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Abstract: More research is needed to understand how the maternal consumption of fish and fish-borne
toxicants impacts infant neurodevelopment. The present analysis was conducted over 460 mother–
infant pairs within the ECLIPSES study. Dietary intake of metals and persistent organic pollutants
from fish (including white fish, blue fish, and seafood) was estimated in pregnant women. The infants
underwent cognitive, language, and motor function assessments using the Bayley Scales of Infant
Development-III at the 40-day postpartum. Associations between dietary toxicants and outcomes
were assessed using multivariable linear regression models. Estimated prenatal exposure to fish-borne
toxicants, such as arsenic, inorganic arsenic, methylmercury, dioxin-like polychlorinated biphenyls
(DL-PCBs), and non-DL-PCBs, was associated with poorer language functions in infants, whereas no
significant associations were found with motor or cognitive functions. Maternal fish consumption
exceeding the Spanish recommendation of no more than 71 g per day was linked to these adverse
effects on language abilities without affecting motor or cognitive development. This highlights the
importance of vigilant monitoring of environmental toxicants and the provision of dietary guidance
for pregnant women, with potential implications for public health and child development.

Keywords: dietary exposure; food toxicants; pregnant women; infant neurodevelopment; fish

1. Introduction

The fetal stage of neurodevelopment is a critical period that lays the foundation for
lifelong neurological function [1,2]. During this sensitive phase, the developing fetus
is particularly vulnerable to the adverse effects of environmental toxicants, owing to its
ongoing physiological maturation and immature detoxification mechanisms [3–5]. As a
result, exposure to toxicants during pregnancy is highly related to the neurodevelopment
of offspring, with potential implications for their overall health and well-being [6,7].

The exposure of the fetus to toxicants can be influenced by the mother’s dietary intake,
both through the accumulation of compounds with long half-lives and through recent
consumption. This highlights the significance of maternal diet in determining fetal toxicant
levels [8]. Dietary toxicants are now a major concern in the field of environmental toxicants,
especially in industrial areas where they have attracted substantial attention [9,10]. In a
previous study, we found that daily intake ofarsenic (As) and dioxin-like polychlorinated
biphenyls (DL-PCBs) in pregnant women exceeded or came close to European Food Safety
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Authority (EFSA) thresholds [11]. Notably, a considerable proportion of dietary toxicants
was attributed to fish consumption [11]. Maternal fish consumption during pregnancy
provides beneficial nutrients like n-3 polyunsaturated fatty acids (n-3 PUFA), proteins,
and vitamins for fetuses [12]. However, the substantially high amounts of toxicants could
adversely affect fetal growth and neurodevelopment. Of note, the toxicants’ variability
within fish species and regions resulted in varying regional dietary guidelines regarding
the recommended quantity ranges for fish consumption [13–15].

To date, the association between prenatal dietary exposure to toxicants and the neu-
rodevelopment of offspring has been investigated. Prenatal dietary exposure to high
methylmercury (MeHg) or dioxins and PCBs has been related to poor language functions
among 3-year-old children [16,17]. Similarly, lower levels of prenatal dietary exposure to
MeHg (fish intake ≤ 400 g/week) were associated with elevated language and communica-
tion functions in 5-year-old children, whereas high exposure (fish intake > 400 g/week)
demonstrated the opposite trend [18]. Most studies published currently focus on children
rather than infants (from birth to 1 year old) [19], despite the importance of the infant
stage, which holds great potential for early intervention. Moreover, estimating dietary
intake at only a single time-point during pregnancy rather than across the entire gestational
period may limit the ability to capture a holistic representation of the maternal diet [20].
Considering the diverse toxicants that fish contain and the role of early infancy neurode-
velopment in shaping a healthy child’s life, there is a crucial need to comprehensively
evaluate the association between the maternal dietary intake of toxicants from fish and
infant neurodevelopment [11,21].

Thus, this study aims to assess associations between estimated prenatal dietary fish
consumption and derived toxicants with the language, motor, and cognitive development
of infants at 40 days of age, aiming to provide more insights for potential guidance in public
health strategies.

2. Materials and Methods
2.1. Study Design and Participants

The present analysis was conducted with a subset of subjects within the ECLIPSES
study, a community-based research project conducted among pregnant women in the
province of Tarragona, Spain. Participants were recruited at their primary care facilities
during their initial prenatal appointments with midwives. The inclusion criteria included
healthy women over 18 years old within the first 12 weeks of gestation, without anemia,
and with the capacity to comprehend the local and official languages of the region (Spanish
and Catalan). Women were excluded from the study if they: had experienced multiple preg-
nancies, had used iron supplements in the months preceding the 12th week of pregnancy,
or had a history of severe diseases such as immunosuppression or chronic conditions that
could impact their nutritional development (e.g., anemia, cancer, diabetes, malabsorption,
or liver disease). Detailed information can be found elsewhere [22].

