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Abstract: Background: Effective humanitarian logistics (HL) is essential in disaster response. The
“Internet of Things” (IoT) holds potential to enhance the efficiency and efficacy of HL, yet adoption is
slowed by numerous barriers. Methods: This study employs interpretive structural modeling (ISM)
and decision-making trial and evaluation laboratory (DEMATEL) to explore and classify barriers to
IoT integration in HL. Results: A total of 12 barriers were identified, classified, and ranked according
to their driving power and dependence. Key barriers include lack of standardization, organizational
resistance, data quality issues, and legal challenges. Conclusions: Overcoming these barriers could
significantly improve relief operations, reduce errors, and enhance decision-making processes in HL.
This investigation is the first of its kind into IoT barriers in HL, laying the groundwork for further
research and providing valuable insights for HL managers.

Keywords: IoT; humanitarian logistics; emergency responders; barriers; relief operations; organiza-
tional resistance

1. Introduction

Humanitarian logistics (HL) plays a crucial role in delivering aid to disaster-stricken
areas and protecting the most vulnerable populations [1–6]. According to Tomasini and
Wassenhove [7], HL is defined as the “process of planning, implementing and controlling
the efficient, cost-effective flow and storage of goods and materials as well as related
information from the point of origin to the point of consumption for the purpose of
alleviating the suffering of vulnerable people” (p. 550). The purpose of HL is to reduce
damage caused by a catastrophe and provide timely responses to the needs of those who are
affected [8–11]. As a result of the unpredictability of demand in disaster-stricken areas, HL
faces unique challenges not encountered by business logistics [12,13]. Generally, HL focuses
primarily on effectiveness despite the growing importance of reducing costs and achieving
cost savings [14]. Since providing aid requires cooperation between several stakeholders,
including humanitarian and military organizations, non-governmental agencies, and local
authorities [15,16], it is crucial that participants in HL networks have aligned incentives
and objectives [17]. While those involved in business logistics typically work in a relatively
stable atmosphere and are motivated by profit, those involved in HL must frequently deal
with supply chain disruptions that necessitate coordinated efforts to save lives and provide
relief to vulnerable individuals [18,19]. As a result, it is imperative to effectively address the
various aspects of HL, including the unpredictability of demand in terms of size, time, and
location; the sudden high demand for a wide range of supplies with limited lead time; the
high importance placed on timely deliveries, and the scarcity of resources such as finance,
technology, personnel, and infrastructure [20–22].

Improvements in humanitarian organizations’ efficiency and effectiveness have been
essential to the continuation of HL activities, and modern means of communication and
technologies have played a crucial role in this regard [23–30]. Recently, the emergence of
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the Internet of Things (IoT) has been considered a key enabler for HL [31,32]. Conceptually,
IoT represents a rapidly growing technology that involves a network of interconnected,
intelligent, and autonomous devices [33,34]. Its purpose is to boost efficiency, profitability,
and productivity through the use of big data technologies [35] and predictive analysis
techniques [36]. IoT has transformed the traditional corporate environment into a digitally
sophisticated digital ecosystem.

The rise of IoT has affected all industries, with the most notable impact being seen
in the realm of HL [37]. IoT technology has made it possible for devices and machines to
be connected and communicate with each other, leading to a multitude of applications
and use cases in various industries [38–40]. While its impact can be felt across all sec-
tors, the HL field is particularly well suited to reap the benefits of IoT, as the technology
can help streamline humanitarian processes, maximize efficiency, and, ultimately, better
serve the needs of the victims. Similarly, the technology has already been tested in the
field, in the form of sensors on bridges in flood-prone areas and smart thermometers for
medicine transportation [41]. For example, in Rwanda, SweetSense is placing WiFi or
cellular-connected IoT sensors on water pumps to register data about water supply and
demand, hourly flow rates, usage, performance, seasonality, and peak periods, thereby
increasing the uptime of hand pumps by 80–90%, ensuring a more stable flow of water in
villages, and alleviating drought conditions [42]. Furthermore, IoT sensors play a role in
the ‘Global Alliance for Clean Cookstoves’ initiative by measuring black carbon emitted
by stoves, thereby supporting projects that disseminate improved cookstoves and aim to
reduce indoor air pollution. Additionally, integrating these clean stoves into international
development projects ensures that refugee camps, disaster relief operations, and long-term
aid efforts serve as vital distribution networks [43]. Finally, STAMP2 sensors collect patient
data, such as electrocardiogram (ECG), heart rate, oxygen saturation, temperature, and
respiratory rate data in areas with outbreaks like Ebola, acting as a ‘Smart Band-Aid’ and
improving response times in critical areas [44].

According to Yang et al. [45], the use of IoT in HL offers a real-time and complete solu-
tion for monitoring personnel and resources, improving visibility in indoor and outdoor
environments, and ensuring accurate accountability of HL resources during emergency re-
sponse operations. As increased situational awareness can lead to more effective decisions
in HL operations [46], IoT has the capability to collect real-time and thorough information
about the disaster site through the utilization of radio frequency identification (RFID) and
wireless sensor networks. Consequently, emergency personnel can attain quick and precise
situational awareness by collecting and accessing extensive information regarding the
disaster emergency [45]. Moreover, IoT allows for the tracing, tracking, and monitoring of
response personnel and their resources, providing visibility into their availability. This en-
ables a more efficient allocation and delivery of resources to the disaster site and enhances
the capability of HL operations by increasing resource access to a greater number of hu-
manitarian activities. Through its instant monitoring capability, IoT facilitates information
exchange and real-time updates on the status of a disaster area and the availability of an
individual organization’s resources. Therefore, the IoT’s data architecture can be invaluable
in strengthening collaboration across several organizations involved in HL [47].

Despite the vast potential of IoT to create an online system for direct interactions and
transactions between HL stakeholders, such as humanitarian organizations, first responders,
logistics providers, governments, etc. [45], the adoption of the technology in HL is still in
its early phase [36]. More precisely, the literature is deficient in research on the adoption of
IoT in HL. Given the current rise in human suffering in recent years, due to the increasing
frequency and severity of natural catastrophes [32], research on the impact of IoT on HL
is more essential than ever. HL stakeholders should recognize the importance of IoT in
supporting humanitarian actions control, reducing HL inefficiencies, increasing compliance,
and leading to significant advances in disaster response and recovery [24]. Adopting IoT
enables the development of a HL system that can forecast disaster occurrence and resource
demand, increase emergency preparedness, and improve the overall coordination and
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collaboration between various HL stakeholders [48]. Currently, the practitioners in the HL
field recognize the advantages of IoT in their relief operations and are prepared to use this
technology. The research problems addressed in the current study are the following:

• There is a lack of comprehensive understanding about the key barriers to the adoption
of IoT in the HL field. While IoT has immense potential to revolutionize HL operations
by enhancing interactivity, transaction efficiency, and decision-making among various
stakeholders, its adoption is still in the nascent stage. Despite the recognition of IoT’s
advantages by practitioners, they confront numerous challenges and barriers, both
technological and managerial, which inhibit its widespread adoption in HL [32,49].

• The second problem is the dearth of scholarly research that investigates the interrela-
tionships and influences among these barriers. A holistic understanding of how these
barriers interact and influence each other is essential to develop effective strategies for
mitigating them and fostering IoT adoption in HL.

In response to these problems, the present study aims to identify and analyze the
key barriers to IoT adoption in HL, using the interpretive structural modeling (ISM) and
decision-making trial and evaluation laboratory (DEMATEL) techniques. The incorporation
of both the ISM and DEMATEL techniques into this study is based on the complementary
nature of these methods and their unique strengths in addressing the research objectives.
The ISM technique is an effective tool for identifying relationships among factors and
constructing a hierarchical structure of complex systems [50]. It provides valuable insights
into the dependencies and driving powers of the identified barriers to IoT adoption in HL.
This helps to develop a preliminary understanding of how these barriers are connected
and influence each other. While ISM is instrumental in building a hierarchical relationship
among barriers, it falls short in quantifying the degree of influence among them [51]. To fill
this gap, the DEMATEL technique is employed. DEMATEL extends the ISM approach by
quantitatively measuring the interactive effects of the barriers, providing a more nuanced
understanding of their interdependencies [52]. It allows us to identify the most influential
barriers, distinguishing them into ‘cause’ and ‘effect’ groups [51]. This is particularly valu-
able in formulating targeted strategies for overcoming these barriers. Thus, the combination
of ISM and DEMATEL allows the study to create a comprehensive and robust analysis
of the barriers to IoT adoption in HL, encompassing both qualitative relationships and
quantitative influences among these barriers [53].

The following sections of the paper are structured as follows. Section 2 provides a
concise overview of IoT, its potential for HL, and the barriers hampering its adoption
in this field. Section 3 describes the research method applied. Section 4 elaborates on
the application of the ISM–DEMATEL approach in HL, and is followed by the findings.
Section 5 presents the discussion of the results and their implications. Finally, we briefly
conclude the study, highlighting its limitations and future research directions.

2. Conceptual Background
2.1. The IoT Concept

The IoT, which refers to devices that are connected to the internet and can collect
information about the environment, has seen quick growth because of the widespread
use of advanced hardware and software, better access to communication networks, and
improvements in data analysis tools [54–56]. The basic idea behind IoT is to connect various
devices that produce or gather data through technologies such as RFID, actuators, sensors,
and smartphones, so that these devices can communicate with each other [57]. IoT has a
three-layer structure, including (1) the physical or perception layer, (2) the network layer,
and (3) the application layer. The physical layer collects information about the environment,
which is used by platforms to perform algorithms or offer services [58]. The network layer,
considered the heart of IoT, is responsible for transmitting and processing the information
obtained by the perception layer [59,60]. Unlike the network layer, the application layer
consists of a set of functionalities and services offered to the users [58]. As the topmost layer
of the IoT architecture, this layer encompasses two sublayers: (1) the application support
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platform, and (2) the application sublayer [61]. The application support platform sublayer
plays a crucial role in facilitating information collaboration, sharing, and interoperability
among devices and systems in the IoT network. This sublayer also helps to ensure seamless
communication and data exchange between the different components of the network,
thereby enabling the efficient delivery of services and applications [58]. On the other hand,
the application sublayer represents the various applications and services that are used by
different industries and businesses. This sublayer includes a wide range of applications,
including smart logistics, energy management, smart supply chain management, smart
parking, and smart transportation [33,34,54,57]. These applications utilize the data collected
by the physical layer and processed by the network layer to offer a range of value-added
services to users, such as optimizing logistics operations, maximizing energy efficiency,
and supporting smart transportation systems [62–64].

2.2. IoT Applications in HL

The constantly changing needs and circumstances during a relief operation highlight
the importance of making quick and accurate decisions efficiently [65]. As a result, the
integration of IoT is essential to support effective disaster management planning in HL.
With its ability to instantly communicate updated information, IoT can play a crucial role
in enabling dynamic workflow adaptations. In the realm of disaster management, the
use of IoT solutions can provide crucial information needed for effective relief planning
following a natural disaster [47]. Moreover, IoT can support environmental surveillance
and disaster relief due to its service-oriented architecture for monitoring and detection [66].
IoT networks can offer solutions for monitoring and managing emergency scenarios, which
currently lack accurate information about the emergency site. The use of dedicated IoT
sensors, along with smart cameras, wireless systems, and GPS, enables real-time local-
ization [67], monitoring [68], and the development of a full map of the disaster scenario
to predict its trends (e.g., the velocity of fire spread), which all help to plan emergency
rescue activities. According to Khan et al. [66], IoT represents an effective tool for detecting
catastrophic events by offering intelligent aggregation, multi-source alignment, and assess-
ment of information, which are crucial steps in gaining situational awareness and making
informed decisions. Greco et al. [69] demonstrate how the integration of IoT and semantic
web techniques can lead to a successful implementation of earthquake event detection.
Their approach involves annotating information collected from web services and IoT-based
sensors, allowing for a more efficient method of detecting earthquakes. In their study,
Wen et al. [70] propose the use of IoT to create an emergency food logistics information
system. The system relies on IoT to provide unique identification and tracking of food,
which helps to gather and process information about food supply and demand, and to
optimize emergency food distribution. In this way, the system ensures food safety and
preservation while also ensuring that emergency food is distributed in a timely and efficient
manner, according to actual needs and without shortages or excess. Al-Turjman [71] puts
forward a cognitive data delivery framework to tackle the difficulties that arise during
large-scale network failures during disasters. Based on the findings, the author suggests
that an IoT-based framework can improve the current network status through optimization.

