesh and Kandasamy (2023) used the ANOVA method to investigate
the impacts of drilling parameters (feed, speed, and drill diameter) on the delamination and
taperness of the hole in hybrid glass fiber-reinforced plastic (GFRP)/Al2O3 [36]. Adesegun
et al. (2020) employed an ANOVA to assess the knowledge, attitudes, and practices related
to coronavirus disease 2019 (COVID-19) among the Nigerian public [37].

2.2. Methodological Design

In the process of improving model accuracy, many researchers often rely on empirical
knowledge to select important levels of model hyperparameters for experimentation.
However, the improvement in model accuracy is often not significant, resulting in a waste
of modeling resources. If we first identify the trend of each model hyperparameter’s
settings in the process of improving the accuracy and then optimize and adjust each model
hyperparameter accordingly, we can more efficiently improve model accuracy.

The Taguchi method differs from trial-and-error methods or one-factor-at-a-time ex-
periments. It allows for the consideration of multiple model hyperparameters at different
levels to assess their impacts on the accuracy of a CVD prediction model with the fewest
number of modeling experiments. In addition to reducing the number of modeling ex-
periments, the Taguchi method can also identify optimal trends in model hyperparameter
settings. For example, in ANNs, a higher value for the momentum rate might lead to
improved accuracy. To effectively enhance the accuracy of CVD prediction models, this
study proposes a two-stage Taguchi optimization (TSTO) method to identify the best model
hyperparameter setting for the ANN model.

The analytical process in this study can be divided into four steps, as shown in Figure 2.

(1) Problem definition: describing the source of the dataset and its relevant feature data.
(2) Using the first-stage Taguchi method to find improved hyperparameter settings of

the ANN model and trends in the level setting of each hyperparameter: This step
involves using the Taguchi method, specifically L18(21 × 37), to collect model accuracy
data for various hyperparameter settings. In this study, a ANN was used as the
predictive model for CVDs. Experimental, analytical techniques such as an orthogonal
array, parameter response table, parameter response graph, and ANOVA were then
employed to assist in identifying better settings for the hyperparameter levels and the
preferred trend for each hyperparameter that affected the average accuracy of CVD
predictions. Finally, five confirmation experiments were conducted on the identified
improved hyperparameter settings to ensure reproducibility.

(3) Using the second-stage Taguchi method to find the best hyperparameter settings
of the ANN model: In this step, another Taguchi method, specifically L9(34), was
once again used to collect experimental data. The purpose was to conduct a second
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round of the Taguchi method within the hyperparameter range that may contain
the best solution. Through the analytical techniques mentioned earlier, including
the parameter response table, parameter response graph, and ANOVA, the best
settings of the hyperparameter levels were determined. After identifying the best
hyperparameter settings, a set of five confirmation experiments was conducted to
validate the efficacy of the proposed methodology.

(4) Comparison: The best model accuracy obtained from the two-stage Taguchi opti-
mization method was compared to the accuracy of relevant models reported in the
literature to confirm the improvement achieved in this study.
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3. Results
3.1. Dataset Introduction

We used the publicly accessible Kaggle Cardiovascular Disease dataset obtained from
the source referenced as [38]. The dataset consists of 70,000 instances gathered from medical
examinations. The dataset consists of 12 variables, where variables 1 to 11 represent input
features, and variable 12 represents the output feature. To facilitate the training and testing
of our ANNs, we divided the dataset into 80% of instances for training and 20% for testing
purposes. The descriptions for the dataset features are presented in Table 3 [38], and
provided below.

(a) “Age” is an integer variable measured in days. Analyzing the age distribution re-
vealed that there were 8159 individuals (11.66%) below 16,000 days old, 10,027 in-
dividuals (14.32%) between 16,000 and 17,999 days old, 20,490 individuals (29.27%)
between 18,000 and 19,999 days old, 20,011 individuals (28.59%) between 20,000 and
21,999 days old, and 11,313 individuals (16.16%) between 22,000 and 24,000 days old.

(b) “Height” is an integer variable measured in centimeters. Observing the height dis-
tribution revealed that 1537 individuals (2.20%) were below 150 cm, 16,986 indi-
viduals (24.27%) were between 150 and 159 cm, 33,463 individuals (47.80%) were
between 160 and 169 cm, 15,696 individuals (22.42%) were between 170 and 179 cm,
2213 individuals (3.16%) were between 180 and 189 cm, and 105 individuals (0.15%)
were above 190 cm.

(c) “Weight” is a float variable measured in kilograms. Analyzing the weight distribu-
tion revealed that 987 individuals (1.41%) weighed less than 50 kg, 7174 individuals
(10.25%) weighed between 50 and 59 kg, 20,690 individuals (29.56%) weighed be-
tween 60 and 69 kg, 19,476 individuals (27.82%) weighed between 70 and 79 kg,
11,989 individuals (17.13%) weighed between 80 and 89 kg, 5831 individuals (8.33%)
weighed between 90 and 99 kg, and 3853 individuals (5.50%) weighed over 100 kg.



Bioengineering 2023, 10, 1286 11 of 24

(d) “Gender” is a categorical variable represented as follows: 1 for female and 2 for male.
Out of 70,000 patients, 45,530 were female (approximately 65.4%) and 24,470 male
(approximately 34.96%).

