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Abstract: Camel milk, esteemed for its high nutritional value, has long been a subject of interest.
However, the adulteration of camel milk with cow milk poses a significant threat to food quality and
safety. Fourier-transform infrared spectroscopy (FT-MIR) has emerged as a rapid method for the
detection and quantification of cow milk adulteration. Nevertheless, its effectiveness in conveniently
detecting adulteration in camel milk remains to be determined. Camel milk samples were collected
from Alxa League, Inner Mongolia, China, and were supplemented with varying concentrations of
cow milk samples. Spectra were acquired using the FOSS FT6000 spectrometer, and a diverse set of
machine learning models was employed to detect cow milk adulteration in camel milk. Our results
demonstrate that the Linear Discriminant Analysis (LDA) model effectively distinguishes pure camel
milk from adulterated samples, maintaining a 100% detection rate even at cow milk addition levels of
10 g/100 g. The neural network quantitative model for cow milk adulteration in camel milk exhibited
a detection limit of 3.27 g/100 g and a quantification limit of 10.90 g/100 g. The quantitative model
demonstrated excellent precision and accuracy within the range of 10–90 g/100 g of adulteration.
This study highlights the potential of FT-MIR spectroscopy in conjunction with machine learning
techniques for ensuring the authenticity and quality of camel milk, thus addressing concerns related
to food integrity and consumer safety.

Keywords: camel milk; adulteration; Linear Discriminant Analysis; neural network; FT-MIR;
chemometric analysis

1. Introduction

With the improvement of living standards, camel milk has garnered escalating at-
tention and favor due to its exceptional nutritional profile. Camel milk is enriched with
essential amino acids, such as proteins, glutamic acid, and lysine, which are vital com-
ponents of the human diet. Moreover, it boasts a 5% lower calorie content compared to
conventional cow’s milk [1]. Camel milk has similar calcium and iron content to cow’s
milk, but higher levels of sodium, vitamin C, and niacin [2,3]. Compared to water buffalo
milk, camel milk contains a higher proportion of αS1-casein, αS2-casein, and κ-casein in its
casein content, potentially offering consumers improved digestion and anti-allergic prop-
erties [4]. Research indicates its potential in disease resistance, including alleviating liver
ailments, treating gastric ulcers, and enhancing female ovarian ovulation [5,6]. Despite its
high nutritional value, camel milk remains scarce in the market, commanding a premium
price, often dubbed as “desert gold”. Unfortunately, unscrupulous vendors have begun
adulterating camel milk with cheaper commercial milks, including goat, cow, buffalo, and
others [7,8]. The remarkably similar texture and composition between camel milk and other
milks make conventional methods inadequate for detecting adulteration effectively.
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Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) plays a pivotal role in the
detection of adulteration in dairy products. Infrared spectroscopy analysis is an invaluable
technique for determining molecular components in samples by assessing their absorption,
scattering, or transmission of infrared light. To achieve this, samples are exposed to an
infrared light source, and their absorption of infrared light at different wavelengths is
measured. These absorption peaks correspond to the vibrational and stretching modes of
different molecules within the sample, each possessing a unique infrared spectroscopic
fingerprint [9]. Consequently, by analyzing the infrared spectra of samples, their composi-
tion and quality can be ascertained, enabling the detection of illicit adulteration. FT-MIR
spectroscopy is instrumental in identifying adulterants such as melamine, plant fats, su-
crose, and formaldehyde in dairy products [10–12]. Thanks to the characteristics of FT-MIR
analysis, including speed, non-destructiveness, and high sensitivity, it allows for the rapid
testing of large sample batches within a short time frame. This proves particularly advanta-
geous for real-time quality control during the production process and the swift detection
of adulteration issues. Consequently, establishing an efficient method to detect cow milk
adulteration in camel milk is of paramount importance.