The implementation of IoT in HL can greatly improve the way disaster risk manage-
ment processes are carried out, leading to quicker predictions of natural hazards (e.g.,
landslides, rockfall, earthquakes, etc.), more effective response, and cost-effective decision-
making in recovery [72]. For example, IoT provides real-time information about the
earthquake event, its destructive impact, the situation in the affected area, and the lo-
cations of victims, which are crucial for disaster risk management agencies to carry out
rapid response operations and minimize the impact on those affected [73]. Furthermore,
the implementation of IoT can bring about accurate and monitored data flow in service-
oriented organizations, which is essential for enhancing resilience in humanitarian supply
chains [74]. Reaidy et al. [75] state that the incorporation of IoT into inventory management
can improve various relief practices and enhance the coordination between strategies,
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resulting in improved performance and increased resilience in the event of humanitarian
supply chain disruption. Information sharing through IoT is critical in facilitating coopera-
tion between the upstream and downstream operations of the humanitarian supply chain
by providing a large volume of data and flexibility in response to changing demands [76].
During a disaster, ineffective coordination in inventory management for logistic relief can
be a major challenge. For this reason, there is a need for IoT to develop a new logistics
inventory business process in the shortest response time to ensure rapid disaster relief
distribution [77].

When combined with web technologies and advanced technologies, such as artificial
intelligence (AI) and big data analytics, IoT provides solutions for monitoring potential dis-
aster scenarios in real time [78]. As such, IoT-based solutions are demonstrating efficacy in
detecting and monitoring disasters, such as earthquakes, landslides, and forest fires [79–81].
The collaboration between IoT, wireless sensor networks, and unmanned aerial vehicles
also has the potential to enhance real-time tracking, analytics, and decision-making to aid
smart cities in meeting public safety demands in the event of a disaster [29,82,83]. Similarly,
IoT can be combined with blockchain to facilitate prompt payments and provide a higher
level of control and visibility over transactions performed by HL actors. As a result, this
would lead to a reduction in transaction costs and minimal tampering risks while increasing
trust in HL [32]. Overall, the use of IoT in HL can help minimize and prevent disaster risks
through real-time monitoring and communication; it can also enhance emergency response
through real-time assistance and timely responses, and aid in post-disaster efforts, such as
searching for missing persons through the internet. The dynamic and challenging terrain
situations often encountered in disasters emphasize the need for efficient and appropriate
decision-making in limited time, and IoT, with its ability to deliver the latest real-time
information, can be instrumental in creating an effective workflow in HL [65].

2.3. Barriers to IoT Adoption in HL

– Cost (B1): The high implementation cost of IoT in HL is a significant adoption barrier,
particularly for budget-restrained organizations and those in developing countries [66].
This encompasses hardware and software costs [65,84,85], data management [66], and
maintenance [24]. High initial costs may deter investment in IoT, causing organizations
to miss out on potential benefits [32,65,86].

– Technical complexity (B2): The complexity of integrating various IoT components
presents significant challenges in HL [66,87,88]. Ensuring data safety and accuracy
is crucial [23,88]. Additionally, operating IoT in remote and harsh environments can
add to the complexity [32,89,90].

– Interoperability (B3): Interoperability issues hinder the widespread use of IoT in
HL [90–92]. Data sharing problems between devices can negatively affect aid deliv-
ery [32]. Vendor lock-in due to lack of interoperability can limit scalability and raise
costs [93].

– Data privacy and security (B4): Concerns about data security and privacy are paramount
for safe and responsible IoT use in HL [23,88,94]. The risk of data breaches and privacy
issues must both be addressed [66,86,90].

– Network availability (B5): Limited network availability in remote areas poses a major
barrier to IoT use in HL [90,95]. Disruptions due to natural disasters or conflicts can
hinder effective coordination and management [31].

– Lack of power (B6): Limited power availability impedes the adoption of IoT in
HL [66,84,90]. This constraint can affect the continuous and efficient use of IoT,
especially in regions lacking reliable electricity sources [96].

– Lack of standardization (B7): The absence of standardization in IoT technologies poses
a considerable challenge to HL [24,86]. Standardization ensures interoperability and
compatibility between devices, which is critical for streamlining operations [97].
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– Data quality and accuracy (B8): Concerns about data quality and accuracy pose sub-
stantial hurdles to IoT adoption in HL [88,98]. Errors and inaccuracies can negatively
impact the efficacy of operations [84,90].

– Integration with existing systems (B9): Integrating IoT with existing systems in hu-
manitarian organizations can be a formidable task, potentially leading to data silos
and inefficient operations [23,54,65,99].

– Legal and regulatory challenges (B10): Legal and regulatory restrictions can signifi-
cantly hinder IoT adoption in HL [65,100]. These can include privacy regulations, re-
strictions on technology use, and transportation regulations across borders [32,86,90].

– Human capacity (B11): Limited human capacity to effectively use IoT technology can
impede its adoption in HL [23,88,96]. This includes the need for skills and knowledge
to operate and maintain IoT systems [100].

– Organizational resistance (B12): Resistance to change within organizations can present
a significant barrier to IoT adoption in HL [101]. Factors such as lack of familiarity
with IoT, fear of change, and cost concerns can contribute to this resistance [88,102].

3. Research Method

The present research utilized a hybrid methodology consisting of two phases, namely
the interpretive structural modeling (ISM) and decision-making trial and evaluation labora-
tory (DEMATEL). The ISM approach was utilized to construct a multi-level hierarchical
structure that identified the relationship among different factors, enabling the compre-
hension of complex relationships and prioritizing the factors under consideration. To
quantitatively measure the interactive effects of the factors, DEMATEL was used.

Although other methodologies, such as the analytic hierarchy process (AHP) and fuzzy
cognitive maps (FCM), also offer robust frameworks for analyzing complex decisions and
simulating causal relationships, respectively [103,104], ISM–DEMATEL was chosen for its
proven effectiveness in mapping and quantifying the intricate web of relationships among
barriers to technology integration. AHP provides a structured technique for organizing
and analyzing complex decisions through pairwise comparisons, and could have offered a
different perspective on the prioritization of barriers [105]. Meanwhile, FCM could have
been utilized to model the causal dynamics among the barriers, providing insights into how
changes in one factor might impact others over time [106]. The decision to employ ISM–
DEMATEL was based on a comprehensive consideration of the methodology’s strengths
in addressing the research questions, particularly its capacity to elucidate the complex
relationships among barriers to IoT integration in HL, and to quantify these interactions
for more nuanced analysis and prioritization.

In the academic literature, several scholars applied the ISM–DEMATEL approach to
investigate a wide variety of topics. For example, Kumar and Dixit [107] utilized ISM and
DEMATEL to identify and understand the hierarchical and contextual relationships among
barriers to e-waste management. The study illuminated the mutual relationship between,
and interlinking among, the barriers, highlighting the lack of public awareness about
e-waste recycling and the lack of policies addressing e-waste issues as root cause barriers.

Similarly, Xie and Liu [108] combined ISM and DEMATEL to establish a hierarchical
structure of factors influencing escalator-related incidents, and distinguished cause factors
from effect factors. The study found that factors such as safety education, behavior, and
safety rules are the most influential, and asserted that management priority should be given
according to the hierarchy level and the interaction of factors. Another study [109] applied
the ISM–DEMATEL method to study the critical success factors of knowledge management
in Iranian urban water and sewage companies. Among the studied factors, strategies
and goals had the greatest impact on success, followed by senior management support,
teamwork, and organizational culture. Manoharan et al. [110] used an integrated approach
of ISM and DEMATEL for the identification and ranking of the drivers and barriers in the
implementation of the circular economy in the automobile industry. The study found that
share/benefit and reduction of cost are the most critical drivers, and that unaware/limited
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knowledge and cost and financial constraint are the major barriers. Finally, Alzarooni
et al. [53] used the combined approach to identify the enablers of digital supply chain in
the literature and explored the contextual relationship between them. The study found
that “smart warehousing” is the most influential enabler, with high driving power and
weak dependence power. These studies support the value of the combined ISM–DEMATEL
approach in various contexts, underpinning its appropriateness for analyzing the barriers
to IoT adoption in HL.

Before beginning our research, we ensured that we obtained all necessary ethical
clearances. We strictly followed the guidelines to maintain the highest standards of research
ethics throughout our study. All data used in our research were collected responsibly,
ensuring the anonymity and confidentiality of the participants involved. No personally
identifiable information was collected or used at any point. Also, we ensured that our
study did not harm the participants in any way, and we took all the necessary precautions
to avoid any potential bias in our findings. Detailed descriptions of the ISM and DEMATEL
methodologies are provided below.

3.1. The ISM Methodology

The ISM was proposed by Warfield [111] to develop a comprehensive framework for
connecting attributes. The methodology employs an interactive learning process in which
a group of disparate elements are directly related and organized to develop a systematic
model [112]. The ISM model captures the configuration of a complex issue, system or
domain of study, using words, graphics, and discrete mathematics, and serving as a multi-
criteria decision-making tool for examining interactions and interrelationships [113]. The
ISM technique utilizes the experience, expertise, and knowledge of experts to divide a
complex system into several sub-systems or elements and form a multi-level structural
model [114]. This approach enhances both direct and indirect relationships, which increases
the accuracy of the factors under consideration, unlike when they are considered in isolation
from one another.

The methodology employed in this study to implement the ISM model is outlined in a
step-wise manner [115]. Initially, the barriers to IoT adoption in HL were identified through
a literature review and validated by expert opinions. Then, a relationship was established
among all the identified barriers. To develop a pair-wise relationship among barriers to IoT
adoption, the researchers employed a structural self-interaction matrix (SSIM), comprising
four symbols (V, A, X, and O) that represent the direction of the relationship between the
barriers (i and j).

• V indicates that barrier i impacts barrier j.
• A indicates that barrier i is impacted by barrier j.
• X indicates that barrier i and j impact each other.
• O indicates that barrier i and j do not impact each other.

Using the SSIM, an initial reachability matrix was developed and tested for transitivity.
The initial reachability matrix was constructed using binary values (0 and 1) derived from
the symbols in the SSIM, as per the following guidelines.

• V was converted to 1 in the (i, j) entry of the matrix, and to 0 in the corresponding (j,
i) entry.

• A was converted to 0 in the (i, j) entry, and to 1 in the corresponding (j, i) entry.
• X was converted to 1 in both the (i, j) and (j, i) entries.
• O was converted to 0 in both the (i, j) and (j, i) entries.

The final reachability matrix is generated by ensuring transitivity, where a barrier
‘A’ is considered similar to ‘C’ if it is related to ‘B’ and ‘B’ is related to ‘C’. This matrix is
then partitioned into levels and used to construct a directed graph. Transitive links are
eliminated from the graph, and the nodal elements are replaced with statements to create
the ISM model for barriers to IoT adoption in HL. The model is reviewed and checked for
conceptual inconsistencies.
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3.2. The DEMATEL Methodology

The DEMATEL method utilizes matrices to represent the contextual relationship
and the intensity of elements’ influence on the target system, resulting in observable
structural models that illustrate the cause-effect relationship of elements. Consequently,
the DEMATEL method has been widely utilized in various fields, including healthcare [52],
social media [116], emergency management [117], smart city [118], renewable energy [119],
and blockchain technology [51]. The DEMATEL method provides several advantages that
can aid researchers in gaining a better understanding of the nature of the problem.

The DEMATEL procedures are explained in a step-by-step manner in several sources,
such as Shieh et al. [52] and Sumrit and Anuntavoranich [120]. The first step involves
calculating the average matrix.

To collect data for the SSIM, each expert in the panel was asked to evaluate the direct
influence between any two success factors, using a scale of 0 to 3. A score of 0 meant no
influence, while 1, 2, and 3 indicated low, medium, and high influence, respectively. The
notation xij represents the expert’s assessment of how much factor i affects factor j.