(e) “Systolic blood pressure” is an integer variable. Observing its distribution revealed
that there were 13,038 individuals (18.63%) with systolic pressure below 120,
37,561 individuals (53.66%) with systolic pressure between 120 and 139, 14,436 in-
dividuals (20.62%) with systolic pressure between 140 and 159, 3901 individuals (5.57%)
with systolic pressure between 160 and 179, and 1064 individuals (1.52%) with systolic
pressure above 180.

(f) “Diastolic blood pressure” is also an integer variable. Analyzing its distribution re-
vealed that 14,116 individuals (20.17%) had diastolic pressure below 80, 35,450 individuals
(50.64%) had diastolic pressure between 80 and 89, 14,612 individuals (20.87%) had
diastolic pressure between 90 and 99, 4139 individuals (5.91%) had diastolic pressure
between 100 and 109, and 1683 individuals (2.40%) had diastolic pressure above 110.

(g) “Cholesterol” is a categorical variable, represented as follows: 1 for normal, 2 for above
normal, and 3 for well above normal. Out of 70,000 patients, 52,385 (approximately
74.84%) had normal cholesterol levels, 9549 (approximately 13.64%) had above normal
levels, and 8066 (approximately 11.52%) had well above normal levels.

(h) “Glucose” is a categorical variable, represented by 1 for normal, 2 for above normal,
and 3 for well above normal. Out of 70,000 patients, 59,479 individuals (approximately
84.97%) had normal glucose levels, 5190 individuals (approximately 7.41%) had
above normal levels, and 5331 individuals (approximately 7.62%) had well above
normal levels.

(i) “Smoking” is a binary variable, with 0 indicating non-smokers and 1 indicating
smokers. Of the 70,000 patients, 63,831 individuals (approximately 91.19%) were
non-smokers, and 6169 individuals (approximately 8.81%) were smokers.

(j) “Alcohol intake” is a binary variable, with 0 indicating no alcohol consumption
and 1 indicating alcohol consumption. Out of 70,000 patients, 66,236 individuals
(approximately 94.62%) did not consume alcohol, and 3764 individuals (approximately
5.38%) consumed alcohol.

(k) “Physical activity” is a binary variable, with 0 indicating no physical activity and
1 indicating physical activity. Out of 70,000 patients, 13,739 individuals (approxi-
mately 19.63%) were inactive, and 56,261 individuals (approximately 80.37%) were
physically active.

(l) The “Presence (or absence) of cardiovascular disease” is a binary variable, with
0 indicating the absence of cardiovascular disease and 1 indicating its presence. Out of
70,000 patients, 35,021 individuals (approximately 50.03%) did not have cardiovascular
disease, while 34,979 individuals (approximately 49.97%) had cardiovascular disease.

Given the diverse input features, methods to establish techniques for their normaliza-
tion are crucial, as normalization typically significantly influences accuracy. In this study,
we adopt z-score normalization for input features, ensuring standardized scaling and
robustness in our analytical assessments. This approach enhances accuracy and maintains
consistency across diverse input features.
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Table 3. Feature description of the Kaggle Cardiovascular Disease dataset.

No Feature Data Type

1 Age int (days)
2 Height int (cm)
3 Weight float (kg)
4 Gender categorical code
5 Systolic blood pressure int
6 Diastolic blood pressure int
7 Cholesterol 1: normal, 2: above normal, 3: well above normal
8 Glucose 1: normal, 2: above normal, 3: well above normal
9 Smoking binary
10 Alcohol intake binary
11 Physical activity binary

12 Presence (or absence) of
cardiovascular disease binary

3.2. Using the First-Stage Taguchi Method to Find Better Hyperparameter Settings

To improve the predictive accuracy of the prediction model, this study selected six
model hyperparameters that may affect the ANN. These six model hyperparameters were
the hidden layers, activation function, optimizer, learning rate, moment rate, and hidden
nodes. Table 4 shows the experimental configurations of the model hyperparameters, with
level 1 denoting the low setting level and level 2 representing the high setting level. The
Taguchi method, specifically L18(21 × 37), was chosen to conduct the first stage of the
Taguchi method to find better hyperparameter settings of the ANN model and trends in
the level setting of each model hyperparameter. The model hyperparameters X1~X6 were
arranged in columns 2 to 7 of the L18(21 × 37) orthogonal array.

Table 4. Model hyperparameters and their levels in the L18(21 × 37) orthogonal array.

Hyperparameter
Hidden Layers Activation Function Optimizer Learning Rate Moment Rate Hidden Nodes

X1 X2 X3 X4 X5 X6

Level 1 4 logistic lbfgs 0.2 0.7 4
Level 2 8 tanh sgd 0.3 0.8 8
Level 3 12 relu adam 0.4 0.9 12

The Taguchi design incorporates the concept of noise to address the randomness issue
during ANN training. By enhancing the signal-to-noise ratio, it effectively reduces the
random variations in model training, ensuring consistent performance across each training.
If the grid search method is used to find better settings for the six model hyperparameters,
each with three levels and repeated three times, a total of 36 × 3 = 2187 experiments would
be required. However, in the first-stage Taguchi method, this study only conducted a total
of 18 × 3 = 54 experiments with different model hyperparameter settings. Due to the
limited number of experiments conducted in this case, high-end hardware configuration
or the use of a graphics processing unit (GPU) was not required. The hardware for the
ultra-low-cost personal device used in this study is described here:

(a) central processing unit: 11th Generation Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz;
(b) random access memory: 8.00 GB;
(c) 64-bit system; and
(d) Python version: 3.9.13.