In the realm of infrared spectrum classification and quantitative models, prediction
accuracy can vary significantly based on the chosen preprocessing methods and algorithms
applied to the spectra. Currently, widely adopted models for predicting milk composition
and detecting adulteration include Partial Least Squares (PLS) and Principal Component
Analysis (PCA) [13–16]. Madhusudan et al. successfully constructed a near-infrared
spectroscopy adulteration detection model for turmeric using PLS, random forests, and
decision tree regression among other machine learning algorithms. The PCA algorithm was
utilized for spectral data dimensionality reduction in their study [17]. As computational
power and machine learning methods have advanced, multivariate models are increasingly
employed for calibrating component concentrations in milk. Recent studies have explored
the use of Support Vector machines (SVM) and Artificial Neural Networks (ANN) in FT-
MIR spectroscopic analysis [18,19]. Ana et al. employed a convolutional neural network-
based image method to identify water adulteration in milk, achieving an accuracy of
93% [20]. Nadia et al. successfully established a sesame oil adulteration model using an
electronic nose combined with SVM and ANN, where the SVM model exhibited slightly
superior sensitivity and specificity compared to the ANN model [21]. These relatively new
technologies offer advantages such as excellent generalization capabilities, the ability to
model non-linear data, high scalability, and ease of training [22].

The primary objective of this study is to identify milk adulteration in camel milk using
FT-MIR spectroscopy. To achieve this objective, camel milk from Alxa in Inner Mongo-
lia was deliberately adulterated with a concentration gradient of cow milk ranging from
10–90 g/100 g. Subsequently, the FOSS FT-6000 FT-MIR milk component analyzer was
employed, utilizing PCA and Linear Discriminant Analysis (LDA) as analytical tools to dis-
tinguish adulterated samples from pure camel milk. Additionally, we utilized four machine
learning methods: PLS, PCA, SVM, and ANN to build models that could quantify the extent
of milk adulteration in camel milk. This comprehensive approach leverages both traditional
statistical methods and cutting-edge machine learning techniques to enhance the accuracy
and reliability of detecting milk adulteration in camel milk using FT-MIR spectroscopy.

2. Materials and Methods
2.1. Sample Collection

Twenty-four camel milk samples were collected from Alxa League, Inner Mongolia in
China, between July and August 2023. Additionally, 50 Holstein cow milk samples were
obtained from Wuhan, Hubei. All milk samples were preserved at −20 ◦C after the addition
of 0.1% potassium dichromate. The camel milk samples were randomly adulterated with
cow milk at concentrations of 10 g/100 g, 20 g/100 g, 50 g/100 g, 70 g/100 g, and 90 g/100 g
after mixing. Each adulterated sample concentration was prepared in seven replicates,
with each sample containing 30 mL. In total, there were 35 adulterated camel milk samples,
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34 cow milk samples, and 24 pure camel milk samples, totaling 93 samples for subsequent
FT-MIR analysis.

2.2. FT-MIR Analysis and Data Preprocessing

After rapid thawing at 40 ◦C in a water bath, milk samples were analyzed using
the MilkoScan FT-6000 instrument (FOSS Analytical A/S, Hillerød, Denmark) to obtain
the FT-MIR spectra for each sample. Each sample is scanned twice and the results are
averaged to analyze fat, protein, lactose and other milk components. The FT-MIR spectra
incorporated a region extending from 926 to 5012 cm−1. However, the O-H bending region
(1600–1710 cm−1) and the O-H stretching region (3020–5012 cm−1) were omitted due to the
disturbances induced by the water content in milk. The remnant spectra region underwent
further analysis. For the refinement of the raw spectra, a combination of seven distinct
preprocessing techniques was employed encompassing Standard Normal Variate (SNV),
the 11-point Savitzky–Golay (SG) method, First Derivative plus Savitzky–Golay (SG1),
Second Derivative plus Savitzky–Golay (SG2), SNV plus Savitzky–Golay (SSG), SNV plus
Savitzky–Golay plus First Derivative (SSG1), and SNV plus Savitzky–Golay algorithm plus
Second Derivative (SSG2) (Figure 1). These preprocessing steps were facilitated by the
employment of R packages “prospect” (version 0.26) and “baseline” (version 1.3-4).

2.3. Data Preprocessing and Model Building

The collected FT-MIR spectral data were standardized to ensure that the spectral
intensities at each wavenumber had zero mean and unit variance. The standardization is
performed using the SCALE function in the R programming language, and the formula is
as follows

Z =
(X − µ)

σ
(1)

Z is the standardized value, X is the original data point value, µ is the mean of the
dataset, σ is the standard deviation of the dataset.