2.2. Maternal Data Collection

In this study, baseline maternal characteristics were collected through face-to-face
interviews at recruitment. These encompassed maternal age, smoking habits, self-reported
weight and height, and early pregnancy BMI. Gestational weight gain was calculated as
the difference between the weights recorded at the initial and third-trimester appointments.
Socioeconomic status was determined based on education and occupation. The adherence
to the Mediterranean diet (MedDiet) during pregnancy was evaluated using the relative
MedDiet (rMedDiet) score, which ranged from 0 to 18 points, with higher scores signifying
a stronger adherence to the MedDiet [23]. Serum n-3 polyunsaturated fatty acids (n-3 PUFA)
samples were collected at 12th week and 36th week after fasting in 7.5 mL tubes without
anticoagulant. After 30 min of coagulation at room temperature, the serum was separated
by centrifugation and stored in 500 µL aliquots at −80 ◦C. Thawing and processing of the
samples were conducted simultaneously at the study’s end to minimize batch variation [22].



Toxics 2024, 12, 338 3 of 13

Serum n-3 PUFA at the 36th week was used due to the recognized predominant transfer
of n-3 PUFA from maternal circulation to the fetus during the third trimester [24,25].
Biochemical data (including serum ferritin, serum VitB12, and serum VitD) at the 36th week
were utilized for analysis. The red-blood-cell folate (RBC folate) was detected at the 12th
week of gestation. VitB12, VitD, and RBC folate concentrations were determined using a
competitive immunoassay with direct chemiluminescence technology (ADVIA Centaur,
Siemens Healthineers, Madrid, Spain), serum ferritin (µg/mL) was determined using the
immunochemiluminescence method. Maternal psychological distress was evaluated using
the State–Trait Anxiety Inventory in both the first and third trimesters, and the scores were
averaged to represent distress levels across the entire gestational period [26].

A self-administered 45-item food frequency questionnaire (FFQ), specifically validated
for our study population, was used to evaluate average dietary intake at weeks 12, 24,
and 36 of pregnancy. During this assessment, fish (white fish, blue fish, and seafood)
consumption was estimated. The daily diet toxicants (including As, Inorganic As (InAs),
cadmium (Cd), MeHg, lead (Pb), polychlorinated dibenzo-p-dioxins and dibenzofurans
(PCDD/Fs), DL-PCBs, and non-DL-PCBs (NDL-PCBs)) from fish in our population was
estimated using the database of toxicants in food from the Catalan Food Safety Agency, as
has been reported in a previously published paper [11]. More detailed information about
the methods and results of the study can be found in the Catalan Food Security Agency
report, which is publicly available [27]. Pregnant women were categorized according
to their fish intake in relation to the Spanish guideline recommendations into <54 g/day
(lower than the recommended intake), 54 to 71 g/day (recommended intake) and >71 g/day
(exceeding the recommended intake) [28].

2.3. Infant Data Collection

At around 40 days of age, trained psychologists administered the Bayley Scales of
Infant and Toddler Development 3rd edition (BSID-III) [29], which is considered to be
the gold standard and is used by clinicians and researchers to assess the developmental
functioning of young children [30,31]. BSID-III assessed cognitive, language and motor
domains in children aged 1–42 months. The language and motor scales include two
subscales: the language scale assesses receptive and expressive language abilities, and the
motor scale assesses both fine and gross motor skills. The raw scores for each scale were
standardized to a mean of 100 with a standard deviation of 15 and for subscales to a mean
of 10 and SD of 3. The assessment with the infant was approximately 30–50 min.