In L18(21 × 37), the Taguchi orthogonal array with 54 runs took a total of 33.92 min
to compute on a personal computer, averaging approximately 0.628 min per run. When
discussing the grid search of 2187 runs, since this study did not actually complete all
2187 runs, estimating an average time of 0.628 min per run suggests that the full grid search
of 2187 runs would potentially require approximately 1373.775 min.
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We analyzed the effects of hyperparameters to identify crucial ones and observe
trends in the level settings of each hyperparameter. The effect of a factor is defined
as the maximum difference in the overall average accuracy across various levels. The
hyperparameter response table and response graph show the analysis results for all the
hyperparameter effects.

Table 5 shows the predictive accuracy obtained from each experiment using the
L18(21 × 37) Taguchi orthogonal array. Each experiment was repeated three times for
columns N1, N2, and N3. Table 6 shows the findings of the hyperparameter response table,
while Figure 3 shows the hyperparameter response graph for the average accuracy of the
ANN model. Additionally, Table 7 shows the results of the ANOVA table pertaining to
the average accuracy. Table 6 shows the ranking of hyperparameter effects on the average
accuracy of the ANN model in descending order: X2 (0.1619) > X3 (0.1605) > X6 (0.0408) >
X4 (0.0406) > X5 (0.04) > X1 (0.0389). Table 7 shows that p values for hyperparameters X2
and X3 were both <0.1, indicating that these two hyperparameters significantly contributed
to the average accuracy of the ANN model; they were important factors influencing the
predictive accuracy. In Figure 3, better average accuracy settings of the hyperparameters
were determined as follows: X1 (hidden layers) = 4; X2 (activation function) = tanh; X3 (op-
timizer) = sgd; X4 (learning rate) = 0.3; X5 (moment rate) = 0.9; and X6 (hidden nodes) = 8.
In this case, we also found that increasing the number of hidden layers and nodes in the
hidden layers did not necessarily result in higher accuracy.

Table 5. Taguchi method L18(21 × 37) and results.

Exp.
Hyperparameter Accuracy Average

Accuracy
Standard
Deviation

SN
RatioX1 X2 X3 X4 X5 X6 N1 N2 N3

1 4 logistic lbfgs 0.20 0.70 4 0.4951 0.4951 0.4951 0.4951 0.0000 −6.105
2 4 tanh sgd 0.30 0.80 8 0.7389 0.7382 0.7262 0.7345 0.0071 −2.682
3 4 relu adam 0.40 0.90 12 0.4951 0.5049 0.4951 0.4984 0.0056 −6.050
4 8 logistic lbfgs 0.30 0.80 12 0.4951 0.4951 0.4951 0.4951 0.0000 −6.105
5 8 tanh sgd 0.40 0.90 4 0.7404 0.7405 0.7331 0.7380 0.0043 −2.639
6 8 relu adam 0.20 0.70 8 0.4951 0.4951 0.4951 0.4951 0.0000 −6.105
7 12 logistic sgd 0.20 0.90 8 0.4951 0.5049 0.5049 0.5016 0.0056 −5.994
8 12 tanh adam 0.30 0.70 12 0.4951 0.4951 0.5136 0.5013 0.0106 −6.002
9 12 relu lbfgs 0.40 0.80 4 0.7341 0.7414 0.4951 0.6569 0.1401 −4.124

10 4 logistic adam 0.40 0.80 8 0.4951 0.4951 0.4951 0.4951 0.0000 −6.105
11 4 tanh lbfgs 0.20 0.90 12 0.7361 0.7386 0.7372 0.7373 0.0013 −2.647
12 4 relu sgd 0.30 0.70 4 0.7389 0.7381 0.7404 0.7391 0.0012 −2.626
13 8 logistic sgd 0.40 0.70 12 0.5049 0.4951 0.4951 0.4984 0.0056 −6.050
14 8 tanh adam 0.20 0.80 4 0.4951 0.5049 0.4951 0.4984 0.0056 −6.050
15 8 relu lbfgs 0.30 0.90 8 0.7416 0.7412 0.7404 0.7411 0.0007 −2.603
16 12 logistic adam 0.30 0.90 4 0.4951 0.4951 0.4951 0.4951 0.0000 −6.105
17 12 tanh lbfgs 0.40 0.70 8 0.7441 0.7418 0.7423 0.7427 0.0012 −2.584
18 12 relu sgd 0.20 0.80 12 0.7384 0.7240 0.7431 0.7352 0.0100 −2.674

0.5999 0.0110 −4.625

Exp., experiment; SN, signal-to-noise.

Table 6. Hyperparameter response table of average accuracies for L18(21 × 37).

Level X1 X2 X3 X4 X5 X6

1 0.6166 0.4968 0.6447 0.5771 0.5786 0.6038
2 0.5777 0.6587 0.6578 0.6177 0.6025 0.6184
3 0.6055 0.6443 0.4972 0.6049 0.6186 0.5776

Effect 0.0389 0.1619 0.1605 0.0406 0.0400 0.0408

Rank 6 1 2 4 5 3
The effect of a factor is defined as the maximum difference in the overall average accuracy across various levels.
The hyperparameter response table shows the analysis results for all the hyperparameter effects.
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Figure 3. Hyperparameter response graph of average accuracy for L18(21 × 37).