The dataset was randomly split into a training set (70%) for model construction and a
test set (30%) for performance evaluation. PCA, an unsupervised learning method, was
employed to reduce the dimensionality of the data while retaining maximum variance.
LDA, being a supervised learning method, aims to optimize the separation between sample
classes while simultaneously reducing data dimensionality. The PCA and LDA models
were constructed using the training set, and their performance on the test set was evalu-
ated, including metrics like classification accuracy, sensitivity, and specificity. To quantify
the adulteration level of cow milk in camel milk, quantitative models were constructed
using machine learning. Two linear regression models, Partial Least Squares Regression
(PLSR) and PCA, as well as two non-linear models, Support Vector Machine (SVM) and
Artificial Neural Network (ANN), were utilized. PLSR is a chemometric method widely
used in spectral data analysis, decomposing spectral data into Latent Variables (LV) to
explain observed variances. SVM, a method for binary classification in supervised learning
environments, is effective even when dealing with high-dimensional features, where the
feature count exceeds the sample count [23,24]. ANN, representing a non-linear exten-
sion of traditional linear regression models, can model complex non-linear relationships
by utilizing hidden layers [25]. Parameters for each model were optimized using Cross
Validation (CV) statistics and the “expand.grid” function.
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Figure 1. Mid-infrared spectra after various preprocessing methods. (a) Raw spectra (Base);
(b) Mid-infrared spectra after standard normal variables processing (SNV); (c) Mid-infrared spec-
tra after Savitzky–Golay algorithm processing (SG); (d) Mid-infrared spectra after first derivative
and Savitzky–Golay algorithm processing (SG1); (e) Mid-infrared spectra after second derivative
and Savitzky–Golay algorithm processing (SG2); (f) Mid-infrared spectra after SNV and Savitzky–
Golay algorithm processing (SSG); (g) Mid-infrared spectra after SNV, Savitzky–Golay algorithm,
and first derivative processing (SSG1); (h) Mid-infrared spectra after SNV, second derivative, and
Savitzky–Golay algorithm processing (SSG2).
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The performance of each model was evaluated using internal 10-fold cross-validation
statistics, including Root Mean Square Error (RMSE) and coefficients of determination
(R2). The parameter “selectionFunction = ‘best’” was used to select optimized values
for factors in the “train” function of the CARET package, indicating the model with the
lowest cross-validation RMSE (RMSEcv) was chosen. For PLSR and PCR, the maximum
number of latent variables was set to 25. SVM’s C-test values ranged from 0.0001 to 2.5.
ANN’s hidden unit count varied from 1 to 5, and decay values tested were 0, 0.0001, 0.001,
0.01, 0.1, 0.2, 0.3, 0.4, and 0.5. In the realm of the CARET package, the “size” parameter
denotes the quantity of units within a hidden layer, while the “decay” parameter signifies
the degree of regularization strength. For both PLSR and PCR, the upper limit for the
latent variables was established at 25. The evaluation of model performance encompassed
metrics such as Root Mean Squared Error of Cross-Validation (RMSECV) and the coefficient
of determination (R2cv), determined through internal 10-fold cross-validation statistics.
Model validation was conducted by estimating the Root Mean Squared Prediction Error
(RMSEP) on an external test set. All machine learning algorithms were implemented in
R using the CARET package version 6.0-93 (version 4.2.2; https://www.r-project.org/
(accessed on 10 September 2023)) [26].

2.4. Quality Control for the Method

The devised approach was subjected to validation following the guidelines outlined
in the International Conference on Harmonization (ICH) Q2 (R1). The Limit of Detection
(LOD) was determined through analysis of six pure camel milk samples, with the standard
deviation of the matrix being calculated for this purpose [27].

In terms of relative bias, recovery and repeatability, the validation protocol referenced
our previous study [28]. Five different levels of milk adulteration in camel milk (10 g/100 g,
20 g/100 g, 50 g/100 g, 70 g/100 g, and 90 g/100 g) were studied, with each level replicated
three times, resulting in a total of 15 samples. The formulas for “Bias (%)”, “Recovery (%)”,
and “Repeatability (RSD%)” are as follows:

Bias(%) =
Measured Value − Reference Value

Reference Value
× 100 (2)

Recovery(%) =
Measured Value
Reference Value

× 100 (3)

Recovery(%) =
Standard Deviation

Mean Value
× 100 (4)