2.4. Statistical Analyses

Before conducting analyses, mean imputation was employed in variables with less
than 4% of missing values [32]. Subsequently, multiple imputation by fully conditional
specification was performed, generating five imputed datasets to address missing data. Lin-
ear regression was selected as the type of imputation model, encompassing all confounder
variables utilized in the fully adjusted model, along with all exposures and outcomes in
the imputation model. The chi-square test and the Kruskal–Wallis test were conducted, as
appropriate, to compare descriptive characteristics of the study participants and dietary
toxicant intakes from fish, according to the categories of fish consumption amounts. Single-
exposure models were performed, employing multivariate linear regressions to assess the
association between each exposure (toxicant) and each outcome independently. These
models were adjusted for covariates including age, BMI, gestational weight gain, social
class, smoking status, MedDiet during pregnancy, energy intake during pregnancy, serum
n-3 PUFA, red-blood-cell folate, serum ferritin, serum VitB12, serum VitD, supplementary
iron, state–trait anxiety inventory score, newborn sex, newborn weight, and the type of
feeding. In the linear regression, we computed β coefficient for a one-unit change in the
continuous exposure variables. However, some toxicants showed either high or low median
exposure. For instance, arsenic (As) had a median exposure of 274.20 µg/d, while inorganic
arsenic (InAs) had a median exposure of 0.05 µg/d. To standardize, we applied a 10-unit
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change for continuous exposure variables with higher means (As and NDL-PCBs), and
0.01-unit and 0.1-unit changes for those with lower means (InAs and Pb). Multivariate
linear regression analysis, adjusted for the same variables as before, was also performed to
assess the association between fish consumption amount in three categories and children
neurodevelopment at 40 days. In this case, lower than the recommended intake was used
as the reference category. Statistical significance was defined as p < 0.05. All statistical
analyses were conducted with SPSS, version 28.0 (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Study Design

Among the initial 791 recruited women, 534 women completed the study. Then,
neurodevelopment was assessed in 503 infants. Out of these, 460 mother–child pairs had
information on both the maternal food frequency questionnaire and the assessments of
infant neurodevelopment included in the present study (Figure 1).
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3.2. Characteristics of Participants

From a total of 460 mother–child pairs, the sociodemographic data, lifestyle, and diets
of the mother and the psychological and characteristics of the children are presented in
Table 1. Briefly, the mean age of the mother was 30.89 ± 5.10 years with older ages in
the group of higher fish consumption (p < 0.05). No significant differences were found
in BMI status, mean gestational weight gain, socioeconomic level, and smoking status by
fish consumption. The MedDiet score during pregnancy was 9.85 ± 2.46 and the mean
of energy intake was 2041.28 ± 605.77 kcal/day, with higher means for the higher fish
consumption category. The mean serum n-3 PUFA level was 258.36 ± 82.78 µmol/L. No
differences in micronutrient levels were observed based on the fish consumption categories.
Most baseline characteristics (BMI, gestational weight gain, smoking status, MedDiet score,
energy intake, biochemical data, iron supplementary, and state–trait anxiety inventory
score) did not show significant differences between the pregnant women included in the
analysis and those excluded, except for age (30.89 vs. 29.54 years, p < 0.01). In terms of
social classes, the included group had a lower percentage in the low/middle class (80.9%
vs. 86.4%) and a slightly higher percentage in the high class (19.1% vs. 13.6%, p = 0.042).
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Table 1. General characteristics of mother and offspring: sociodemographic data, lifestyle, diet, and
psychological characteristics.

Seafood Consumption

Characteristics Total (n = 460) <54 g/d (n = 318) 54 to 71 g/d
(n = 66) >71 g/d (n = 76)

Maternal Characteristics Summary Statistics p

Age (years), mean ± SD 30.89 ± 5.10 30.53 ± 5.09 a 30.85 ± 4.92 32.45 ± 5.03 a 0.012
BMI (kg/m2), n (%) 0.166
<25 (normal weight) 276 (60.0%) 200 (62.9%) 37 (56.1%) 39 (51.3%)
25–29 (overweight) 119 (25.9%) 81 (25.5%) 16 (24.2%) 22 (28.9%)

≥30 (obesity) 65 (14.1%) 37 (11.6%) 13 (19.7%) 15 (19.7%)
Gestational weight gain (kg),

mean ± SD 10.30 ± 4.04 10.35 ± 4.04 10.67 ± 3.61 9.81 ± 4.37 0.429

Social class, n (%) 0.956
Low/middle 372 (80.9%) 256 (80.5%) 54 (81.8%) 62 (81.6%)

High 88 (19.1%) 62 (19.5%) 12 (18.2%) 14 (18.4%)
Smoking status, n (%) 0.625

Never/Ex-smoker 390 (84.8%) 273 (85.8%) 54 (81.8%) 63 (82.9%)
Smoker 70 (15.2%) 45 (14.2%) 12 (18.2%) 13 (17.1%)

MedDiet during pregnancy
(score), mean ± SD 9.85 ± 2.46 9.48 ± 2.43 ab 10.43 ± 2.43 a 10.90 ± 2.20 b <0.001

Energy intake during
pregnancy (kcal/d), mean ± SD 2041.28 ± 605.77 1960.29 ± 531.05 a 2093.00 ± 676.29 b 2335.26 ± 734.65 ab <0.001