Table 7. Hyperparameter ANOVA table of average accuracies for L18(21 × 37).

Source DF SS MS F p

X1 2 * 0.004817 *
X2 2 0.096382 0.048191 12.35 0.001
X3 2 0.095378 0.047689 12.23 0.001
X4 2 * 0.005165 *
X5 2 * 0.00485 *
X6 2 * 0.005116 *

Error (13) (0.050712) 0.003901

Sum 17 0.242471

R2 R2 (adj.)
79.09% 72.65%

ANOVA, analysis of variance; DF, degrees of freedom; SS, sum of squares; MS, mean of squares; adj., adjusted.
The asterisk (*) signifies pooling values in the error term.

Furthermore, since the average accuracy of the ANN model in this study was considered
as a larger-the-better (LTB) type, the SN ratio for each experiment was calculated using
Equation (12), and results are presented in the last column of Table 5. Table 8 shows the
outcomes of the hyperparameter response table, while Figure 4 shows the hyperparameter
response graph for the SN ratio of the ANN model. Additionally, Table 9 provides the results
of the ANOVA table relating to the SN ratio. Table 8 shows the ranking of the hyperparameter
effects on the SN ratio of the ANN model in descending order: X2 (2.3102) > X3 (2.2924)
> X6 (0.5760) > X4 (0.5754) > X5 (0.5723) > X1 (0.5562). Table 9 shows that p values for
hyperparameters X2 and X3 were both < 0.1, indicating that these two hyperparameters
significantly contributed to the SN ratio of the ANN model. They were important factors
influencing the SN ratio. In Figure 4, the better SN ratio setting the of hyperparameters was
determined as follows: X1 (hidden layers) = 4, X2 (activation function) = tanh, X3 (optimizer)
= sgd, X4 (learning rate) = 0.3, X5 (moment rate) = 0.9, and X6 (hidden nodes) = 8.

Table 8. Hyperparameter response table of the SN ratio for L18(21 × 37).

Level X1 X2 X3 X4 X5 X6

1 −4.3692 −6.0775 −4.0281 −4.9292 −4.9120 −4.6083
2 −4.9254 −3.7673 −3.7773 −4.3538 −4.6234 −4.3454
3 −4.5805 −4.0303 −6.0697 −4.5920 −4.3397 −4.9214

Effect 0.5562 2.3102 2.2924 0.5754 0.5723 0.5760

Rank 6 1 2 4 5 3
SN, signal-to-noise. The effect of a factor is defined as the maximum difference in the overall average
accuracy across various levels. The hyperparameter response table shows the analysis results for all the
hyperparameter effects.
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Table 9. Hyperparameter ANOVA table of the SN ratio for L18(21 × 37).

Source DF SS MS F p

X1 2 * 0.946 *
X2 2 19.1948 9.5974 11.78 0.001
X3 2 18.9717 9.4859 11.64 0.001
X4 2 * 1.0031 *
X5 2 * 0.9827 *
X6 2 * 0.9979 *

Error (13) (10.5947) 0.815

Sum 17 48.7612

R2 R2 (adj.)
78.27% 71.59%

ANOVA, analysis of variance; SN, signal-to-noise; DF, degrees of freedom; SS, sum of squares; MS, mean of
squares; adj., adjusted. The asterisk (*) signifies pooling values in the error term.

Based on the previous analysis of the average accuracy and SN ratio, better settings for
the hyperparameter levels were determined as follows: X1 (hidden layers) = 4, X2 (activation
function) = tanh, X3 (optimizer) = sgd, X4 (learning rate) = 0.3, X5 (moment rate) = 0.9, and
X6 (hidden nodes) = 8. Since the better setting for X1 (hidden layer) was at level 1, it was
represented as X1(1). The improved settings of the model hyperparameters can also be
expressed as X1(1), X2(2), X3(2), X4(2), X5(3) and X6(2). To predict the average accuracy
and SN ratio using the improved settings of the model hyperparameter levels, this study
applied Equation (14), as recommended by Taguchi (1986) [27]:

Predicted value = Mean + [X1(1)− Mean] + [X2(2)− Mean] + [X3(2)− Mean] + [X4(2)− Mean]+
[X5(3)− Mean] + [X6(2)− Mean].

(14)

The ANOVA results in Tables 7 and 9 show that hyperparameters X1, X4, X5, and X6
had minimal impacts on the average accuracy and SN ratio. Therefore, when predicting
the average accuracy and SN ratio, these hyperparameters (X1, X4, X5, and X6) were not
considered. The predicted results for the accuracy and SN ratio were as Equation (15):

Accuracy = 0.5999 + [0.6587 − 0.5999] + [0.6578 − 0.5999] = 0.7166 and
SN ratio = −4.625 + [−3.7673 − (−4.625)] + [−3.7773 − (−4.625)] = −2.919.