When i equals j, the diagonal elements are set to zero. A non-negative n by n matrix can
be created for each respondent as Xk =

[
xk

ij

]
n×n

, where k ranges from 1 to H, representing

the number of respondents, and n is the number of factors. Thus, X1, X2, · · · , Xn−1, Xn,
and so on are the matrices from the H respondents. To combine the opinions of all H
respondents, an average matrix A =

[
aij

]
n×n can be formed as:

aij =
1
H

H

∑
k=1

xk
ij

The second step involves calculating the normalized initial direct-relation matrix
N = λA, where λ = 1

max
1 ≤i≤n

∑n
j=1 aij

. The elements in the N matrix range between 0 and

1. The third step involves computing the total relation matrix T using the formula T =

N (I − N)−1 =
[
tij
]

n×n, where I is the identity matrix.
Assuming that vector R =

[
Rj
]

1×n and D = [Di]n×1, the sum of the row can be
computed as:

D =


D1
D2
D3
...

Dn

 with Di = ∑n
j=1 tij where i = 1, 2, 3, · · · , n

To determine the column sum, the following calculation is performed:

R =
[
R1, R2, R3, . . . ,Rn

]
with Rj = ∑n

i=1 tij where j = 1, 2, 3, · · · , n

By computing the sum of the row, it is possible to determine the combined direct and
indirect influence of factor i on the remaining factors. The column sums reflect the direct
and indirect impacts of other factors on factor j. In cases where i = j, the sum of Di and
Ri provides a comprehensive overview of the total effects that factor i receives and gives,
as follows:

Di + Ri =
n

∑
j=1

tij +
n

∑
j=1

tji
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The value of factor i in the entire system reflects its degree of importance. The
difference between Di and Ri indicates the net effect of factor i on the system.

Di − Ri =
n

∑
j=1

tij −
n

∑
j=1

tji

If (D i − Ri) is positive, then factor i is a net cause; while if it is negative, factor i
is a net receiver. The final step in the DEMATEL method is to create an impact relation
matrix that visualizes the complex interrelationships between all the coordinate sets of
(Di + Ri) and (D i − Ri). This map helps researchers identify the most significant factors
that influence decision-making [50].

4. Results and Analysis

This section explains the methodology used to analyze the relationship between
barriers to IoT adoption in HL using ISM and DEMATEL. The development of the ISM
model and MICMAC analysis are presented, followed by the results of DEMATEL.

4.1. Results of ISM

To identify the significant barriers to IoT adoption in HL, the research team consulted
secondary data sources and experts in the fields of technology, computer science, HL, and
supply chain management. The team reviewed a pool of journals from various databases,
including Scopus, Web of Science, Springer, IEEE Explore, Taylor and Francis, as well
as book chapters, conference proceedings, corporate white papers, and magazines. The
identified barriers were validated by a diverse group of 14 experts. The selection process for
these experts involved a preliminary screening of their academic and professional profiles
and contributions to the relevant fields, after which they were reached out to, via emails
and LinkedIn messages. This outreach was aimed at gauging their interest and availability
to participate in the validation process. The experts who expressed interest were then
provided with an overview of the study and the role they would play in it, ensuring they
had a clear understanding of the expectations and the study’s objectives.

The demographics of the group were varied, contributing to a wide range of perspec-
tives. The group consisted of nine males and five females, with a spread across different
age groups (Table 1). In the study, three of the experts were under thirty, six were between
thirty–forty-years-old, two were in the forty–fifty-years-of-age range, and three were over
fifty-years-of-age. The educational backgrounds of these experts were also diverse, with
two bachelor’s degree holders, nine master’s degree holders, and three Ph.D holders. In
terms of their work experience, three experts had between five–ten years of experience,
seven had ten–twenty years of experience, while four had more than twenty years of
experience. Their expertise spread across multiple fields related to the study. A total of
three were senior professors from academia, five were experienced integrators of complex
systems in humanitarian logistics (HL), three were senior-level experts in the HL field, two
were data analysts, and one was a senior manager specializing in IT security. The careful
selection and outreach process ensured a thorough and comprehensive validation of the
identified barriers by leveraging the diverse expertise and perspectives of the participants.
Their collective insights were instrumental in validating the identified barriers.

The researchers shortlisted twelve barriers for the study, and the same group of
experts provided their feedback on these barriers to develop the SSIM. The researchers,
based in Saudi Arabia, moderated the discussions and compiled the information collected
for preparing the SSIM. The authors made sure that the number of selected experts for
the validation of the barriers and qualitative survey was constrained to a range of 10 to 50
experts, in accordance with prior studies [121,122].
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Table 1. Demographic information of consulted experts.

Variables Number (n = 14)

Gender

Male 9
Female 5

Age

Less than 30 years 3
30–40 years 6
40–50 2
Over 50 years 3

Educational level

Bachelor 2
Master 9
Ph.D. 3

Years of experience

5–10 years 3
10–20 years 7
20 years and above 4

Expertise field

Academia 3
Complex system integration 5
Humanitarian logistics and supply chain managers 3
Data science 2
IT security 1

Experts provided input that was used to create the SSIM, which can be seen in
Table 2 [121]. The ISM process is explained in Section 3.1, and the steps detail how to
obtain the SSIM.

Table 2. SSIM.

Barriers B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1

B1 X A V A A V V X X X X

B2 X O V A A V V X X X

B3 X O V A A V V A X

B4 X A V A A V V X

B5 X A V A A V V

B6 O O V O O O

B7 A O V O A

B8 V A V A

B9 V A V

B10 A A

B11 V

B12

The SSIM is used to create the initial reachability matrix, as seen in Table 3.
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Table 3. Initial reachability matrix.

Barriers B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

B1 1 1 1 1 1 1 1 0 0 1 0 1

B2 1 1 1 1 1 1 1 0 0 1 0 1

B3 1 1 1 1 0 1 1 0 0 1 0 1

B4 1 1 1 1 1 1 1 0 0 1 0 1

B5 1 1 1 1 1 1 1 0 0 1 0 1

B6 0 0 0 0 0 1 0 0 0 1 0 0

B7 0 0 0 0 0 0 1 0 0 1 0 0

B8 1 1 1 1 1 0 1 1 0 1 0 1

B9 1 1 1 1 1 0 0 1 1 1 0 1

B10 0 0 0 0 0 0 0 0 0 1 0 0

B11 1 0 0 1 1 0 0 1 1 1 1 1

B12 1 1 1 1 1 0 1 0 0 1 0 1

Transitivity was included in the ISM process using MATLAB software(version R2022b),
and the final reachability matrix is presented in Table 4.

Table 4. Final reachability matrix.

Barriers B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

B1 1 1 1 1 1 1 1 0 0 1 0 1

B2 1 1 1 1 1 1 1 0 0 1 0 1

B3 1 1 1 1 1 * 1 1 0 0 1 0 1

B4 1 1 1 1 1 1 1 0 0 1 0 1

B5 1 1 1 1 1 1 1 0 0 1 0 1

B6 0 0 0 0 0 1 0 0 0 1 0 0

B7 0 0 0 0 0 0 1 0 0 1 0 0

B8 1 1 1 1 1 1 * 1 1 0 1 0 1

B9 1 1 1 1 1 1 * 1 * 1 1 1 0 1

B10 0 0 0 0 0 0 0 0 0 1 0 0

B11 1 1 * 1 * 1 1 1 * 1 * 1 1 1 1 1

B12 1 1 1 1 1 1 * 1 0 0 1 0 1

1 * entry included to incorporate transitivity.

From this matrix, the reachability set, antecedent set, and intersection sets were derived
to determine the hierarchical levels. The barriers that are identified as top-level in the ISM
hierarchy are those that have the same reachability and intersection sets. After the top-level
barriers are identified, they are separated from the other barriers, and additional levels are
established. The process used to determine all the hierarchical levels is shown in Table 5,
and the resulting ISM model is displayed in Figure 1. As can be observed from the figure,
the twelve barriers to IoT adoption in HL are classified into six hierarchical levels.

To gain further insights into the relationships revealed by the ISM model, the Matrice
d’Impacts Croisés-Multiplication Appliquée à un Classement (MICMAC) analysis was
used. This analysis evaluated the driving and dependence power values for the identified
barriers based on the final reachability matrix in Table 3. The MICMAC diagram classifies
the critical barriers into four clusters: autonomous barriers, dependent barriers, linkage
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barriers, and driving barriers. The driving and dependence values of all the barriers are
plotted in Figure 2.
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Table 5. Final level partitions.

Iterations Reachability Set Antecedents Set Intersection Set Level

Iteration no. 1 1,2,3,4,5,6,7,10,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12
1,2,3,4,5,6,7,10,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12
1,2,3,4,5,6,7,10,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12
1,2,3,4,5,6,7,10,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12
1,2,3,4,5,6,7,10,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12
6,10 1,2,3,4,5,6,8,9,11,12 6
7,10 1,2,3,4,5,7,8,9,11,12 7
1,2,3,4,5,6,7,8,10,12 8,9,11 8
1,2,3,4,5,6,7,8,9,10,12 9,11 9
10 1,2,3,4,5,6,7,8,9,10,11,12 10 I
1,2,3,4,5,6,7,8,9,10,11,12 11 11
1,2,3,4,5,6,7,10,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12

Iteration no. 2 1,2,3,4,5,6,7,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12
1,2,3,4,5,6,7,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12
1,2,3,4,5,6,7,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12
1,2,3,4,5,6,7,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12
1,2,3,4,5,6,7,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12
6 1,2,3,4,5,6,8,9,11,12 6 II
7 1,2,3,4,5,7,8,9,11,12 7 II
1,2,3,4,5,6,7,8,12 8,9,11 8
1,2,3,4,5,6,7,8,9,12 9,11 9
1,2,3,4,5,6,7,8,9,11,12 11 11
1,2,3,4,5,6,7,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12

Iteration no. 3 1,2,3,4,5,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12 III
1,2,3,4,5,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12 III
1,2,3,4,5,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12 III
1,2,3,4,5,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12 III
1,2,3,4,5,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12 III
1,2,3,4,5,8,12 8,9,11 8
1,2,3,4,5,8,9,12 9,11 9
1,2,3,4,5,8,9,11,12 11 11
1,2,3,4,5,12 1,2,3,4,5,8,9,11,12 1,2,3,4,5,12 III

Iteration no. 4 8 8,9,11 8 IV
8,9 9,11 9
8,9,11 11 11

Iteration no. 5 9 9,11 9 V
9,11 11 11

Iteration no. 6 11 11 11 VI

4.2. Results of DEMATEL

The connection among the 12 barriers to IoT adoption in HL was established using
DEMATEL, a methodology that calculates the level of influence of each barrier on the
others. To develop the direct influence matrix, normalized direct influence matrix, total
relation matrix, and degree of influences, we implemented all the steps of the DEMATEL
process described in Section 3.2. Tables 6–9 present the results of the DEMATEL process.
The relationships between the barriers to IoT adoption in HL were derived from the degree
of influence and are illustrated in Figure 3 using a diagram.
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Table 6. Direct influence matrix.