Serum total n-3 PUFA (µmol/L),
mean ± SD 258.36 ± 82.78 251.54 ± 81.11 281.63 ± 91.44 264.94 ± 78.33 0.051

Red blood cell folate (nmol/L),
mean ± SD 570.19 ± 209.23 562.36 ± 202.70 549.94 ± 234.78 623.03 ± 213.45 0.148

Serum ferritin (microgr/L),
mean ± SD 16.25 ± 9.67 16.20 ± 9.05 17.47 ± 13.64 15.38 ± 7.86 0.523

Serum VitB12 (pg/mL),
mean ± SD 305.13 ± 138.95 374.05 ± 135.21 318.59 ± 108.11 310.96 ± 148.07 0.675

Serum VitD (ng/mL),
mean ± SD 14.38 ± 6.83 14.61 ± 6.49 14.60 ± 8.70 13.31 ± 6.31 0.429

Iron supplement (mg/day),
mean ± SD 49.65± 22.07 49.62 ± 22.39 48.48 ± 21.36 50.79 ± 21.53 0.825

State–trait anxiety inventory
score, mean ± SD 16.14 ± 7.21 16.27 ± 7.28 15.09 ± 6.07 16.47 ± 7.83 0.435

Newborn characteristics Summary statistics

Sex, n (%) 0.846
Male 236 (51.3%) 161 (50.6%) 36 (54.5%) 39 (51.3%)

Female 224 (48.7%) 157 (49.4%) 30 (45.5%) 37 (48.7%)
Newborn weight (g), mean ±

SD 3298.03 ± 461.23 3285.39 ± 468.34 3264.36 ± 451.75 3380.13 ± 435.25 0.224

Type of feeding, n (%)
Breastfeeding 339 (73.7%) 229 (72.0%) 51 (77.3%) 59 (77.6%)

Mixed feeding/infant formula 121 (26.3%) 89 (28.0%) 15 (22.7%) 17 (22.4%) 0.471

Neurodevelopment of infants Summary statistics

BSID-III at 40 days, mean ± SD
Language scale 96.06 ± 8.27 96.31± 8.03 97.00 ± 8.31 94.12 ± 9.02 0.070

Receptive language 10.59 ± 2.12 10.64 ± 2.05 10.71 ± 2.01 10.28 ± 2.48 0.352
Expressive language 8.02 ± 1.56 8.06 ± 1.59 8.23 ± 1.57 7.68 ± 1.42 0.086

Motor scale 107.47 ± 11.40 106.86 ± 11.69 108.77 ± 10.56 108.91 ± 10.81 0.225
Fine motor 11.45 ± 1.95 11.42 ± 1.90 11.45 ± 2.02 11.53 ± 2.12 0.919

Gross motor 11.06 ± 2.35 10.89 ± 2.38 11.48 ± 2.21 11.42 ± 2.29 0.060
Cognitive scale 101.58 ± 8.78 101.38 ± 9.04 103.11 ± 6.84 101.08 ± 9.10 0.301

p-Value for comparisons between categories was calculated by Pearson’s chi-square test or one-factor ANOVA
tests for categorical variables and continuous variables, respectively. a, b: <0.05, conducted by post-hoc Bonferroni
after ANOVA. Abbreviations: MedDiet, Mediterranean diet; BMI, early pregnancy Body Mass Index; BSID-III,
Bayley Scale of Infant Development III. Results in bold are statistically significant.
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Regarding infants, there were 236 (51.3%) males and 224 (48.7%) females. The mean
newborn weight was 3298.03 ± 461.23 g. There were no differences in child gender,
newborn weight, type of breastfeeding, and BSID-III score at 40 days among the categories
of maternal prenatal fish consumption amounts.

3.3. Association between Diet Toxicants from Fish and Fish Consumption Amount

Table 2 illustrates the daily toxicant intake from fish including As, InAs, Cd, MeHg,
Pb, PCDD/Fs, DL-PCBs, and NDL-PCBs in pregnant women and among categories of
fish consumption amount. In pregnant women, As (274.20 vs. 151.37 µg/d) and DL-PCBs
(15.28 pg TEQ/d vs. 20.18 pg TEQ/d) intake from fish exceeded the daily general dietary
toxicants threshold reported by EFSA [33,34]. Furthermore, the Kruskal–Wallis comparison
test showed significant differences among all groups on all analyzed toxicants (all p < 0.01).
Then, the post hoc test showed that all the analyzed toxicants were significantly higher
in those pregnant women with fish consumption > 71 g/d compared to those with fish
consumption < 54 g/d and 54–71 g/d. All the investigated toxicants were also higher in
those pregnant women with fish consumption within the recommendations (54–71 g/d)
than those with a consumption lower than the recommendations (<54 g/d).