(15)

To verify the improved settings of the model hyperparameters obtained from the first-
stage L18(21 × 37) Taguchi method, this study conducted five confirmation experiments.
The 95% confidence intervals (CIs) for the average accuracy and SN ratio were calculated
using the following Equation (16) [26]:

CI =

√√√√Fα;1,ν2 × Ve ×
(

1
ne f f

+
1
r

)
; (16)
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where ne f f =
Total number of experiment s

1+[Sum of degrees of freedom for factors used to estimate the mean] , Fα;1,υ2 is the F-value
with a significant level α, α is the significance level, ν2 is the degree of freedom associated
with the combined error variance, Ve is the variance of the combined error, neff is the
effective sample size, and r is the number of samples for confirmation experiments.

The 95% CIs for the average accuracy and SN ratio were calculated as Equation (17):

ne f f =
18

1+νX2+νX3
= 18

1+2+2 = 3.6;

CIMean o f Accuracy =

√
F0.05;1,13 × Ve ×

(
1

ne f f
+ 1

r

)
=

√
4.6672 × 0.0039 ×

(
1

3.6 + 1
5

)
= 0.0933; and

CISN =

√
F0.05;1,13 × Ve ×

(
1

ne f f
+ 1

r

)
=

√
4.6672 × 0.815 ×

(
1

3.6 + 1
5

)
= 1.3481

.

(17)

Therefore, the 95% CI for the average accuracy was (0.6233, 0.8099), and the 95% CI
for the SN ratio was (−4.2671, −1.5709). Table 10 shows the results of five confirmation
experiments; the average accuracy was 0.7383, and the SN ratio was −2.636 dB. Both of
these values fall within their respective CIs, indicating the success of the confirmation
experiments and the reproducibility of the improved model hyperparameter settings. The
ANN model architecture identified through the first-stage Taguchi method includes four
hidden layers and eight hidden nodes, as shown in Figure 5.

Table 10. Results of confirmation experiment for L18(21 × 37).

Method N1 N2 N3 N4 N5
Average
Accuracy

Standard
Deviation SN Ratio

L18(21 × 37) 0.7398 0.7392 0.7394 0.7369 0.7361 0.7383 0.0017 −2.636

SN, signal-to-noise.
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Figure 5. ANN architecture for four hidden layers and eight hidden nodes.

3.3. Using the Second-Stage Taguchi Method to Find the Best Hyperparameter Settings

From Figures 3 and 4, it can be observed that there was a better average accuracy
and SN ratio when X1 (hidden layers) was set to four hidden layers. To avoid further
reducing the number of hidden layers and potentially decreasing the predictive accuracy,
this study fixed X1 (hidden layers) at four layers. Additionally, since X2 (activation function)
and X3 (optimizer) were categorical variables and were identified as important model
hyperparameters through the ANOVA table, this study fixed X2 (activation function)
as tanh and X3 (optimizer) as sgd. Furthermore, based on the analytical results from
Figures 3 and 4, setting X4 (learning rate) at 0.3, X5 (moment rate) at 0.9, and X6 (hidden
nodes) at 8 resulted in a better average accuracy and SN ratio. Therefore, this study planned
to set X4 (learning rate) to 0.3 ± 0.05, X5 (moment rate) to 0.9 ± 0.05, and X6 (hidden nodes)
to 8 ± 2, and continued with the second-stage Taguchi method to find a further improved
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ANN model accuracy. The hyperparameters and their settings for this stage are shown
in Table 11. In this stage, the Taguchi method used the L9(34) orthogonal array, where
the three model hyperparameters, X4 (learning rate), X5 (moment rate), and X6 (hidden
nodes), were assigned to columns 1 to 3 of the L9(34) orthogonal array, as shown in Table 12.
Through the second-stage Taguchi orthogonal array L9(34) with three repeats, relevant data
containing the potential best solutions were collected, and the best settings of the model
hyperparameters were identified. If a grid search method was applied to find the best
setting for the three hyperparameters, each with three levels, and repeated three times, a
total of 33 × 3 = 81 experiments would be required. However, at this stage, a total of only
9 × 3 = 27 experiments were conducted for the Taguchi method.

Table 11. Model hyperparameters and their levels in the L9(34) orthogonal array.

Hyperparameter
Learning Rate Moment Rate Hidden Nodes

X4 X5 X6

Level 1 0.25 0.85 6
Level 2 0.3 0.9 8
Level 3 0.35 0.95 10

Table 12. Taguchi method L9(34) and results.

Exp.
Hyperparameter Accuracy Average

Accuracy
Standard
Deviation

SN Ratio
X4 X5 X6 N1 N2 N3

1 0.25 0.85 6 0.7390 0.7379 0.7417 0.7395 0.0020 −2.621
2 0.25 0.90 8 0.7392 0.7381 0.7376 0.7383 0.0008 −2.635
3 0.25 0.95 10 0.7348 0.7414 0.7398 0.7387 0.0035 −2.631
4 0.30 0.85 8 0.7348 0.7411 0.7399 0.7386 0.0033 −2.632
5 0.30 0.90 10 0.7399 0.7341 0.7400 0.7380 0.0034 −2.639
6 0.30 0.95 6 0.7357 0.7360 0.7395 0.7371 0.0021 −2.650
7 0.35 0.85 10 0.7418 0.7349 0.7388 0.7385 0.0035 −2.633
8 0.35 0.90 6 0.7376 0.7301 0.7374 0.7350 0.0043 −2.675
9 0.35 0.95 8 0.7420 0.7374 0.7291 0.7361 0.0065 −2.661

0.7378 0.0033 −2.642

Exp., experiment; SN, signal-to-noise.