Barriers B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

B1 0 2 2 1 2 2 1 2 2 2 2 2

B2 1 0 3 2 2 3 3 1 2 2 2 1

B3 1 3 0 2 2 1 2 2 3 1 1 2

B4 2 2 2 0 1 1 2 3 2 3 2 1

B5 2 2 1 1 0 2 1 1 2 1 2 1

B6 1 2 2 1 2 0 2 1 1 1 1 2

B7 1 3 3 2 1 1 0 2 3 2 2 2

B8 1 3 3 3 2 1 2 0 2 2 1 2

B9 1 3 3 2 2 1 2 2 0 1 2 2

B10 1 2 2 3 2 1 2 2 2 0 1 2

B11 1 3 2 1 1 1 2 2 2 2 0 3

B12 2 3 3 1 1 1 2 1 3 2 3 0

Table 7. Normalized direct influence matrix.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

B1 0.000 0.091 0.091 0.045 0.091 0.091 0.045 0.091 0.091 0.091 0.091 0.091

B2 0.045 0.000 0.136 0.091 0.091 0.136 0.136 0.045 0.091 0.091 0.091 0.045

B3 0.045 0.136 0.000 0.091 0.091 0.045 0.091 0.091 0.136 0.045 0.045 0.091

B4 0.091 0.091 0.091 0.000 0.045 0.045 0.091 0.136 0.091 0.136 0.091 0.045

B5 0.091 0.091 0.045 0.045 0.000 0.091 0.045 0.045 0.091 0.045 0.091 0.045

B6 0.045 0.091 0.091 0.045 0.091 0.000 0.091 0.045 0.045 0.045 0.045 0.091

B7 0.045 0.136 0.136 0.091 0.045 0.045 0.000 0.091 0.136 0.091 0.091 0.091

B8 0.045 0.136 0.136 0.136 0.091 0.045 0.091 0.000 0.091 0.091 0.045 0.091

B9 0.045 0.136 0.136 0.091 0.091 0.045 0.091 0.091 0.000 0.045 0.091 0.091

B10 0.045 0.091 0.091 0.136 0.091 0.045 0.091 0.091 0.091 0.000 0.045 0.091

B11 0.045 0.136 0.091 0.045 0.045 0.045 0.091 0.091 0.091 0.091 0.000 0.136

B12 0.091 0.136 0.136 0.045 0.045 0.045 0.091 0.045 0.136 0.091 0.136 0.000

Table 8. Total influence matrix.

Barriers B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 Row Total
(D-Values)

B1 0.643 1.345 1.270 0.938 0.916 0.791 1.029 0.950 1.183 0.945 0.956 0.986 11.952

B2 0.742 1.371 1.411 1.055 0.987 0.890 1.193 0.990 1.280 1.020 1.029 1.025 12.991

B3 0.701 1.410 1.215 0.998 0.932 0.767 1.090 0.970 1.247 0.926 0.938 0.999 12.191

B4 0.769 1.433 1.355 0.964 0.935 0.798 1.137 1.056 1.261 1.049 1.013 1.010 12.781

B5 0.603 1.102 1.003 0.763 0.673 0.658 0.840 0.745 0.970 0.741 0.790 0.774 9.661

B6 0.569 1.112 1.051 0.771 0.761 0.578 0.886 0.749 0.944 0.747 0.757 0.817 9.742

B7 0.763 1.539 1.458 1.091 0.977 0.835 1.108 1.060 1.359 1.052 1.062 1.094 13.399

B8 0.761 1.524 1.443 1.121 1.008 0.831 1.181 0.969 1.311 1.046 1.016 1.081 13.291

B9 0.729 1.467 1.388 1.036 0.968 0.798 1.134 1.009 1.175 0.965 1.014 1.041 12.723

B10 0.701 1.367 1.292 1.035 0.928 0.762 1.086 0.971 1.205 0.882 0.934 0.997 12.159
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Table 8. Cont.

Barriers B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 Row Total
(D-Values)

B11 0.705 1.423 1.311 0.968 0.899 0.772 1.101 0.976 1.220 0.974 0.901 1.050 12.300

B12 0.798 1.531 1.448 1.042 0.971 0.833 1.184 1.014 1.352 1.045 1.096 1.008 13.323

Column total
(R values) 8.483 16.624 15.646 11.781 10.954 9.312 12.967 11.460 14.509 11.391 11.504 11.882 146.513

Table 9. Degree of influence.

Barriers Row Total (D) Column Total (R) D+R Values D−R Values

B1 11.952 8.483 20.435 3.468

B2 12.991 16.624 29.616 −3.633

B3 12.191 15.646 27.837 −3.455

B4 12.781 11.781 24.562 1.000

B5 9.661 10.954 20.615 −1.292

B6 9.742 9.312 19.055 0.430

B7 13.399 12.967 26.366 0.432

B8 13.291 11.460 24.751 1.832

B9 12.723 14.509 27.231 −1.786

B10 12.159 11.391 23.550 0.768

B11 12.300 11.504 23.804 0.796

B12 13.323 11.882 25.205 1.441
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5. Findings and Discussion

The original aim of the ISM model was to acquire a hierarchy of levels for barriers to
IoT adoption in HL, which would provide practitioners in the HL field with information
regarding the dependency relationships between IoT barriers. This information would
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aid in overcoming obstacles in implementing the technology in HL by concentrating on
the critical adoption barriers. The results of this study are noteworthy as they reveal six
distinct hierarchical levels that describe the relationships among the identified IoT barriers.
At the top of this hierarchy, legal and regulatory challenges (B10) emerged as the most
influential factor in IoT adoption in HL. This factor encompasses a variety of legal and
regulatory aspects including, but not limited to, laws and regulations concerning data
privacy, standards for IoT device operation, and rules regarding the use of technology
across different regions or jurisdictions. Its position at the top level of the hierarchy implies
its significance and how it is affected by the cumulative effects of all the other barriers
situated beneath it in the hierarchy. This indicates that to successfully integrate IoT into HL,
regulatory and legal issues need to be addressed comprehensively. This could potentially
trigger a cascading effect, easing other barriers down the hierarchy.

On the second level of the hierarchy are two key barriers: lack of power (B6) and lack of
standardization (B7). Lack of power, in this context, refers specifically to the availability of
electricity, which is essential for the operation of any IoT device. In many humanitarian con-
texts, consistent access to reliable power sources can be a significant challenge, and without
it, the deployment of IoT devices could be severely restricted. Lack of standardization (B7)
refers to the absence of common protocols or interfaces, which results in interoperability is-
sues between different IoT systems and devices. Without standardization, the effectiveness
of IoT devices could be compromised due to communication difficulties between them.
The placement of these two barriers at the second level suggests that they are influenced by
all the barriers at the lower levels. Simultaneously, they significantly impact the highest
barrier—legal and regulatory challenges (B10). These barriers’ interplay highlights the
multifaceted nature of the challenges involved in IoT adoption in HL, emphasizing the
need for a comprehensive strategy that addresses these barriers not individually but as
part of an interdependent system to promote greater IoT adoption in the field of HL.

At the third level, we have a relatively dense cluster of six barriers, all of which
interact with each other in a reciprocal manner. These barriers include interoperability (B3),
network availability (B5), cost (B1), technical complexity (B2), data privacy and security
(B4), and organizational resistance (B12). The complexity of this level signifies the intricacy
of IoT adoption in HL, with many moving parts interwoven and influencing one another.
However, a unique dynamic emerges beneath this complex level. Three critical barriers—
data quality and accuracy (B8), integration with existing systems (B9), and human capacity
(B11)—reside in the subsequent levels. These barriers are distinctive as they hold the most
substantial driving power among all identified barriers. That is, they have the greatest
influence over all other barriers in the system.

Data quality and accuracy (B8) reflect the fundamental need for reliable and precise
information in IoT systems. Poor quality or inaccurate data could drastically undermine
the effectiveness of these systems. Integration with existing systems (B9) underscores
the challenge of incorporating new IoT solutions into established HL infrastructures and
processes. Lastly, human capacity (B11) points to the skills, training, and expertise required
to implement and maintain IoT systems effectively. These three barriers, given their
driving power, are instrumental in the adoption of IoT in the HL field. Addressing these
barriers could potentially trigger a domino effect, easing the other barriers and thereby
smoothing the path for more effective and widespread adoption of IoT in HL. Their strategic
importance cannot be overstated, as improvements in these areas would likely reverberate
through the entire hierarchy, potentially lightening the challenges associated with the
other barriers.

The MICMAC analysis, used to discern the dependencies among the twelve identified
barriers to IoT adoption in HL, segregates the barriers into three distinct clusters. When
comparing these clusters, each presents a unique set of characteristics, representing dif-
ferent degrees of interaction and influence over the IoT adoption process in the HL field.
Interestingly, the first cluster, termed autonomous barriers, remains empty, signifying that
none of the barriers operate in isolation. This unique finding underscores the complexity
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of IoT adoption in the HL field. It tells us that all the barriers are intricately connected,
making their impact and influence on the adoption process more pervasive. When viewed
in this light, it becomes evident that any intervention to facilitate IoT adoption in the field
of HL must be holistic, taking into account the interconnected nature of these barriers.
Next, Cluster II, referred to as dependent barriers, is characterized by barriers with high
dependence power and low driving power. These barriers, namely lack of power (B6),
lack of standardization (B7), and legal and regulatory challenges (B10), hold a significant
position in the adoption process. Comparatively, they are more dependent on the influence
of other barriers and carry considerable weight due to their high impact on IoT adoption in
HL. Due to their dependency, they require high-priority attention and support from the HL
practitioners and managers, to reduce their effect on the IoT adoption process.

Cluster III, or linkage barriers, includes barriers with both high dependence power
and high driving power. This combination renders them as sensitive factors that can induce
ripple effects in the system when altered. The barriers in this cluster, including cost (B1),
technical complexity (B2), interoperability (B3), data privacy and security (B4), network
availability (B5), and organizational resistance (B12), are volatile due to their high influence
on and __dependence from other barriers. Thus, when addressing these barriers, it becomes
vital to be cognizant of their sensitivity and potential to create significant ripple effects
that can impact the entire system. Finally, we have Cluster IV, the driving barriers. These
barriers, characterized by low dependence power and high driving power, exert a high
level of influence on the entire system. This cluster includes data quality and accuracy (B8),
integration with existing systems (B9), and human capacity (B11). They are positioned in a
way that they can shape the behavior of all other barriers across all hierarchical levels. As
such, they demand meticulous handling from HL managers. Any changes to these barriers
are likely to lead to pervasive effects on all other barriers, making them a critical focus
point in efforts to increase the adoption of IoT in the HL field.

The ISM approach, despite offering valuable insights into the hierarchical relationships
and interdependencies among the barriers to IoT adoption in HL, does not provide a
quantitative measure of the extent of influence between these barriers. To address this
gap, we employed the DEMATEL technique, which is a quantitative method that offers
a more granular perspective by measuring the extent of the interactive effects among the
barriers. By applying the D+R and D-R values extracted from the DEMATEL method,
we can distinctively classify the barriers into ‘cause’ and ‘effect’ categories. This vital
distinction allows us to understand which barriers primarily exert influence (‘cause’), and
separate them from those predominantly influenced by others (‘effect’) in the complex
process of IoT adoption in HL.

In this comparative analysis, ‘technical complexity’ (B2) surfaced as the most influen-
tial barrier, demonstrating the highest D+R value among all barriers. This elevated value
signifies a broad influence over the other barriers, positioning technical complexity as a
cardinal driving factor in shaping the landscape of barriers in HL’s IoT adoption. Interpret-
ing the implications of technical complexity requires comprehension of its multi-faceted
nature in the IoT context. The inherent complexity encompasses intricate system integration
demands, the need for specialized technical skills, and challenges in managing diverse IoT
devices, which all contribute to the ‘technical complexity’ barrier. However, this complexity
does not function in isolation. It significantly influences other barriers. For instance, the
heightened energy requirements associated with technically complex operations could
worsen the ‘lack of power’ problem (B6). Likewise, the intricacies involved in regulating
sophisticated technologies could intensify the ‘legal and regulatory challenges’ (B10).

When interpreting the interconnected nature of these barriers, it is clear that any
strategy aimed at overcoming the barriers to IoT adoption in HL should prioritize ad-
dressing ‘technical complexity’ (B2). By mitigating this key barrier, HL managers could
potentially reduce the impact of several other barriers due to its central influential role.
This understanding underscores the necessity of a comprehensive understanding of both
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the individual barriers and the interconnected web they form, which will help to effectively
navigate the path towards successful IoT adoption in HL.

Another comparative analysis of the D-R values reveals that the barriers cost (B1) and
lack of power (B6) emerge as significant net causes within the system. These barriers do
not merely exist as individual challenges; rather, they exert considerable influence over
the other barriers in the adoption of IoT in HL. The high cost of IoT implementation (B1),
including investment in hardware, software, training, and maintenance, can undoubtedly
be a deterrent for many organizations. This barrier could further influence other barriers,
such as ‘technical complexity’ (B2), ‘lack of standardization’ (B7), and ‘integration with
existing systems’ (B9), due to the inherent financial constraints associated with addressing
these issues. Similarly, lack of power (B6), a substantial issue in many regions where
HL operations are critical, could exacerbate ‘network availability’ (B5) and ‘data quality
and accuracy’ (B8) barriers, given that both network and data operations are significantly
dependent on reliable power supply.