Table 2. Toxicants in fish during pregnancy.

Daily Toxicants
Reference EFSA

Values
(TWI/TDI)

Comparable
Daily
EFSA

Value #

Toxicants Intake
from Total Fish
in Total Sample

Size (n = 460)

Total Fish
Consumption < 54

g/d (n = 318)

Total Fish Consumption
54 to 71 g/d (n = 66)

Total Fish Consumption > 71 g/d
(n = 76)

Median (IQR) Median (Q1–Q3) Median (Q1–Q3) Median (Q1–Q3) p

As (µg) 15 µg/kg bw/w 151.37 245.74 (190.58) 194.24
(131.77–264.21) ab 366.61 (320.75–406.41) ac 505.38 (462.21–581.38) bc <0.001

InAs (µg) 0.3 µg/kg bw/d 21.19 0.04 (0.03) 0.03 (0.02–0.04) ab 0.06 (0.06–0.06) ac 0.08 (0.08–0.10) bc <0.001
Cd (µg) 2.5 µg/kg bw/w 25.23 2.82 (2.77) 2.40 (1.13–3.48) ab 3.81 (2.67–5.49) ac 4.55 (2.42–7.65) bc <0.001

MeHg (µg) 1.3 µg/kg bw/w 13.12 3.82 (2.81) 3.05 (2.05–3.93) ab 5.47 (4.92–6.12) ac 7.88 (6.89–9.09) bc <0.001

Pb (µg) 0.50 µg/kg
bw/d 35.32 0.60 (0.51) 0.49 (0.28–0.68) ab 0.84 (0.69–1.08) ac 1.14 (0.77–1.46) bc <0.001

PCDD/Fs (pg
TEQ) 2 pg/kg bw/w * 20.18

2.89 (1.98) 2.33 (1.69–2.94) ab 4.15 (3.81–4.57) ac 5.73 (5.02–6.76) bc <0.001

DL_PCBs (pg
TEQ) 13.79 (10.79) 11.09 (7.38–14.17) ab 20.16 (17.03–23.14) ac 29.25 (24.04–32.74) bc <0.001

NDL_PCBs (ng
TEQ) 10 ng/kg bw/d 706.40 137.28 (103.02) 113.01

(75.72–140.86) ab 201.18 (190.49–219.12) ac 280.12 (253.14–332.33) bc <0.001

The p-value for comparisons between categories was calculated by the Kruskal–Wallis test. a, b, c: <0.05, conducted
by the Mann–Whitney U test after the Kruskal–Wallis test. #, TWI/7 × average weight (70.64 kg) or TDI × average
weight (70.64 kg); *, 2 pg/kg bw/week is the tolerable weekly intake for both PCDD/Fs and DL-PCBs; TWI,
tolerable weekly intake; TDI, tolerable daily intake; As, arsenic; InAs, inorganic arsenic; Cd, cadmium; MeHg,
methylmercury; Pb, lead; PCDD/Fs, polychlorinated dibenzo-p-dioxins and dibenzofurans; DL-PCBs, dioxin-like
polychlorinated biphenyls; NDL-PCBs, non-dioxin-like polychlorinated biphenyls. IQR, interquartile range.
Results in bold are statistically significant.

3.4. Associations between Maternal Toxicant Intake from Fish and Neurodevelopment Data
(BSID-III) of 40-Day Newborns

Table 3 shows the associations between maternal toxicants intake from fish and lan-
guage development. In a crude model, As, InAs, MeHg, DL-PCBs, and NDL-PCBs were
negatively associated with the language scale (all p < 0.05). In the subscales, MeHg and
DL-PCBs were negatively associated with the receptive language subscale, while As was
adversely associated with the expressive language subscale (all p < 0.05).

Similar results were observed after adjusting for potential confounders. As, InAs,
MeHg, DL-PCBs, and NDL-PCB were negatively related to language scale (all p < 0.05).
In the subscales, a negative association was also found in MeHg and DL-PCBs with the
receptive language subscale (both p < 0.05). Additionally, As was also negatively associated
with the expressive language subscale (p < 0.05). Specifically, regarding the associations of
encountered toxicants with language scales, MeHg (β = −0.41) and InAs (β = −0.40) were
most strongly associated, followed by DL-PCBs (β = −0.10) and NDL-PCBs (β = −0.12),
with As showing the weakest association (β = −0.06). No associations were found in
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dietary toxicant intake from fish with motor or cognitive development scales in the crude
or adjusted models (Supplementary Table S1).