Table 12 shows the experimental results of the average accuracy and SN ratio of the
ANN model under different experimental level settings, using the L9(34) Taguchi method.
Table 13 presents the findings of the hyperparameter response table, while Figure 6 gives
the hyperparameter response graph for the analytical results of the average accuracy of
the ANN model. Additionally, Table 14 provides the ANOVA table pertaining to the
average accuracy. Table 13 shows the descending order ranking of the effects of each model
hyperparameter on the ANN model average accuracy as follows: X4 (0.0023) > X5 (0.0017)
> X6 (0.0012). Table 14 shows that the p values for hyperparameters X4 and X5 were both
< 0.1, indicating that these two model hyperparameters significantly contributed to the
average accuracy of the ANN model and were important factors affecting the accuracy.
In Figure 6, the best settings of the hyperparameters were determined as X4 (learning
rate) = 0.25, X5 (moment rate) = 0.85, and X6 (hidden nodes) = 10. Furthermore, Table 15
shows the results of the hyperparameter response table, Figure 7 shows the hyperparameter
response graph, and Table 16 presents the ANOVA table for the analysis of the SN ratio
in the ANN model. Table 15 shows the descending order ranking of the effects of each
model hyperparameter on the ANN model’s SN ratio as follows: X4 (0.027) > X5 (0.021)
> X6 (0.014). Table 16 demonstrates that the p values for model hyperparameters X4 and
X5 were both <0.1, indicating their significant contributions to the SN ratio of the ANN
model and their importance as influential hyperparameters. In Figure 7, the best settings of
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model hyperparameters were set as X4 (learning rate) = 0.25, X5 (moment rate) = 0.85, and
X6 (hidden nodes) = 10.

Table 13. Hyperparameter response table of average accuracies for L9(34).

Level X4 X5 X6

1 0.7388 0.7389 0.7372
2 0.7379 0.7371 0.7377
3 0.7365 0.7373 0.7384

Effect 0.0023 0.0017 0.0012

Rank 1 2 3
The effect of a factor is defined as the maximum difference in the overall average accuracy across various levels.
The hyperparameter response table shows the analysis results for all the hyperparameter effects.

Bioengineering 2023, 10, x FOR PEER REVIEW 19 of 25 
 

  
Figure 6. Hyperparameter response graph of average accuracy for L9(34). 

Table 14. Hyperparameter ANOVA table of average accuracies for L9(34). 

Source DF SS MS F p-Value 
X4 2 0.000008 0.000004 5.94 0.06 
X5 2 0.000006 0.000003 4.12 0.10 
X6 2 * 0.000002 *    

Error (4) (0.000003) 0.000001   

Sum 8 0.000016    
    R2 R2 (adj.) 
    83.41% 66.83% 

ANOVA, analysis of variance; DF, degrees of freedom; SS, sum of squares; MS, mean of squares; 
adj., adjusted. The asterisk (*) signifies pooling values to the error term. 

Table 15. Hyperparameter response table of the SN ratio for L9(34). 

Level X4 X5 X6 
1 −2.629 −2.629 −2.648 
2 −2.640 −2.650 −2.643 
3 −2.656 −2.648 −2.634 

Effect 0.027 0.021 0.014 
Rank 1 2 3 

SN, signal-to-noise. The effect of a factor is defined as the maximum difference in the overall av-
erage accuracy across various levels. The hyperparameter response table shows the analysis re-
sults for all the hyperparameter effects. 

 
Figure 7. Hyperparameter response graph of the signal-to-noise (SN) ratio for L9(34). 

  

0.735

0.736

0.737

0.738

0.739

0.740

X
4 = 0.25

X
4 = 0.3

X
4 = 0.35

X
5 = 0.85

X
5 = 0.9

X
5 = 0.95

X
6 = 6

X
6 = 8

X
6 = 10

Av
er

ag
e 

ac
cu

ra
cy

Hyperparameter

The better setting

Hyperparameter effect

-2.67

-2.66

-2.65

-2.64

-2.63

-2.62

X
4 = 0.25

X
4 = 0.3

X
4 = 0.35

X
5 = 0.85

X
5 = 0.9

X
5 = 0.95

X
6 = 6

X
6 = 8

X
6 = 10

Si
gn

al
-to

-n
oi

se
 (S

N
) r

at
io

Hyperparameter

The better setting

Hyperparameter effect

Figure 6. Hyperparameter response graph of average accuracy for L9(34).

Table 14. Hyperparameter ANOVA table of average accuracies for L9(34).

Source DF SS MS F p-Value

X4 2 0.000008 0.000004 5.94 0.06
X5 2 0.000006 0.000003 4.12 0.10
X6 2 * 0.000002 *

Error (4) (0.000003) 0.000001

Sum 8 0.000016

R2 R2 (adj.)
83.41% 66.83%

ANOVA, analysis of variance; DF, degrees of freedom; SS, sum of squares; MS, mean of squares; adj., adjusted.
The asterisk (*) signifies pooling values to the error term.

Table 15. Hyperparameter response table of the SN ratio for L9(34).