3. Results and Discussion
3.1. FT-MIR of Camel Milk, Cow’s Milk and Adulterated Milk

The spectra obtained using FT-6000, as shown in Figure 2, exhibit noticeable noise
patterns in two regions: 1600–1700 cm−1 and 3020–3400 cm−1, which are associated with
O-H vibrations from H2O. Consequently, in studies employing mid-infrared spectroscopy,
the water absorption regions are typically excluded to enhance measurement accuracy.
All spectra curves of camel milk samples (red) closely resemble those of cow milk (blue).
Particularly, when camel milk is mixed with cow milk (green), the chemical composition
of the two milk matrices is highly similar. Minor differences in the mid-infrared spectra
are observed in the 1076 and 1550 cm−1 regions. The primary components of camel milk
can be correlated with characteristic spectral bands in the FT-MIR spectra of cow milk, as
their chemical compositions and bonds absorb spectra at specific wavenumbers. Regions
related to lactose include C-O, C-C, and C-H stretching vibrations around 1076 cm−1, as
well as C-O-C stretching vibrations at 1157 and 1250 cm−1 [29]. Protein-related regions
appear near 1550 cm−1 with C-N and N-N stretching peaks. Regions associated with fatty
chains are observed around 1390 and 1454 cm−1 with C-H twisting vibrations of -CH3
and -CH2, and C-H stretching of -CH3 and -CH2 at 2862 and 2927 cm−1. Additionally, a
region related to fats is present near 1743 cm−1 due to C=O bond stretching [30]. Hence,

https://www.r-project.org/
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the disparities observed around 1076 and 1550 cm−1 are attributed to differences in lactose
and lipid content between camel and cow milk.
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The results of milk component analysis using FT-MIR are summarized in Table 1.

Table 1. Descriptive Statistics for Camel Milk and Cow Milk.

Item Camel Milk
(Mean ± SD)

Coefficient
of

Variation %

Cow Milk
(Mean ± SD)

Coefficient
of

Variation %

Adulterated
Milk

(Mean ± SD)

Coefficient
of

Variation %

Fat (%) 3.91 ± 0.46 11.89 3.40 ± 0.33 9.90 3.58 ± 0.31 8.85
Protein (%) 3.69 ± 0.20 5.43 3.19 ± 0.23 7.34 3.41 ± 0.21 6.02
Lactose (%) 5.63 ± 0.27 4.79 5.16 ± 0.16 3.13 5.37 ± 0.20 3.79

TS (%) 14.15 ± 0.53 3.75 12.46 ± 0.53 4.26 13.19 ± 4.68 4.68
SNF (%) 10.07 ± 0.36 3.61 8.92 ± 0.34 3.91 9.43 ± 0.41 4.38

Urea (mg/100 mL) 36.58 ± 8.62 23.57 13.08 ± 1.26 9.67 24.57 ± 8.56 34.84
β-Casein (%) 2.89 ± 0.14 4.83 2.54 ± 0.19 7.79 2.66 ± 0.13 5.08
SFA (g/100 g) 2.23 ± 0.43 17.78 2.25 ± 0.26 11.51 2.29 ± 0.25 11.24

MUFA (g/100 g) 1.21 ± 0.39 32.72 0.85 ± 0.13 15.8 1.02 ± 0.22 22.33
PUFA (g/100 g) 0.09 ± 0.03 33.32 0.08 ± 0.01 20.58 0.07 ± 0.03 73.57