Table 3. Beta-coefficient and 95% confidence interval for the association between maternal toxicants
intake from fish and language development of 40-day newborns.

Language Scale Receptive Language Subscale Expressive Language Subscale

β 95%CI p β 95%CI p β 95%CI p

As a

crude −0.05 −0.10 0.00 0.040 −0.01 −0.02 0.01 0.220 −0.01 −0.02 0.00 0.045
Model 1 −0.06 −0.12 −0.01 0.022 −0.01 −0.02 0.01 0.223 −0.02 −0.23 −0.01 0.016
InAs b

crude −0.33 −0.64 −0.02 0.035 −0.07 −0.15 0.01 0.097 −0.05 −0.10 0.01 0.126
Model 1 −0.40 −0.75 −0.06 0.020 −0.08 −0.17 0.01 0.090 −0.06 −0.12 0.01 0.077

Cd
crude 0.04 −0.26 0.34 0.811 0.04 −0.04 0.11 0.369 −0.02 −0.08 0.04 0.452

Model 1 0.03 −0.28 0.34 0.871 0.04 −0.04 0.12 0.383 −0.03 −0.09 0.03 0.379
MeHg
crude −0.34 −0.66 −0.04 0.028 −0.08 −0.17 −0.01 0.031 −0.03 −0.09 0.03 0.311

Model 1 −0.41 −0.76 −0.07 0.019 −0.10 −0.19 −0.01 0.030 −0.04 −0.10 0.03 0.262
Pb c

crude −0.03 −0.21 0.14 0.693 0.01 −0.03 0.06 0.628 −0.02 −0.06 0.01 0.184
Model 1 −0.05 −0.23 0.13 0.614 0.01 −0.04 0.06 0.640 −0.03 −0.06 0.01 0.127

PCDD/Fs
crude −0.42 −0.86 0.04 0.071 −0.08 −0.20 0.04 0.168 −0.06 −0.15 0.03 0.174

Model 1 −0.50 −1.00 0.00 0.053 −0.09 −0.22 0.04 0.164 −0.08 −0.17 0.02 0.119
DL-PCBs

crude −0.08 −0.17 0.00 0.049 −0.02 −0.04 0.00 0.037 −0.01 −0.02 0.01 0.485
Model 1 −0.10 −0.19 −0.01 0.040 −0.03 −0.05 −0.01 0.036 −0.01 −0.02 0.01 0.459

NDL-PCB a

crude −0.10 −0.19 −0.01 0.031 −0.02 −0.05 0.00 0.053 −0.01 −0.03 0.01 0.216
Model 1 −0.12 −0.22 −0.02 0.020 −0.03 −0.05 0.00 0.051 −0.01 −0.03 0.00 0.161

a, 10 units increase; b, 0.01 units increase; c, 0.1 units increase. Abbreviations: As, arsenic; InAs, inorganic arsenic;
Cd, cadmium; MeHg, methylmercury; Pb, lead; PCDD/Fs, polychlorinated dibenzo-p-dioxins and dibenzofurans;
DL-PCBs, dioxin-like polychlorinated biphenyls; NDL-PCBs, non-dioxin-like polychlorinated biphenyls. Model
1 adjusted by age (years), BMI (normal weight, overweight, obesity), gestational weight gain (kg), social class
(low/middle, high) smoking status (never/ex-smoker, smoker), Mediterranean Diet adherence during pregnancy
(score), energy intake during pregnancy (kcal/d), total serum n-3 PUFA (µmol/L), red-blood-cell folate (nmol/L),
serum ferritin (microgr/L), serum VitB12 (pg/mL), serum VitD (ng/mL), iron supplementary (mg/day), state–
trait anxiety inventory (score), newborn gender (male, female), newborn weight (g), type of feeding (breastfeeding,
mixed feeding/infant formula). Results in bold are statistically significant.

3.5. Association between Maternal Fish Intake and Neurodevelopment Data (BSID-III) of
40 Days Newborns

Table 4 presents the results of multiple linear regression on the association between
fish consumption and language development. Fish consumption exceeding the recommen-
dations (>71 g/d) was related to the lower language scale (p = 0.037) but not to the receptive
language or expressive language scale (both p > 0.05), compared to fish consumption lower
than the recommended intake (<54 g/d). However, no association was observed between
fish consumption within the recommended intake (54–71 g/d) and any language scale.