Level X4 X5 X6

1 −2.629 −2.629 −2.648
2 −2.640 −2.650 −2.643
3 −2.656 −2.648 −2.634

Effect 0.027 0.021 0.014

Rank 1 2 3
SN, signal-to-noise. The effect of a factor is defined as the maximum difference in the overall average
accuracy across various levels. The hyperparameter response table shows the analysis results for all the
hyperparameter effects.
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Figure 7. Hyperparameter response graph of the signal-to-noise (SN) ratio for L9(34).

Table 16. Hyperparameter ANOVA table of the SN ratio for L9(34).

Source DF SS MS F p-Value

X4 2 0.001133 0.000566 6.07 0.06
X5 2 0.000773 0.000386 4.14 0.10
X6 2 * 0.000299 *

Error (4) (0.000373) 0.000093

Sum 8 0.002279

R2 R2 (adj.)
83.62% 67.23%

ANOVA, analysis of variance; SN, signal-to-noise; DF, degrees of freedom; SS, sum of squares; MS, mean of
squares; adj., adjusted. The asterisk (*) signifies pooling values into the error term.

Based on the analytical results of the average accuracy and SN ratio mentioned above,
the best settings for the hyperparameter levels obtained from the second-stage Taguchi
method were X4 (learning rate) = 0.25, X5 (moment rate) = 0.85, and X6 (hidden nodes) =
10. The best settings for the hyperparameter levels can also be expressed as X4(1), X5(1),
and X6(3). This study used Equation (14) once again to predict the average accuracy
and SN ratio using the best hyperparameter levels. According to the ANOVA results in
Tables 14 and 16, it is evident that hyperparameters such as X4 and X5 had a significant
impact on the average accuracy and SN ratio. Therefore, when predicting the average
accuracy and SN ratio, consideration was given to hyperparameters such as X4 and X5. The
predicted results for the accuracy and SN ratio were as Equation (18):

Accuracy = 0.7378 + [0.7388 − 0.7378] + [0.7389 − 0.7378] = 0.7399 and
SNratio = −2.642 + [−2.629 − (−2.642)] + [−2.629 − (−2.642)] = −2.616.

(18)

To verify the best settings of the hyperparameters identified by the second-stage L9(34)
Taguchi orthogonal array, this study conducted five confirmation experiments. The 95%
CIs for the average accuracy and SN ratio were calculated using Equation (16). The 95%
CIs for the average accuracy and SN ratio were calculated as Equation (19):
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ne f f =
9

1+νX4+νX5
= 9

1+2+2 = 1.8;

CIMean o f Accuracy =

√
F0.05;1,4 × Ve ×

(
1

ne f f
+ 1

r

)
=

√
7.7086 × 0.000001 ×

(
1

1.8 + 1
5

)
= 0.0024 ; and

CISN =

√
F0.05;1,4 × Ve ×

(
1

ne f f
+ 1

r

)
=

√
7.7086 × 0.000093 ×

(
1

1.8 + 1
5

)
= 0.0233

(19)

The 95% CI for the average accuracy was (0.7375, 0.7423), and the 95% CI for the SN
ratio was (−2.640, −2.593). The results of these five confirmations (as shown in Table 17)
indicated that the average accuracy was 0.7414, and the SN ratio was −2.598 dB. Both values
fell within their respective CIs, indicating successful confirmation experiments and the
good reproducibility of the best hyperparameter settings. Furthermore, the second-stage
Taguchi method showed better improvements in the hyperparameter settings compared
to the first-stage Taguchi method. The comparison results are shown in Table 18. The
average accuracy of the model increased from 0.7383 to 0.7414, an improvement of 0.0032.
The standard deviation decreased from 0.0017 to 0.0015, an improvement of 0.00002. The
SN ratio improved from −2.636 to −2.598 dB, an improvement of 0.0374 dB. Finally, the
ANN model architecture identified through the second-stage Taguchi method includes four
hidden layers and 10 hidden nodes, as shown in Figure 8.

Table 17. Results of confirmation experiment for L9(34).

Method N1 N2 N3 N4 N5
Average
Accuracy

Standard
Deviation SN Ratio

L9(34) 0.7401 0.7410 0.7439 0.7415 0.7407 0.7414 0.0015 −2.598

SN, signal-to-noise.

Table 18. Comparison table between L18(21 × 37) and L9(34).

Comparison
Hidden
Layers

Activation
Function Optimizer Learning

Rate
Moment

Rate
Hidden
Nodes Average

Accuracy
Standard
Deviation SN Ratio

X1 X2 X3 X4 X5 X6

L18(21 × 37) 4 tanh sgd 0.3 0.9 8 0.7383 0.0017 −2.636

L9(34) 4 tanh sgd 0.25 0.85 10 0.7414 0.0015 −2.598

Improvement 0.0032 −0.0002 0.0374

SN, signal-to-noise.
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Figure 8. ANN architecture for four hidden layers and 10 hidden nodes.
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3.4. Comparative Study

To compare differences in the predictive accuracies of the proposed methodology in
this study and other machine learning algorithms using the same dataset, we compared it
with the GA-ANN model proposed by Arroyo and Delima (2022) [11]. In their research,
Arroyo and Delima also compared the GA-ANN with other predictive algorithms such
as an ANN, logistic regression, decision tree, random forest, support vector machine,
and K-nearest neighbor. We used the same dataset as Arroyo and Delima (2022), but
we utilized the results directly from the referenced paper [11] without any additional
processing. Table 19 compares the TSTO method proposed in this study with the GA-ANN
method presented by Arroyo and Delima in 2022 in their work. From Table 19, it can be
observed that the ANN optimized by the TSTO method achieved the highest accuracy
among the different predictive algorithms used. The study demonstrated that the TSTO
method effectively optimized the accuracy of the predictive model.