It is evident that Camel Milk exhibits higher milk fat and milk protein content com-
pared to Cow Milk. Camel Milk has a milk fat content of 3.91 ± 0.46% and a milk protein
content of 3.69 ± 0.20%, while Cow Milk has a milk fat content of 3.40 ± 0.33% and a milk
protein content of 3.19 ± 0.23%. The milk fat and milk protein in Camel Milk are approxi-
mately 15.1% and 15.5% higher than those in Cow Milk. Previous studies have reported that
the fat content in Camel Milk ranges from 1.2% to 6.4%, with an average of 3.5 ± 1.0% [31].
The relatively higher milk fat content in the Camel Milk samples we collected may be at-
tributed to various factors, including environmental factors such as analytical measurement
procedures, geographical location, feeding conditions, and breeds, as well as physiological
factors such as lactation stage, age and parity [32,33]. Geographic origin and seasonal
variations are among the primary factors influencing Camel Milk composition [34]. For
instance, research indicates that the fat, protein, and solids content in Asian camel milk is
significantly higher compared to North Africa, India, and West Asia [31], Additionally, the
protein content in camel milk during the spring season surpasses that of other seasons [35].
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A strong positive correlation exists between fat and protein content in Camel Milk [36].
The total protein content in Camel Milk ranges from approximately 2.15% to 4.90%, with an
average of 3.1 ± 0.5%. As discussed earlier regarding milk fat content, factors influencing
milk protein content in Camel Milk exhibit similar variations. Casein is the predominant
protein in Camel Milk, constituting approximately 1.63–2.76% of the total protein content,
which corresponds to 52–87% of the total protein [37]. β-casein is the major camel milk
casein protein, followed by αs1-casein, constituting 65% and 21% of the total whey proteins,
respectively [4]. Previous studies have indicated that the lactose content in camel milk is
significantly higher during the rainy season, approximately 5.57 ± 0.15%, and lower during
the winter season, around 4.58 ± 0.09%. Additionally, the urea content in camel milk
typically falls within the range of 33–45 mg/100 g [38]. Camel milk is known to have lower
levels of saturated fatty acids compared to cow’s milk, with higher concentrations of long-
chain fatty acids [39]. Our research results are consistent with the results described above.

3.2. Identification of Adulteration in Camel Milk with Cow Milk

FT-MIR spectroscopy was employed as the detection technique to analyze milk adul-
teration, differentiating between unadulterated camel milk, cow’s milk, and adulterated
camel milk samples. Initially, exploratory analysis using PCA was conducted to assess the
inherent variability in the samples. Following an investigation of all eight preprocessing
methods, PCA failed to effectively distinguish adulterated camel milk samples, with only
the SG2 preprocessing method showing some separation between camel milk and cow’s
milk (Figure 3a). For the spectra data processed with SG2, Principal Component 1 and
Principal Component 2 explained variances of 33.2% and 24.3%, respectively, with the first
five principal components collectively explaining 74.2% of the data variance.
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To address this issue, LDA, a supervised pattern recognition technique, was applied
to the FT-MIR spectral data. We compared the effectiveness of various preprocessing
methods, as shown in Figure 3b. LDA, after SG preprocessing, successfully identified
pure camel milk, pure cow milk, and camel milk adulterated with cow milk, achieving
100% accuracy, sensitivity, and specificity. Even at the lowest level of adulteration (10%),
clear identification was achieved. The substantial difference in performance between the
two models can be attributed to the nature of LDA as a supervised learning method. Its
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primary objective is to find projection directions that maximize the differences between
different categories, thereby preserving maximum category information during dimen-
sionality reduction [40]. In contrast, PCA is an unsupervised learning method primarily
focused on finding directions with the maximum variance in the data, regardless of cat-
egory information. Consequently, PCA primarily considers the overall data structure
during dimensionality reduction and may not be well-suited for detecting adulteration
as adulterated samples may exhibit similar variances in data space compared to genuine
samples [41].

3.3. Determination of Adulteration in Camel Milk with Cow Milk

The reference value range for determining the cow milk content in adulterated camel
milk is 0 to 100 g/100 g. This reference range is then used for constructing and predict-
ing models using different FT-MIR spectra with PLS, PCA, SVM, and ANN. The results
obtained for the quantification of the adulteration levels are presented in Table 2.

Table 2. Results of cow milk determination in camel milk using various pre-processed ft-mir data
and machine learning.

Re-Processing Model Type LV 1 RMSECV
2 R2

cv
3 RMSEP

4 R2
P

5 PRD 6

Base

PLS 19 4.456 0.991 3.404 0.993 12.380
PCA 25 5.366 0.987 3.528 0.992 11.947
SVM 0.5 6.188 0.983 3.289 0.993 12.814
ANN 3; 0.01 4.318 0.992 3.298 0.994 12.778

SG

PLS 14 4.765 0.989 3.181 0.994 13.243
PCA 25 5.320 0.986 3.433 0.993 12.276
SVM 0.5 6.162 0.983 3.406 0.993 12.374
ANN 3; 0.01 4.302 0.993 2.902 0.995 14.526

SG1

PLS 14 5.525 0.986 3.818 0.991 11.039
PCA 25 5.998 0.984 3.926 0.991 10.374
SVM 0.05 7.426 0.982 4.687 0.981 8.992
ANN 6; 0.001 4.695 0.992 3.634 0.992 11.413