After controlling for potential confounding factors, all these associations became
stronger. Fish consumption exceeding the recommended intake during pregnancy was
associated with the lower language scale (p = 0.019) and expressive language subscale
(p = 0.026). Nevertheless, fish consumption during pregnancy within the recommended
intake was not associated with any improvement in, or worsening of, the language scale.
After removing serum n-3 PUFA, the results were essentially the same.

Fish consumption was not associated with motor or cognitive development scores in
the crude or adjusted models (Supplementary Table S2).
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Table 4. Beta-coefficient and 95% confidence interval for the association between maternal fish intake
according to Spanish guideline recommendations and language development of 40-day newborns.

Language Scale Receptive Language Subscale Expressive Language Subscale

Seafood
Consumption β 95%CI p β 95%CI p β 95%CI p

<54 g/d (ref.)
Crude54–71 g/d 0.69 −1.50 2.88 0.535 0.07 −0.50 0.63 0.814 0.17 −0.25 0.58 0.436

>71 g/d −2.19 −4.25 −0.13 0.037 −0.36 −0.90 0.16 0.174 −0.38 −0.77 0.11 0.057

<54 g/d (ref.)
Model

1
54–71 g/d 0.40 −1.87 2.66 0.733 0.08 −0.50 0.67 0.781 0.05 −0.38 0.48 0.817
>71 g/d −2.70 −4.97 −0.44 0.019 −0.43 −1.02 0.16 0.151 −0.49 −0.92 −0.06 0.026

Abbreviations: d, day; ref., reference. Model 1 adjusted by age (years), BMI (normal weight, overweight,
obesity), gestational weight gain (kg), social class (low/middle, high) smoking status (never/ex-smoker, smoker),
Mediterranean Diet adherence during pregnancy (score), energy intake during pregnancy (kcal/d), serum n-
3 PUFA (µmol/L), red-blood-cell folate (nmol/L), serum ferritin (microgr/L), serum VitB12 (pg/mL), serum
VitD (ng/mL), iron supplementary (mg/day), State-trait anxiety inventory (score), newborn gender (male,
female), newborn weight (g), type of feeding (breastfeeding, mixed feeding/infant formula). Results in bold are
statistically significant.

4. Discussion

To the best of our knowledge, this is the first study evaluating associations between
estimated prenatal dietary fish consumption and derived toxicants with neurodevelopment
outcomes at 40 days of age. In this study, dietary toxicants derived from fish consumption,
such as As, InAs, MeHg, DL-PCBs, and NDL-PCBs, were associated with worse language
development in infants, with no impact on their motor or cognitive development. Further-
more, infants from mothers exceeding the Spanish recommendations of fish consumption
had poorer language functions, but motor and cognitive development remained unaf-
fected. These findings highlight the complex interplay between estimated prenatal toxicant
exposure and fish consumption in influencing infant neurodevelopment, emphasizing
the need for further research to guide maternal health recommendations and food safety
policy decisions.

The association between maternal exposure to toxicants and offspring neurodevel-
opment has been widely discussed over decades, with the exposure primarily assessed
through blood and/or hair [35–40]. However, studies evaluating the relationship between
estimated maternal dietary toxicants in pregnancy and offspring neurodevelopment are still
limited. Recent studies conducted in the framework of the Norwegian Mother and Child
Cohort Study (MoBa) have described high maternal prenatal dietary MeHg exposure from
fish and the maternal general diet, with poor language functions among 3- and 5-year-old
children [16,18]. In the same cohort, a negative association was observed between prenatal
exposure to dioxins and PCBs from the maternal general diet with language functions
among 3-year-old children and 5-year-old girls [17,41]. In Tarragona, Spain, a region known
for its heavy industrial activity, we have previously observed the presence of a considerable
estimated dietary intake of toxicants in pregnant women, with fish as one of the main
contributors [11]. However, the relationship between prenatal exposure to dietary toxicants
from fish and neurodevelopment among offspring in this area remains unknown. In the
current analysis, the intake of As, InAs, MeHg, DL-PCBs, and NDL-PCBs derived from fish
was associated with poor language functions among infants at 40 days, which aligns with
previous studies [16–18,41]. These previous results, and our findings, are not directly com-
parable to studies that have analyzed prenatal toxicant exposure via blood or hair [35–40].
To do so, a conversion to toxicant concentrations in full blood would be needed before any
comparison could be made. The potential explanations for the negative association between
the prenatal intake of toxicants from fish and language functions could include: (1) As,
InAs, and MeHg might interfere with neurotransmitter systems, promote oxidative stress,
and cause neuroinflammation, thereby damaging developing neural tissues and affecting
brain functions crucial for language abilities [42,43]; (2) DL-PCBs might alter regional
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brain volume, which might result in neurodevelopmental and language deficits [44]; and
(3) NDL-PCBs could disrupt cellular processes in the brain, such as calcium homeostasis,
which is crucial for neuron growth, neurotransmitter release, and overall neural health,
potentially leading to language deficits [45]. These findings contribute to the broader
understanding of environmental factors and early neurodevelopment, shedding light on
potential implications for maternal and child health in regions with distinct toxicant profiles
in their diets.