On the receiving end, addressing the ‘cost’ and ‘lack of power’ barriers promptly
could prompt a cascading effect of reducing the influence on other barriers, potentially
simplifying the path to IoT adoption. Organizations may be more willing and capable
of adopting IoT in their operations, leading to improvements in the management and
efficiency of HL. This adoption can subsequently contribute to quicker response times and
a more effective deployment of resources, thereby enhancing the overall performance and
impact of HL operations.

Research Implications

In the HL context, organizations are facing increasing pressure to respond quickly
and effectively to natural disasters, conflicts, and other humanitarian crises. The adoption
of new technologies, such as IoT, can help organizations better understand and manage
their operations, from supply chain management to disaster response. However, these
technologies require significant investments in terms of technology, human resources, and
financial capital. Embracing IoT can provide organizations with real-time data and insights,
enabling them to make informed decisions and respond more effectively to crises. As data-
centric approaches to HL are anticipated to become increasingly essential, humanitarian
organizations may struggle to keep up with their peers if they fail to adopt IoT. In this study,
we investigate the barriers to IoT adoption in HL using ISM and DEMATEL approaches.
The results indicate that legal and regulatory challenges are significant barriers to IoT
adoption in HL. Specifically, there are no clear regulations and guidelines surrounding the
deployment of IoT in HL. Unlike in other industries, such as retail or manufacturing [36],
where there may be more established legal and regulatory frameworks in place, IoT use
in HL is still in its nascent stages [65], and there are few established guidelines governing
its implementation. This lack of clarity can lead to uncertainty and hesitation among HL
managers who may be concerned about potential legal and ethical issues that could arise
from IoT in humanitarian contexts [72,100,123]. For example, several questions related
to data privacy and security or concerns around the use of the technology in HL settings
can arise. In addition, the absence of clear guidelines can also make it challenging for HL
managers to make informed decisions around the implementation of IoT systems because
they may not know what best practices to follow and what legal requirements to comply
with. To address these challenges and harness the full potential of IoT, it is crucial for HL
managers and practitioners to engage in active dialogue with regulatory bodies to advocate
for the establishment of clear, pragmatic guidelines and standards for IoT implementation
in humanitarian settings. This collaborative approach can facilitate a smoother adoption
process, ensuring that IoT technologies are leveraged effectively to enhance operational
efficiency and improve disaster response outcomes.

Furthermore, it is important for regulatory bodies and other HL stakeholders to col-
laborate to establish clear guidelines and regulations around IoT use in HL. This could
involve developing standards and best practices for data privacy and security, as well
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as guidelines for the appropriate use of the technology in HL. In the case of IoT devices
to monitor and track the distribution of emergency supplies, there are no standardized
protocols or frameworks for data collection, analysis, and sharing. If one humanitarian
organization uses data collection protocols that are different to those applied by another
organization, it can be challenging to integrate the data and achieve a comprehensive
understanding of the humanitarian supply chain. Additionally, the absence of standard-
ized frameworks can result in data inconsistencies or quality issues, which can lead to
delays or mistakes in the delivery of aid and relief supplies. Practically, HL organizations
should prioritize interoperability and standardization in their IoT initiatives, potentially
through sector-wide collaborations, to ensure that data and system compatibilities are
addressed from the outset. This strategic focus not only aids in operational coordination
but also enhances the collective efficacy of humanitarian responses. Another area where
regulations are lacking is the use of IoT-enabled devices and sensors in disaster response
and management. For instance, there is currently no clear guidance on how to use IoT
data to predict and mitigate the impact of natural disasters or how to manage the influx of
data generated by multiple devices during a crisis. As a result, by establishing supportive
regulations and clear guidance for managers, it may be possible to overcome some of the
hesitation and uncertainty around IoT implementation and encourage more widespread
adoption of the technologies in HL.

One of the significant results of this study is that interoperability, lack of standardiza-
tion, and integration with existing systems are influenced by legal and regulatory challenges.
For managers in the HL sector, addressing these challenges head-on by collaborating with
technology providers and regulatory agencies can pave the way for creating more cohesive
and interoperable IoT ecosystems. Such proactive management practices are essential for
enhancing the resilience and responsiveness of humanitarian operations to global crises. In
the realm of interoperability, legal and regulatory challenges are more pronounced, as IoT
devices from different manufacturers and vendors may not be compatible with another one
or with existing systems [91,92]. As a result, this can make it difficult to achieve interoper-
ability between devices from different disaster-stricken regions or between devices that
were designed to meet different regulatory requirements. Similarly, regulations related to
data and privacy can impact interoperability. For example, regulations may require certain
levels of data encryption or access control for IoT devices, thereby creating compatibility
issues with other devices that do not meet those requirements. Since aid agencies and
relief organizations can rely on different IoT devices and systems to monitor and track the
distribution of emergency supplies (e.g., food, water, medicine, medical equipment, etc.),
the lack of interoperability can hinder the integration of these devices and systems into a
cohesive network, leading to duplication of efforts, and also contributing to inefficiencies
and delays in the delivery of aid [23].

Besides interoperability, lack of standardization is influenced by legal and regulatory
challenges. One example of how regulations can hinder standardization is the requirement
for different data collection and reporting standards in different countries or regions [86].
Inconsistencies in data collection and reporting can lead to difficulties in comparing and an-
alyzing data across different HL systems, thus affecting decision-making in relief operations.
This can be particularly problematic in the context of cross-border aid delivery, where differ-
ent countries have different regulations and data collection requirements. Furthermore, the
lack of a unified legal framework for IoT devices can affect standardization. Without clear
and comprehensive legal frameworks, there may be differences in the way IoT devices are
manufactured and used, leading to divergences in standards and interoperability. Thus, a
fragmented IoT landscape can make it challenging to develop and implement standardized
IoT systems in HL. As regulations around the use and adoption of IoT technologies in
certain disaster or conflict zones may not be available, it is difficult to establish standard
operating procedures for IoT use in these contexts. Finally, legal and regulatory factors
are significant barriers to the integration of IoT devices and systems with existing HL and
management software, supply chain management systems, and communication networks
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in HL. In order to address this issue, regulations should be put in place to ensure that IoT
devices are manufactured according to common standards and specifications, which would
help to facilitate integration between different HL systems [23].

6. Conclusions, Limitations, and Future Research

The integration of IoT into the domain of HL presents a wealth of possibilities for
improved supply chain visibility and optimized aid distribution, thereby magnifying the
effectiveness of humanitarian efforts. The present study has meticulously identified and
critically analyzed a dozen barriers to the adoption of IoT in the HL arena, further stratifying
them based on their driving and dependence powers using the ISM method. A subsequent
application of the DEMATEL technique enabled the classification of these barriers into
causal or resultant groups, enriching our understanding of their interrelationships and
implications for HL managers. Our findings suggest that key causal barriers—including
lack of standardization (B7), organizational resistance (B12), data quality and accuracy
(B8), and legal and regulatory challenges (B10)—warrant significant attention from HL
practitioners. Addressing these barriers is deemed more impactful than concentrating on
the primary effect barriers, such as technical complexity (B2), interoperability (B3), and
integration with existing systems (B9).

Our study’s conclusions prompt us to present strategic recommendations that pri-
marily aim at attenuating the cause barriers identified. These barriers significantly impact
IoT adoption in HL, thereby necessitating concerted and targeted efforts to resolve them
effectively. Firstly, we recommend the establishment and implementation of standardized
protocols for IoT devices. Interoperability, or the ability of different IoT systems and de-
vices to work seamlessly together, is crucial to the successful deployment of IoT in the HL
field. However, the lack of standardization (B7) is a prominent barrier that impedes this
interoperability, leading to technical complexities that can stunt the effectiveness of IoT.
Therefore, HL managers should prioritize efforts towards developing and promoting the
use of universal protocols that enable disparate IoT devices to communicate and operate
effectively within a unified system. This could involve collaborating with IoT vendors,
technology experts, and other relevant stakeholders to create and adopt these standards.
Secondly, organizational resistance (B12) stands as a substantial barrier to IoT adoption.
This resistance often stems from a lack of understanding about IoT’s benefits, fear of change,
and concerns about the potential disruptions that the adoption of new technology might
cause. Therefore, HL managers should proactively manage this resistance by engaging in
continuous communication and training. They could clarify the benefits of IoT adoption,
provide adequate training to build the necessary skills, and involve employees in the adop-
tion process to encourage buy-in and reduce resistance. Thirdly, the quality and accuracy of
data (B8) are essential to leveraging the full potential of IoT. Erroneous or low-quality data
can lead to incorrect decision-making, reducing the overall effectiveness of HL operations.
Hence, it is crucial for HL managers to put in place robust data management practices
that ensure the reliability, accuracy, and timeliness of the data generated by IoT devices.
This could involve deploying advanced data validation and cleaning techniques, investing
in data quality tools, and training staff on the importance of data accuracy. Finally, we
recommend active engagement with regulatory bodies to shape a favorable legal frame-
work for IoT adoption. Legal and regulatory challenges (B10) can create an environment of
uncertainty that inhibits HL stakeholders from investing in IoT. To overcome this barrier,
HL managers should actively participate in discussions and advocacy efforts with regula-
tory authorities to develop clear, comprehensive, and supportive legal frameworks that
facilitate IoT adoption. This could involve educating policymakers about the benefits and
challenges of IoT, lobbying for supportive regulations, and partnering with legal experts to
ensure compliance with existing laws while pushing for necessary reforms. In summary,
tackling these cause barriers through the development of standardized protocols, proac-
tive management of organizational resistance, improvement of data quality and accuracy,
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and active engagement with regulatory bodies can significantly enhance the prospects for
successful IoT adoption in HL.

Despite the valuable insights obtained from this preliminary study, several limitations
should be considered when interpreting the findings. Firstly, this study is limited to
a single case study and may not be representative of the broader HL context. Future
research could explore the barriers to IoT adoption across different disaster scenarios and
geographical locations to provide a more comprehensive understanding of the issues faced
by HL managers. Secondly, the weights used in the ISM and DEMATEL models were
based on the judgments of experts from the HL field, which may be biased and subject
to personal interpretations. Future research could rely on a larger sample size or conduct
empirical surveys to obtain more accurate weights and validate the identified relationships
between IoT barriers. Moving forward, several future research directions can be explored
in the field of IoT applications in HL. Firstly, scholars could examine the potential benefits
and limitations of integrating IoT solutions with other emerging technologies, such as AI,
blockchain technology, and machine learning, to improve the efficiency and effectiveness
of disaster relief operations [124–128]. Secondly, future research opportunities include
investigating the impact of cultural and social factors on the adoption of IoT in different
HL contexts, as these factors can significantly impact the acceptance and deployment of
new technologies. Thirdly, the study identified the lack of standardization as a critical
barrier to IoT adoption in HL. Accordingly, future studies could explore the development
of standardized protocols and frameworks for IoT systems to improve interoperability
and reduce technical complexities in HL. Finally, researchers could also investigate the
ethical and social implications of IoT adoption in HL, including issues associated with data
security, privacy, and accountability. Addressing these research gaps will offer valuable
insights and contribute to the development of effective strategies for the effective adoption
and implementation of IoT in HL.
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10. Şahin, A.; Alp Ertem, M.; Emür, E. Using Containers as Storage Facilities in Humanitarian Logistics. J. Humanit. Logist. Supply
Chain Manag. 2014, 4, 286–307. [CrossRef]

11. Suzuki, Y. Impact of Material Convergence on Last-Mile Distribution in Humanitarian Logistics. Int. J. Prod. Econ. 2020, 223,
107515. [CrossRef]

12. Gunasekaran, A.; Dubey, R.; Fosso Wamba, S.; Papadopoulos, T.; Hazen, B.T.; Ngai, E.W.T. Bridging Humanitarian Operations
Management and Organisational Theory. Int. J. Prod. Res. 2018, 56, 6735–6740. [CrossRef]

13. Rodríguez-Espíndola, O.; Chowdhury, S.; Beltagui, A.; Albores, P. The Potential of Emergent Disruptive Technologies for
Humanitarian Supply Chains: The Integration of Blockchain, Artificial Intelligence and 3D Printing. Int. J. Prod. Res. 2020, 58,
4610–4630. [CrossRef]

14. Vitoriano, B. Humanitarian Logistics. In Handbook of Disaster Risk Reduction & Management; World Scientific: Singapore, 2016;
pp. 745–772, ISBN 978-981-320-794-3.