SG2

PLS 8 6.997 0.980 4.417 0.980 9.543
PCA 16 6.879 0.982 4.587 0.988 9.188
SVM 0.001 6.747 0.986 6.493 0.976 6.493
ANN 6; 0.001 5.597 0.988 3.747 0.992 11.249

SNV

PLS 14 7.793 0.959 5.459 0.983 7.721
PCA 25 7.979 0.966 5.570 0.982 7.567
SVM 2.5 7.841 0.966 6.632 0.975 6.354
ANN 3; 0.3 6.872 0.976 3.410 0.993 12.359

SSG

PLS 13 7.840 0.958 5.553 0.982 7.591
PCA 25 8.076 0.963 5.553 0.982 7.591
SVM 2.5 7.820 0.967 6.795 0.974 6.203
ANN 5; 0.4 5.479 0.987 3.083 0.994 13.672

SSG1

PLS 25 31.281 0.655 33.286 0.376 1.266
PCA 18 35.301 0.389 36.297 0.259 1.611
SVM 0.005 11.774 0.949 9.594 0.948 4.393
ANN 3; 0.5 27.937 0.576 36.101 0.266 1.167

SSG2

PLS 2 33.484 0.433 39.983 0.100 1.054
PCA 8 33.689 0.422 38.610 0.161 1.091
SVM 0.005 11.190 0.962 9.954 0.944 4.234
ANN 3; 0.5 31.159 0.511 34.193 0.342 1.122

Note: 1 LV: Latent variables used in the model. 2 RMSECV: Root mean square error of cross-validation; 3 R2
CV:

Coefficient of correlation for cross-validation. 4 RMSEP: Root mean square error of prediction. 5 RP: Coefficient of
correlation for prediction. 6 RPD: Ratio performance to deviation for prediction.

In Table 2, a clear pattern emerges, highlighting that the majority of optimal predictive
models favor the use of ANN. This inclination can be primarily attributed to the incorpo-
ration of ANN’s hidden layers, which, in contrast to conventional statistical regression
models, take into account the intricate non-linear interactions present within distinct spec-
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tral regions. The concept of statistical interaction goes beyond the mere additive effects
of multiple input variables on an output variable, revealing the collective impact of these
variables [42]. Within the realm of ANN, these statistical interplays among input variables
unfold within its hidden layers, facilitated by the transmission of weights from inputs
to these concealed nodes [43]. Furthermore, the adoption of logic functions as activation
mechanisms enhances the interconnected non-linearity and interaction among input vari-
ables within the ANN model. Therefore, the complex web of interactions and non-linearity
inherently resides within the ANN model, providing it with a theoretical advantage over
linear regression models like PLS. Once the input–output variables are defined, the architec-
ture of the neural network heavily relies on the number of neurons in its hidden layers. It is
crucial to exercise restraint when increasing neurons in ANN, as an excessive proliferation
can lead to overtraining, ultimately compromising the network’s ability to generalize and
resulting in overfitting. Most of the fatty acid prediction models constructed using ANN
showed minimal RMSE when comprising one–three hidden layers. Moreover, the judicious
application of modest weight decay helps mitigate overfitting tendencies, as evidenced by
the convergence of RMSE values between the training and testing datasets.

According to the ICH Q2 (R1) guidelines, the method for detecting cow milk adulter-
ation in camel milk using FT-MIR spectroscopy establishes the Limit of Detection (LOD)
and Limit of Quantification (LOQ) based on the standard deviation observed in pure camel
milk samples (n = 6). The calculated LOD is 3.27 g/100 g, and the LOQ is 10.90 g/100 g.

Furthermore, the FT-MIR method was rigorously validated to assess its authenticity
and precision in detecting cow milk adulteration within camel milk, adhering to the
guidelines outlined in ICH Q2 (R1). Table 3 presents compelling evidence of the method’s
robustness, showcasing minimal relative bias and remarkable recovery rates across a
concentration range spanning from 10–100 g/100 g. The average bias remained within the
range of 0.15% to 7.19%, while the recovery rates were consistently between 97.02% and
107.19%. The relative standard deviation (RSD) exhibited values spanning from 0.42% to
6.79%. Repeatability for adulterated cow milk concentrations of 20 g/100 g, 50 g/100 g,
and 70 g/100 g was well below 5%. However, at an adulteration level of 10 g/100 g, the
Relative Standard Deviation (RSD) surpasses 5%, indicating potential escalation in both
systematic and random errors within the prediction model at lower concentrations [44].
The correlation between the predicted concentrations and the true concentrations was
assessed using the linear equation: y = 1.0004x + 0.5534, yielding an R2 value of 0.9979
(Figure 4a). The slope and R2 values of the linear equation illustrate the robust agreement
between the MIR predictions and the reference values.
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Table 3. Trueness and precision results for each concentration level in the validation data.