The healthy nutritional profile of fish, coupled with the presence of potential toxicants,
has led to confusion regarding its contribution to a healthy diet [14]. Consequently, health
authorities across European countries have responded by issuing recommendations regard-
ing the quantity of fish consumption [28,46]. In accordance with the existing literature, our
findings support that infants born from women consuming the recommended amounts of
fish did not display worse neurodevelopment [20,47]. The potential reasons could be that:
(1) the toxicant levels derived from moderate fish consumption are not high enough to
affect neurodevelopment; and (2) When fish is consumed at a moderate level, the positive
impacts of n-3 PUFA from fish might counteract the negative effects of prenatal exposure
to toxicants [48,49]. However, prenatal fish consumption exceeding the Spanish recom-
mendations (>71 g/day) was adversely associated with the language functions of infants,
even when accounting for potential confounding factors including serum n-3 PUFA. One
potential explanation could be that high toxicants from higher fish consumption may have
overridden the potential positive effects of n-3 PUFA, traditionally linked to improved
language functions in other studies, suggesting that the health benefits of n-3 PUFA might
be insufficient to counteract the adverse impacts of toxicants [49]. Nevertheless, the stud-
ies from Norway (>400 g/week, approximately equivalent to 57 g/day, recommended
by Norwegian Directorate of Health), USA (>340 g/week, approximately equivalent to
49 g/day, recommended by US Federal Government agencies), and Spain (>340 g/week,
equivalent to 49 g/day, recommended by US Federal Government agencies) showed that
maternal prenatal fish intake above the recommended limit was not adversely associated
with neurodevelopment among their offspring [18,20,50]. These apparently controversial
results could be explained due to: (1) the varying types of fish consumed, differing levels
of toxicants in fish, and diverse recommended fish consumption amounts across countries
may result in distinct outcomes regarding the association between maternal prenatal fish
consumption and infant neurodevelopment [51]; and (2) Prenatal higher fish consumption
might be related to poor language functions in infants but not in children, the effect of
prenatal toxicants exposure from fish on offspring might weaken as the child ages increase
due to neurodevelopmental resilience and the emergence of other predominant factors;
thus, studies from the same region may yield different outcomes if the age of the subjects
under investigation varies.

The major strengths of the study are as follows: (1) Dietary intake during pregnancy
was estimated by averaging the information collected in a self-administered 45-item or
FFQ collected at weeks 12, 24, and 36 of gestation rather than at a single time-point; (2) The
prospective study design, coupled with a validated FFQ administered during pregnancy,
and a considerable cohort size, allow for the inclusion of multiple potential confounding
variables that could impact child development; and (3) The neurodevelopment outcomes of
infants were obtained by trained psychologists through a scale administered to the infant,
the BSID III, which has good psychometric properties and is considered the gold standard
of neurodevelopmental assessment in young children [30,31]. Nevertheless, the study
also has the following limitations: (1) National consumption patterns and toxicant levels
within fish were different across different nations; hence, caution should be warranted
when generalizing current findings across different regions; (2) The estimation of dietary
toxicants relied on data extracted from the Catalan Food Security Agency report database,
which might not be representative of all Spanish foods; (3) Despite adjusting for multiple
potential confounding variables, due to the observational nature of the study, residual
confounding could not be ruled out.
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5. Conclusions

In summary, specific estimated toxicant intake from fish during pregnancy, and pre-
natal fish consumption exceeding the recommended intake, are associated with poorer
language functions in infants. This highlights the importance of vigilant monitoring of
environmental toxicants and the provision of dietary guidance for pregnant women. These
findings carry potential implications for both public health strategies and the understanding
of child development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics12050338/s1, Table S1: Beta-coefficient and 95% confidence
interval for the association between maternal toxicants intake from fish with motor and cognitive
development of 40-day newborns. Table S2: Beta-coefficient and 95% confidence interval for the
association between maternal fish intake according to Spanish guideline recommendations and
language development of 40 days newborns.
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