15. Prakash, C.; Roy, V.; Charan, P. Mitigating Interorganizational Conflicts in Humanitarian Logistics Collaboration: The Roles
of Contractual Agreements, Trust and Post-Disaster Environmental Uncertainty Phases. Int. J. Logist. Manag. 2021, 33, 28–52.
[CrossRef]

16. Vega, D.; Roussat, C. Toward a Conceptualization of Humanitarian Service Providers. Int. J. Logist. Manag. 2019, 30, 929–957.
[CrossRef]

17. Rejeb, A.; Rejeb, K.; Keogh, J.G. A Bibliometric Analysis of Humanitarian Logistics. Acta Tech. Jaurinensis 2022, 15, 74–90.
[CrossRef]

18. Gupta, S.; Starr, M.K.; Farahani, R.Z.; Matinrad, N. Disaster Management from a POM Perspective: Mapping a New Domain.
Prod. Oper. Manag. 2016, 25, 1611–1637. [CrossRef]

19. Sahinyazan, F.G.; Rancourt, M.; Verter, V. Improving Transportation Procurement in the Humanitarian Sector: A Data-driven
Approach for Abnormally Low Bid Detection. Prod. Oper. Manag. 2021, 30, 1082–1109. [CrossRef]

20. Apte, A. Humanitarian Logistics: A New Field of Research and Action. Found. Trends®Technol. Inf. Oper. Manag. 2010, 3, 1–100.
[CrossRef]

21. Oloruntoba, R.; Gray, R. Humanitarian Aid: An Agile Supply Chain? Supply Chain Manag. Int. J. 2006, 11, 115–120. [CrossRef]
22. Hashemi Petrudi, S.H.; Tavana, M.; Abdi, M. A Comprehensive Framework for Analyzing Challenges in Humanitarian Supply

Chain Management: A Case Study of the Iranian Red Crescent Society. Int. J. Disaster Risk Reduct. 2020, 42, 101340. [CrossRef]
23. Akhtar, P.; Osburg, V.-S.; Kabra, G.; Ullah, S.; Shabbir, H.; Kumari, S. Coordination and Collaboration for Humanitarian

Operational Excellence: Big Data and Modern Information Processing Systems. Prod. Plan. Control 2022, 33, 705–721. [CrossRef]
24. Aranda, D.A.; Fernandez, L.M.M.; Stantchev, V. Integration of Internet of Things (IoT) and Blockchain to Increase Humanitarian

Aid Supply Chains Performance. In Proceedings of the ICTIS 2019—5th International Conference on Transportation Information
and Safety, Liverpool, UK, 14–17 July 2019; pp. 140–145.

25. Beamon, B.M.; Kotleba, S.A. Inventory Management Support Systems for Emergency Humanitarian Relief Operations in South
Sudan. Int. J. Logist. Manag. 2006, 17, 187–212. [CrossRef]

26. Ghadge, A. ICT-Enabled Approach for Humanitarian Disaster Management: A Systems Perspective. Int. J. Logist. Manag. 2023,
34, 1543–1565. [CrossRef]

27. He, L.; Liu, S.; Shen, Z.M. Smart Urban Transport and Logistics: A Business Analytics Perspective. Prod. Oper. Manag. 2022, 31,
3771–3787. [CrossRef]

28. Iqbal, T.; Ahmad, S. Transparency in Humanitarian Logistics and Supply Chain: The Moderating Role of Digitalisation. J. Humanit.
Logist. Supply Chain Manag. 2022, 12, 425–448. [CrossRef]

29. Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H. Humanitarian Drones: A Review and Research Agenda. Internet Things Neth. 2021,
16, 100434. [CrossRef]

30. Wagner, S.M.; Ramkumar, M.; Kumar, G.; Schoenherr, T. Supporting Disaster Relief Operations through RFID: Enabling Visibility
and Coordination. Int. J. Logist. Manag. 2024; ahead-of-print. [CrossRef]

31. Ehsani, B.; Karimi, H.; Bakhshi, A.; Aghsami, A.; Rabbani, M. Designing Humanitarian Logistics Network for Managing Epidemic
Outbreaks in Disasters Using Internet-of-Things. A Case Study: An Earthquake in Salas-e-Babajani City. Comput. Ind. Eng. 2023,
175, 108821. [CrossRef]

32. Khan, M.; Imtiaz, S.; Parvaiz, G.S.; Hussain, A.; Bae, J. Integration of Internet-of-Things with Blockchain Technology to Enhance
Humanitarian Logistics Performance. IEEE Access 2021, 9, 25422–25436. [CrossRef]

33. Rejeb, A.; Keogh, J.G.; Treiblmaier, H. Leveraging the Internet of Things and Blockchain Technology in Supply Chain Management.
Future Internet 2019, 11, 161. [CrossRef]

34. Rejeb, A.; Rejeb, K.; Treiblmaier, H.; Appolloni, A.; Alghamdi, S.; Alhasawi, Y.; Iranmanesh, M. The Internet of Things (IoT) in
Healthcare: Taking Stock and Moving Forward. Internet Things 2023, 22, 100721. [CrossRef]

35. Bhatti, A.; Malik, H.; Kamal, A.Z.; Aamir, A.; Alaali, L.A.; Ullah, Z. Much Needed Business Digital Transformation through Big
Data, Internet of Things and Blockchain Capabilities: Implications for Strategic Performance in Telecommunication Sector. Bus.
Process Manag. J. 2021, 27, 1854–1873. [CrossRef]

https://doi.org/10.1016/j.ijpe.2017.03.024
https://doi.org/10.1108/JHLSCM-08-2013-0029
https://doi.org/10.1016/j.ijpe.2019.107515
https://doi.org/10.1080/00207543.2018.1551958
https://doi.org/10.1080/00207543.2020.1761565
https://doi.org/10.1108/IJLM-06-2021-0318
https://doi.org/10.1108/IJLM-04-2018-0091
https://doi.org/10.14513/actatechjaur.00647
https://doi.org/10.1111/poms.12591
https://doi.org/10.1111/poms.13293
https://doi.org/10.1561/0200000014
https://doi.org/10.1108/13598540610652492
https://doi.org/10.1016/j.ijdrr.2019.101340
https://doi.org/10.1080/09537287.2020.1834126
https://doi.org/10.1108/09574090610689952
https://doi.org/10.1108/IJLM-11-2021-0532
https://doi.org/10.1111/poms.13775
https://doi.org/10.1108/JHLSCM-04-2021-0029
https://doi.org/10.1016/j.iot.2021.100434
https://doi.org/10.1108/IJLM-12-2022-0480
https://doi.org/10.1016/j.cie.2022.108821
https://doi.org/10.1109/ACCESS.2021.3054771
https://doi.org/10.3390/fi11070161
https://doi.org/10.1016/j.iot.2023.100721
https://doi.org/10.1108/BPMJ-12-2020-0553


Logistics 2024, 8, 38 23 of 26

36. Rejeb, A.; Simske, S.; Rejeb, K.; Treiblmaier, H.; Zailani, S. Internet of Things Research in Supply Chain Management and Logistics:
A Bibliometric Analysis. Internet Things 2020, 12, 100318. [CrossRef]

37. Bag, S.; Rahman, M.S.; Srivastava, G.; Giannakis, M.; Foropon, C. Data-Driven Digital Transformation and the Implications for
Antifragility in the Humanitarian Supply Chain. Int. J. Prod. Econ. 2023, 266, 109059. [CrossRef]

38. Bi, Z.; Jin, Y.; Maropoulos, P.; Zhang, W.-J.; Wang, L. Internet of Things (IoT) and Big Data Analytics (BDA) for Digital
Manufacturing (DM). Int. J. Prod. Res. 2023, 61, 4004–4021. [CrossRef]

39. Flores-García, E.; Jeong, Y.; Liu, S.; Wiktorsson, M.; Wang, L. Enabling Industrial Internet of Things-Based Digital Servitization in
Smart Production Logistics. Int. J. Prod. Res. 2023, 61, 3884–3909. [CrossRef]

40. Qu, T.; Thürer, M.; Wang, J.; Wang, Z.; Fu, H.; Li, C.; Huang, G.Q. System Dynamics Analysis for an Internet-of-Things-Enabled
Production Logistics System. Int. J. Prod. Res. 2017, 55, 2622–2649. [CrossRef]

41. Espinosa, J. DevExplains: The “Internet of Things”. Available online: https://www.devex.com/news/sponsored/devexplains-
the-internet-of-things-89765 (accessed on 16 March 2024).

42. SweetSense Drought Resilience—SweetSense Inc. Available online: https://sweetsense.space/applications/drought-resilience/
(accessed on 16 March 2024).

43. U.S. Department of State Remarks on Global Alliance for Clean Cookstoves at the Clinton Global Initiative. Available online:
https://2009-2017.state.gov/secretary/20092013clinton/rm/2010/09/147500.htm (accessed on 16 March 2024).

44. Mottl, J. Wireless Sensor-Based Program Aims to Stem Ebola|Fierce Healthcare. Available online: https://www.fiercehealthcare.
com/mobile/wireless-sensor-based-program-aims-to-stem-ebola (accessed on 16 March 2024).

45. Yang, L.; Yang, S.H.; Plotnick, L. How the Internet of Things Technology Enhances Emergency Response Operations. Technol.
Forecast. Soc. Chang. 2013, 80, 1854–1867. [CrossRef]

46. Klann, M. Tactical Navigation Support for Firefighters: The LifeNet Ad-Hoc Sensor-Network and Wearable System. In Proceedings
of the Mobile Response; Löffler, J., Klann, M., Eds.; Springer: Berlin, Heidelberg, 2009; pp. 41–56.

47. Xu, R.; Yang, L.; Yang, S.-H. Architecture Design of Internet of Things in Logistics Management for Emergency Response. In
Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things
and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013; pp. 395–402.

48. Huang, D.; Wang, S.; Liu, Z. A Systematic Review of Prediction Methods for Emergency Management. Int. J. Disaster Risk Reduct.
2021, 62, 102412. [CrossRef]

49. Dhyani, K.; Guhan, T.; Gupta, P.; Bhachawat, S.; Ganapathy, G.P.; Srinivasan, K. Applications of IoT and Cloud Comput-
ing: A COVID-19 Disaster Perspective. In New Frontiers in Cloud Computing and Internet of Things; Internet Things; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 287–322. [CrossRef]

50. Kamble, S.S.; Gunasekaran, A.; Sharma, R. Modeling the Blockchain Enabled Traceability in Agriculture Supply Chain. Int. J. Inf.
Manag. 2020, 52, 101967. [CrossRef]

51. Rejeb, A.; Zailani, S.; Rejeb, K.; Treiblmaier, H.; Keogh, J.G. Modeling Enablers for Blockchain Adoption in the Circular Economy.
Sustain. Futur. 2022, 4, 100095. [CrossRef]

52. Shieh, J.-I.; Wu, H.-H.; Huang, K.-K. A DEMATEL Method in Identifying Key Success Factors of Hospital Service Quality. Knowl.
Based Syst. 2010, 23, 277–282. [CrossRef]

53. Alzarooni, A.M.; Khan, S.A.; Gunasekaran, A.; Mubarik, M.S. Enablers for Digital Supply Chain Transformation in the Service
Industry. Ann. Oper. Res. 2022, 1–25. [CrossRef]

54. Ben-Daya, M.; Hassini, E.; Bahroun, Z. Internet of Things and Supply Chain Management: A Literature Review. Int. J. Prod. Res.
2019, 57, 4719–4742. [CrossRef]

55. Xhafa, F.; Aly, A.; Juan, A.A. Allocation of Applications to Fog Resources via Semantic Clustering Techniques: With Scenarios
from Intelligent Transportation Systems. Computing 2021, 103, 361–378. [CrossRef]

56. Dobre, C.; Xhafa, F. Intelligent Services for Big Data Science. Future Gener. Comput. Syst. 2014, 37, 267–281. [CrossRef]
57. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A Survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
58. Martín-Lopo, M.M.; Boal, J.; Sánchez-Miralles, Á. A Literature Review of IoT Energy Platforms Aimed at End Users. Comput.