Table 19. Comparison between the TSTO and other state-of-the-art methods [11].

Method Accuracy

ANN 0.6835
Logistic regression 0.7235

Decision tree 0.6172
Random forest 0.6894

Support vector machine 0.7216
K-Nearest Neighbor 0.6834

GA-ANN 0.7343
First-stage Taguchi method 0.7383

Proposed TSTO 0.7414
TSTO, two-stage Taguchi optimization; ANN, artificial neural network; GA, genetic algorithm.

4. Discussion

Improving the accuracy of CVD prediction models has always been an important re-
search focus. By continually improving predictive models, we can more accurately predict
an individual’s risk of CVDs and provide opportunities for early interventions and treat-
ment. In order to enhance the accuracy of the CVD prediction model, we proposed a TSTO
method framework that enables the continuous approximation of the best hyperparameter
settings for the ANN model.

In the first stage of this study, experiments were conducted using a reduced number of
trials via the Taguchi method L18(21 × 37). Originally, conducting experiments with three
levels for each of the six hyperparameters and repeating them three times would require
36 × 3 = 2187 experiments. However, with the Taguchi orthogonal array L18(21 × 37), only
18 × 3 = 54 experiments were needed. It reduced the number of experiments by a factor of
40.5 compared to the grid search method. TSTO can significantly reduce computational
resources, especially when the dimensionality of the dataset increases, or when the number
of considered hyperparameters grows.

Results of the first-stage Taguchi method also determined the effects of the six hyper-
parameters in the following order: X2 (activation function) > X3 (optimizer) > X6 (hidden
nodes) > X4 (learning rate) > X5 (moment rate) > X1 (hidden layers). Additionally, the
hyperparameter response graph and ANOVA table confirmed better settings for the six
hyperparameters as follows: X1 (hidden layers) = 4, X2 (activation function) = tanh, X3 (op-
timizer) = sgd, X4 (learning rate) = 0.3, X5 (moment rate) = 0.9, and X6 (hidden nodes) = 8.
The first confirmation experiment was performed with these improved hyperparameter
settings, resulting in an average accuracy of 0.7383.

In the second stage, the predicted accuracies of the three hyperparameters were col-
lected using the Taguchi method L9(34). Conducting experiments with three levels for each
of the three hyperparameters and repeating them three times would require 33 × 3 = 81 ex-
periments. However, with the Taguchi orthogonal array L9(34), only 9 × 3 = 27 experiments
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were needed. In this stage, the effects of the three hyperparameters were reconfirmed,
with X4 (learning rate) > X5 (moment rate) > X6 (hidden nodes) in descending order.
The best settings for the three hyperparameters were also determined through the hyper-
parameter response graph and ANOVA table, resulting in X4 (learning rate) = 0.25, X5
(moment rate) = 0.85, and X6 (hidden nodes) = 10. The best ANN architecture discovered
in this stage includes four hidden layers and 10 hidden nodes. The second confirmation
experiment was conducted with the best hyperparameter settings, resulting in an average
accuracy of 0.7414 for the predictive model. Furthermore, the second-stage Taguchi method
demonstrated improved effects compared to the hyperparameter settings obtained in the
first stage. The average accuracy of the model increased from 0.7383 to 0.7414.

Finally, the proposed two-stage Taguchi method achieved higher accuracy than the
state-of-the-art GA-ANN model for predicting CVD risk, which could further improve
survival rates of cardiovascular patients. Moreover, the proposed method can significantly
reduce the computational resources required for a ANN model. It can be easily combined
with low-power computing devices or biosensors and further extended to individual users
to achieve the goal of POCT.

Although this study achieved impressive accuracy, it still has several limitations. The
current set of hyperparameter levels established in this study is discrete. In the future, a
more extensive Taguchi method with multiple stages can be employed to approach the
global optimal solution. Furthermore, the combinations of the hyperparameters identified
in this study are specific to the cardiovascular disease (CVD) dataset. The proposed
technique (TSTO) could be extended to other medical fields in future studies. Besides, this
study utilized a single CVD dataset. In the future, independent CVD datasets from different
healthcare organizations could be applied to validate the proposed TSTO technique.

5. Conclusions

This study enhances cardiovascular disease prediction using personal devices, aligning
with point-of-care testing objectives. A two-stage Taguchi optimization (TSTO) method
was introduced to boost the predictive accuracy of an ANN model while minimizing
computational costs. The TSTO method is applied once during the training process and
can run on any platform. TSTO does not impose constraints; instead, it simplifies the
network architecture. It incorporates optimal hyperparameter settings established during
the design phase, some of which may be redundant. The resulting final model can be easily
combined with low-power computing devices or biosensors and extended to individual
users to achieve the goal of POCT.
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