Netw. 2020, 171, 107101. [CrossRef]
59. Chanal, P.M.; Kakkasageri, M.S. Security and Privacy in IoT: A Survey. Wirel. Pers. Commun. 2020, 115, 1667–1693. [CrossRef]
60. Bansal, S.; Kumar, D. IoT Ecosystem: A Survey on Devices, Gateways, Operating Systems, Middleware and Communication. Int.

J. Wirel. Inf. Netw. 2020, 27, 340–364. [CrossRef]
61. Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H.; Zailani, S. The Big Picture on the Internet of Things and the Smart City: A Review

of What We Know and What We Need to Know. Internet Things Neth. 2022, 19, 100565. [CrossRef]
62. Bandyopadhyay, D.; Sen, J. Internet of Things: Applications and Challenges in Technology and Standardization. Wirel. Pers.

Commun. 2011, 58, 49–69. [CrossRef]
63. Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [CrossRef]
64. Asghari, P.; Rahmani, A.M.; Javadi, H.H.S. Internet of Things Applications: A Systematic Review. Comput. Netw. 2019, 148,

241–261. [CrossRef]
65. Sinha, A.; Kumar, P.; Rana, N.P.; Islam, R.; Dwivedi, Y.K. Impact of Internet of Things (IoT) in Disaster Management: A

Task-Technology Fit Perspective. Ann. Oper. Res. 2019, 283, 759–794. [CrossRef]

https://doi.org/10.1016/j.iot.2020.100318
https://doi.org/10.1016/j.ijpe.2023.109059
https://doi.org/10.1080/00207543.2021.1953181
https://doi.org/10.1080/00207543.2022.2081099
https://doi.org/10.1080/00207543.2016.1173738
https://www.devex.com/news/sponsored/devexplains-the-internet-of-things-89765
https://www.devex.com/news/sponsored/devexplains-the-internet-of-things-89765
https://sweetsense.space/applications/drought-resilience/
https://2009-2017.state.gov/secretary/20092013clinton/rm/2010/09/147500.htm
https://www.fiercehealthcare.com/mobile/wireless-sensor-based-program-aims-to-stem-ebola
https://www.fiercehealthcare.com/mobile/wireless-sensor-based-program-aims-to-stem-ebola
https://doi.org/10.1016/j.techfore.2012.07.011
https://doi.org/10.1016/j.ijdrr.2021.102412
https://doi.org/10.1007/978-3-031-05528-7_11
https://doi.org/10.1016/j.ijinfomgt.2019.05.023
https://doi.org/10.1016/j.sftr.2022.100095
https://doi.org/10.1016/j.knosys.2010.01.013
https://doi.org/10.1007/s10479-022-05047-x
https://doi.org/10.1080/00207543.2017.1402140
https://doi.org/10.1007/s00607-020-00867-w
https://doi.org/10.1016/j.future.2013.07.014
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2020.107101
https://doi.org/10.1007/s11277-020-07649-9
https://doi.org/10.1007/s10776-020-00483-7
https://doi.org/10.1016/j.iot.2022.100565
https://doi.org/10.1007/s11277-011-0288-5
https://doi.org/10.1109/TII.2014.2300753
https://doi.org/10.1016/j.comnet.2018.12.008
https://doi.org/10.1007/s10479-017-2658-1


Logistics 2024, 8, 38 24 of 26

66. Khan, A.; Gupta, S.; Gupta, S.K. Multi-Hazard Disaster Studies: Monitoring, Detection, Recovery, and Management, Based on
Emerging Technologies and Optimal Techniques. Int. J. Disaster Risk Reduct. 2020, 47, 101642. [CrossRef]

67. Xin, L.; Jun, L.; Wei, Z.; Yuan, C. Fast and Accurate WSN Positioning in Emergency Logistics. In Proceedings of the NSWCTC
2010—The 2nd International Conference on Networks Security, Wireless Communications and Trusted Computing, Wuhan,
China, 24–25 April 2010; Volume 1, pp. 277–280.

68. Lang, S.; Füreder, P.; Riedler, B.; Wendt, L.; Braun, A.; Tiede, D.; Schoepfer, E.; Zeil, P.; Spröhnle, K.; Kulessa, K.; et al. Earth
Observation Tools and Services to Increase the Effectiveness of Humanitarian Assistance. Eur. J. Remote Sens. 2020, 53, 67–85.
[CrossRef]

69. Greco, L.; Ritrovato, P.; Tiropanis, T.; Xhafa, F. IoT and Semantic Web Technologies for Event Detection in Natural Disasters.
Concurr. Comput. Pract. Exp. 2018, 30, e4789. [CrossRef]

70. Wen, H.; Zhao, J. Optimization of Food Emergency Logistics Dynamic Distribution System Based on Internet of Things. In
Proceedings of the ICLEM 2010: Logistics for Sustained Economic Development—Infrastructure, Information, Integration—
Proceedings of the 2010 International Conference of Logistics Engineering and Management, Chengdu, China, 8–10 October 2010;
Volume 387, pp. 2244–2251.

71. Al-Turjman, F. Cognitive Routing Protocol for Disaster-Inspired Internet of Things. Future Gener. Comput. Syst. 2019, 92, 1103–1115.
[CrossRef]

72. Habibi Rad, M.; Mojtahedi, M.; Ostwald, M.J. Industry 4.0, Disaster Risk Management and Infrastructure Resilience: A Systematic
Review and Bibliometric Analysis. Buildings 2021, 11, 411. [CrossRef]

73. Dachyar, M.; Yadrifil; Al Ghifari, M.I. A Rapid Decision Model of Disaster Relief Logistic, Based on Internet of Things (Iot) Data
Analytics and Case-Based Reasoning. In Proceedings of the International Conference on Industrial Engineering and Operations
Management, Harare, Zimbabwe, 7–10 December 2020; Volume 59, pp. 473–483.

74. Wellington, J.J.; Ramesh, P. Role of Internet of Things in Disaster Management. In Proceedings of the 2017 International Conference
on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 17–18 March 2017; pp. 1–4.

75. Reaidy, P.J.; Gunasekaran, A.; Spalanzani, A. Bottom-up Approach Based on Internet of Things for Order Fulfillment in a
Collaborative Warehousing Environment. Int. J. Prod. Econ. 2015, 159, 29–40. [CrossRef]

76. Deak, G.; Curran, K.; Condell, J.; Asimakopoulou, E.; Bessis, N. IoTs (Internet of Things) and DfPL (Device-Free Passive
Localisation) in a Disaster Management Scenario. Simul. Model. Pract. Theory 2013, 35, 86–96. [CrossRef]

77. Dachyar, M.; Yadrifil, Y.; Fahreza, I. Inventory Management Design for a Rapid Disaster Relief, towards Internet of Things (IOT)
Potential. EUREKA Phys. Eng. 2019, 2019, 9–18. [CrossRef]

78. Jebbor, S.; Raddouane, C.; El Afia, A. A Preliminary Study for Selecting the Appropriate AI-Based Forecasting Model for Hospital
Assets Demand under Disasters. J. Humanit. Logist. Supply Chain Manag. 2021, 12, 1–29. [CrossRef]

79. Tomar, R.; Tiwari, R. Sarishma Information Delivery System for Early Forest Fire Detection Using Internet of Things. In
Proceedings of the Advances in Computing and Data Sciences; Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T., Kashyap, R.,
Eds.; Springer: Singapore, 2019; pp. 477–486.

80. Zambrano, A.M.; Perez, I.; Palau, C.; Esteve, M. Technologies of Internet of Things Applied to an Earthquake Early Warning
System. Future Gener. Comput. Syst. 2017, 75, 206–215. [CrossRef]

81. Moulat, M.E.; Debauche, O.; Mahmoudi, S.; Brahim, L.A.; Manneback, P.; Lebeau, F. Monitoring System Using Internet of Things
For Potential Landslides. Procedia Comput. Sci. 2018, 134, 26–34. [CrossRef]

82. Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Almalki, F.A. Survey on Collaborative Smart Drones and Internet of Things for Improving
Smartness of Smart Cities. IEEE Access 2019, 7, 128125–128152. [CrossRef]

83. Erdelj, M.; Król, M.; Natalizio, E. Wireless Sensor Networks and Multi-UAV Systems for Natural Disaster Management. Comput.
Netw. 2017, 124, 72–86. [CrossRef]

84. Porte, J.; Briones, A.; Maso, J.M.; Pares, C.; Zaballos, A.; Pijoan, J.L. Heterogeneous Wireless IoT Architecture for Natural Disaster
Monitorization. Eurasip J. Wirel. Commun. Netw. 2020, 2020, 184. [CrossRef]

85. D’Uffizi, A.; Simonetti, M.; Stecca, G.; Confessore, G. A Simulation Study of Logistics for Disaster Relief Operations. Procedia
CIRP 2015, 33, 157–162. [CrossRef]

86. Agrawal, S.; Das, M.L. Internet of Things—A Paradigm Shift of Future Internet Applications. In Proceedings of the 2011 Nirma
University International Conference on Engineering: Current Trends in Technology, NUiCONE 2011—Conference Proceedings,
Ahmedabad, India, 8–10 December 2011.

87. Sandino, J.; Vanegas, F.; Maire, F.; Caccetta, P.; Sanderson, C.; Gonzalez, F. UAV Framework for Autonomous Onboard Navigation
and People/Object Detection in Cluttered Indoor Environments. Remote Sens. 2020, 12, 3386. [CrossRef]

88. Shayganmehr, M.; Gupta, S.; Laguir, I.; Stekelorum, R.; Kumar, A. Assessing the Role of Industry 4.0 for Enhancing Swift Trust
and Coordination in Humanitarian Supply Chain. In Annals of Operations Research; Springer: Berlin/Heidelberg, Germany, 2021.
[CrossRef]

89. Khalil, I.M.; Khreishah, A.; Ahmed, F.; Shuaib, K. Dependable Wireless Sensor Networks for Reliable and Secure Humanitarian
Relief Applications. Ad. Hoc. Netw. 2014, 13, 94–106. [CrossRef]

90. Song, X.; Zhang, H.; Akerkar, R.; Huang, H.; Guo, S.; Zhong, L.; Ji, Y.; Opdahl, A.L.; Purohit, H.; Skupin, A.; et al. Big Data and
Emergency Management: Concepts, Methodologies, and Applications. IEEE Trans. Big Data 2022, 8, 397–419. [CrossRef]

https://doi.org/10.1016/j.ijdrr.2020.101642
https://doi.org/10.1080/22797254.2019.1684208
https://doi.org/10.1002/cpe.4789
https://doi.org/10.1016/j.future.2017.03.014
https://doi.org/10.3390/buildings11090411
https://doi.org/10.1016/j.ijpe.2014.02.017
https://doi.org/10.1016/j.simpat.2013.03.005
https://doi.org/10.21303/2461-4262.2019.001079
https://doi.org/10.1108/JHLSCM-12-2020-0123
https://doi.org/10.1016/j.future.2016.10.009
https://doi.org/10.1016/j.procs.2018.07.140
https://doi.org/10.1109/ACCESS.2019.2934998
https://doi.org/10.1016/j.comnet.2017.05.021
https://doi.org/10.1186/s13638-020-01793-3
https://doi.org/10.1016/j.procir.2015.06.029
https://doi.org/10.3390/rs12203386
https://doi.org/10.1007/s10479-021-04430-4
https://doi.org/10.1016/j.adhoc.2012.06.002
https://doi.org/10.1109/TBDATA.2020.2972871


Logistics 2024, 8, 38 25 of 26

91. Pradhan, M. Interoperability for Disaster Relief Operations in Smart City Environments. In Proceedings of the IEEE 5th World
Forum on Internet of Things, WF-IoT 2019—Conference Proceedings, Limerick, Ireland, 15–18 April 2019; pp. 711–714.

92. Wrona, K.; Tortonesi, M.; Marks, M.; Suri, N. Leveraging and Fusing Civil and Military Sensors to Support Disaster Relief
Operations in Smart Environments. In Proceedings of the Proceedings—IEEE Military Communications Conference MILCOM,
Norfolk, VA, USA, 12–14 November 2019; Volume 2019.

93. Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in Internet of Things: Taxonomies and Open Challenges. Mob. Netw.
Appl. 2019, 24, 796–809. [CrossRef]

94. Riberto, G.; Govoni, M.; Stefanelli, C.; Suri, N.; Tortonesi, M. Leveraging Civilian IoT Infrastructures to Support Warfighting
Activities in Urban Environments. In Proceedings of the IEEE World Forum on Internet of Things, WF-IoT 2018—Proceedings,
Singapore, 5–8 February 2018; Volume 2018, pp. 118–123.

95. Moghadam, M.R.S.; Sahebi, I.G.; Masoomi, B.; Azzavi, M.; Anjomshoae, A.; Banomyong, R.; Ractham, P. Modeling IoT Enablers
for Humanitarian Supply Chains Coordination. In Proceedings of the International Conference on Electronic Business (ICEB),
Bangkok, Thailand, 13–17 October 2022; Volume 22, pp. 315–322.

96. Yang, H.; Yang, L.; Yang, S.-H. Hybrid Zigbee RFID Sensor Network for Humanitarian Logistics Centre Management. J. Netw.
Comput. Appl. 2011, 34, 938–948. [CrossRef]

97. Baker, S.B.; Xiang, W.; Atkinson, I. Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities. IEEE
Access 2017, 5, 26521–26544. [CrossRef]

98. Tiede, D.; Füreder, P.; Lang, S.; Hölbling, D.; Zeil, P. Automated Analysis of Satellite Imagery to Provide Information Products for
Humanitarian Relief Operations in Refugee Camps -from Scientific Development towards Operational Services. Photogramm.
Fernerkund. Geoinf. 2013, 2013, 185–195. [CrossRef]

99. Mukhopadhyay, S.C.; Suryadevara, N.K. Internet of Things: Challenges and Opportunities; Mukhopadhyay, S.C., Ed.; Smart Sensors,
Measurement and Instrumentation; Springer International Publishing: Cham, Switzerland, 2014; pp. 1–17, ISBN 978-3-319-04223-7.

100. Taylor, C.C.S.; Arthanari, T.S. ZigBee Architecture for Disaster Relief Supply Chain Visibility and Supply Chain Coordination. In
Proceedings of the Americas Conference on Information Systems 2018: Digital Disruption (AMCIS 2018), New Orleans, LA, USA,
16–18 August 2018.

101. Nagy, J.; Oláh, J.; Erdei, E.; Máté, D.; Popp, J. The Role and Impact of Industry 4.0 and the Internet of Things on the Business
Strategy of the Value Chain—The Case of Hungary. Sustainability 2018, 10, 3491. [CrossRef]

102. Samaranayake, P.; Laosirihongthong, T.; Adebanjo, D.; Boon-itt, S. Prioritising Enabling Factors of Internet of Things (IoT)
Adoption in Digital Supply Chain. Int. J. Product. Perform. Manag. 2022; ahead-of-print. [CrossRef]

103. Kumru, M.; Kumru, P.Y. Analytic Hierarchy Process Application in Selecting the Mode of Transport for a Logistics Company. J.
Adv. Transp. 2014, 48, 974–999. [CrossRef]

104. Zheng, P. Supply Chain Operation Evaluation and Management Decision by Fuzzy Cognitive Map Model. Expert Syst. 2022, n/a,
e13022. [CrossRef]

105. Opasanon, S.; Lertsanti, P. Impact Analysis of Logistics Facility Relocation Using the Analytic Hierarchy Process (AHP). Int. Trans.
Oper. Res. 2013, 20, 325–339. [CrossRef]

106. Rezaei Pandari, A.; Azar, A. A Fuzzy Cognitive Mapping Model for Service Supply Chains Performance. Meas. Bus. Excell. 2017,
21, 388–404. [CrossRef]

107. Kumar, A.; Dixit, G. An Analysis of Barriers Affecting the Implementation of E-Waste Management Practices in India: A Novel
ISM-DEMATEL Approach. Sustain. Prod. Consum. 2018, 14, 36–52. [CrossRef]

108. Xie, K.; Liu, Z. Factors Influencing Escalator-Related Incidents in China: A Systematic Analysis Using ISM-DEMATEL Method.
Int. J. Environ. Res. Public. Health 2019, 16, 2478. [CrossRef] [PubMed]

109. Mousavizade, F.; Shakibazad, M. Identifying and Ranking CSFs for KM Implementation in Urban Water and Sewage Companies
Using ISM-DEMATEL Technique. J. Knowl. Manag. 2018, 23, 200–218. [CrossRef]

110. Manoharan, S.; Kumar Pulimi, V.S.; Kabir, G.; Ali, S.M. Contextual Relationships among Drivers and Barriers to Circular Economy:
An Integrated ISM and DEMATEL Approach. Sustain. Oper. Comput. 2022, 3, 43–53. [CrossRef]

111. Warfield, J.N. Developing Interconnection Matrices in Structural Modeling. IEEE Trans. Syst. Man Cybern. 1974, SMC-4, 81–87.
[CrossRef]

112. Kumar, S.; Sharma, R.K. An ISM Based Framework for Structural Relationship among Various Manufacturing Flexibility
Dimensions. Int. J. Syst. Assur. Eng. Manag. 2015, 6, 511–521. [CrossRef]

113. Singh, S.; Kumar, R.; Kumar, U. Modelling Factors Affecting Human Operator Failure Probability in Railway Maintenance Tasks:
An ISM-Based Analysis. Int. J. Syst. Assur. Eng. Manag. 2015, 6, 129–138. [CrossRef]

114. Nath, V.; Kumar, R.; Agrawal, R.; Gautam, A.; Sharma, V. Impediments to Adoption of Green Products: An ISM Analysis. J.
Promot. Manag. 2014, 20, 501–520. [CrossRef]

115. Kannan, G.; Haq, A.N. Analysis of Interactions of Criteria and Sub-Criteria for the Selection of Supplier in the Built-in-Order
Supply Chain Environment. Int. J. Prod. Res. 2007, 45, 3831–3852. [CrossRef]

116. Dalvi-Esfahani, M.; Niknafs, A.; Kuss, D.J.; Nilashi, M.; Afrough, S. Social Media Addiction: Applying the DEMATEL Approach.
Telemat. Inform. 2019, 43, 101250. [CrossRef]

117. Zhou, Q.; Huang, W.; Zhang, Y. Identifying Critical Success Factors in Emergency Management Using a Fuzzy DEMATEL
Method. Saf. Sci. 2011, 49, 243–252. [CrossRef]

https://doi.org/10.1007/s11036-018-1089-9
https://doi.org/10.1016/j.jnca.2010.04.017
https://doi.org/10.1109/ACCESS.2017.2775180
https://doi.org/10.1127/1432-8364/2013/0169
https://doi.org/10.3390/su10103491
https://doi.org/10.1108/IJPPM-12-2021-0698
https://doi.org/10.1002/atr.1240
https://doi.org/10.1111/exsy.13022
https://doi.org/10.1111/itor.12002
https://doi.org/10.1108/MBE-05-2016-0026
https://doi.org/10.1016/j.spc.2018.01.002
https://doi.org/10.3390/ijerph16142478
https://www.ncbi.nlm.nih.gov/pubmed/31336772
https://doi.org/10.1108/JKM-05-2018-0321
https://doi.org/10.1016/j.susoc.2021.09.003
https://doi.org/10.1109/TSMC.1974.5408524
https://doi.org/10.1007/s13198-014-0279-5
https://doi.org/10.1007/s13198-014-0255-0
https://doi.org/10.1080/10496491.2014.946200
https://doi.org/10.1080/00207540600676676
https://doi.org/10.1016/j.tele.2019.101250
https://doi.org/10.1016/j.ssci.2010.08.005


Logistics 2024, 8, 38 26 of 26

118. Braga, I.F.B.; Ferreira, F.A.F.; Ferreira, J.J.M.; Correia, R.J.C.; Pereira, L.F.; Falcão, P.F. A DEMATEL Analysis of Smart City
Determinants. Technol. Soc. 2021, 66, 101687. [CrossRef]

119. Büyüközkan, G.; Güleryüz, S. An Integrated DEMATEL-ANP Approach for Renewable Energy Resources Selection in Turkey. Int.
J. Prod. Econ. 2016, 182, 435–448. [CrossRef]

120. Sumrit, D.; Anuntavoranich, P. Using DEMATEL Method to Analyze the Causal Relations on Technological Innovation Capability
Evaluation Factors in Thai Technology-Based Firms. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2013, 4, 81–103.

121. Chauhan, A.S.; Badhotiya, G.K.; Soni, G.; Kumari, P. Investigating Interdependencies of Sustainable Supplier Selection Criteria:
An Appraisal Using ISM. J. Glob. Oper. Strateg. Sourc. 2020, 13, 195–210. [CrossRef]

122. Chauhan, A.; Singh, A.; Jharkharia, S. An Interpretive Structural Modeling (ISM) and Decision-Making Trail and Evaluation
Laboratory (DEMATEL) Method Approach for the Analysis of Barriers of Waste Recycling in India. J. Air Waste Manag. Assoc.
2018, 68, 100–110. [CrossRef] [PubMed]

123. Quinn, J.A.; Nyhan, M.M.; Navarro, C.; Coluccia, D.; Bromley, L.; Luengo-Oroz, M. Humanitarian Applications of Machine
Learning with Remote-Sensing Data: Review and Case Study in Refugee Settlement Mapping. Philos. Trans. R. Soc. Math. Phys.
Eng. Sci. 2018, 376, 20170363. [CrossRef]

124. Baharmand, H.; Maghsoudi, A.; Coppi, G. Exploring the Application of Blockchain to Humanitarian Supply Chains: Insights
from Humanitarian Supply Blockchain Pilot Project. Int. J. Oper. Prod. Manag. 2021, 41, 1522–1543. [CrossRef]

125. Dennehy, D.; Oredo, J.; Spanaki, K.; Despoudi, S.; Fitzgibbon, M. Supply Chain Resilience in Mindful Humanitarian Aid
Organizations: The Role of Big Data Analytics. Int. J. Oper. Prod. Manag. 2021, 41, 1417–1441. [CrossRef]

126. Kumar, A. Improvement of Public Distribution System Efficiency Applying Blockchain Technology during Pandemic Outbreak
(COVID-19). J. Humanit. Logist. Supply Chain Manag. 2020, 11, 1–28. [CrossRef]

127. Ozdemir, A.I.; Erol, I.; Ar, I.M.; Peker, I.; Asgary, A.; Medeni, T.D.; Medeni, I.T. The Role of Blockchain in Reducing the Impact of
Barriers to Humanitarian Supply Chain Management. Int. J. Logist. Manag. 2020, 32, 454–478. [CrossRef]

128. Yadav, A.K.; Shweta; Kumar, D. Blockchain Technology and Vaccine Supply Chain: Exploration and Analysis of the Adoption
Barriers in the Indian Context. Int. J. Prod. Econ. 2023, 255, 108716. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.techsoc.2021.101687
https://doi.org/10.1016/j.ijpe.2016.09.015
https://doi.org/10.1108/JGOSS-02-2019-0017
https://doi.org/10.1080/10962247.2016.1249441
https://www.ncbi.nlm.nih.gov/pubmed/28278038
https://doi.org/10.1098/rsta.2017.0363
https://doi.org/10.1108/IJOPM-12-2020-0884
https://doi.org/10.1108/IJOPM-12-2020-0871
https://doi.org/10.1108/JHLSCM-06-2020-0050
https://doi.org/10.1108/IJLM-01-2020-0058
https://doi.org/10.1016/j.ijpe.2022.108716

	Introduction 
	Conceptual Background 
	The IoT Concept 
	IoT Applications in HL 
	Barriers to IoT Adoption in HL 

	Research Method 
	The ISM Methodology 
	The DEMATEL Methodology 

	Results and Analysis 
	Results of ISM 
	Results of DEMATEL 

	Findings and Discussion 
	Conclusions, Limitations, and Future Research 
	References