Theoretical Value Predicted Value Trueness Precision

Level (g/100 g) Mean ± SD
(%)

Bias
(%)

Recovery
(%)

Repeatability
(RSD%)

10 10.71 ± 0.72 7.19 107.19 6.75
20 19.40 ± 0.76 2.97 97.02 3.91
50 50.07 ± 0.21 0.15 100.15 0.42
70 71.80 ± 0.55 2.57 102.57 0.77
90 89.03 ± 1.69 1.07 98.92 1.90

Figure 4b displays the Bland–Altman scatter plot, evaluating the predicted values
from the model against the true values. The y-axis represents the differences between
the values obtained by the two methods, while the x-axis represents the average of these
measured values. The Bland–Altman plot indicates that the adulteration values predicted
by the FT-MIR model are slightly positive, with a mean difference of 0.5514. The 95% limits
of agreement range from −3.18 to 4.28 g/100 g. At both the adulteration concentration of
90 g/100 g and in pure milk, our adulteration model predicted an adulteration quantity for
one sample that exceeded the 95% confidence interval. The occurrence of this phenomenon
may stem from various factors. Specifically addressing the ANN model, renowned for
its capacity to learn and adapt to non-linear relationships. However, their adaptability
encounters challenges in extreme cases involving sparse data. The observed trend of the
relative deviation initially decreasing and subsequently increasing with the adulteration
concentration signifies this challenge. As the adulteration concentration increases from
low to high, the neural network is likely more adept at capturing non-linear relationships
between different features, thereby reducing relative deviation. Generally, the predictive
performance of the model tends to improve with an increase in data volume, including the
incorporation of more extreme case data. In our future work, we plan to explore strategies
such as increasing the sample size, adjusting hyperparameters, or adopting alternative
spectral preprocessing techniques to enhance the consistency of the approach.

Table 4 summarizes the performance comparison of different quantitative methods for
detecting adulteration of cow milk in camel milk.

Table 4. Detection method for cow milk adulteration in camel milk.

Technique Advantages Disadvantages Detection Effect References

PCR Very selective and
sensitive

The sample DNA extraction
stage requires contamination

prevention, and specific
primers need to be designed

and synthesized.

Recoveries ranging from 80%
to 110% with a coefficient of

variation of less than 7%
Wu et al. [44]

Ultra-high
performance liquid

chromatography

High Resolution
High Sensitivity

Expensive Equipment
Complex Sample

Pre-treatment

Recoveries ranging from 94%
to 105% with a coefficient of

variation of less than 5%
Li et al. [7]

NIR spectroscopy

Convenient, rapid,
automated and
simplify sample

handling

Limited sensitivity
Expensive instrumentation.

The detection limit is 0.5%, and
the quantification limit is 2%.
The R-squared value is 0.94.

Mabood et al.
[15]

FTIR spectroscopy

Convenient, rapid,
automated and
simplify sample

handling

Limited sensitivity
Expensive instrumentation.

The relative error is 3.8%, and
the detection limit is 2.59%.

The R-squared value is 0.994.

Souhassou et al.
[45]

Electrochemical
sensor

Good speed,
sensitivity and

stability
Expensive instrumentation.

Identification of
β-lactoglobulin within the

range of 4–100 ng/mL, with a
detection limit of 3.58 ng/mL.

Meng et al. [46]
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4. Conclusions

In this study, we demonstrated the effectiveness of FT-MIR spectroscopy in identifying
and quantifying adulteration in camel milk with cow milk. By using pre-processed FT-MIR
spectra and LDA, we obtained optimal classification results. Furthermore, our Artificial
Neural Network (ANN) models showed excellent quantitative accuracy for adulterated
cow milk. These models achieved high levels of accuracy and precision, establishing
the proposed method as a valuable, rapid, and non-destructive tool for screening camel
milk quality.

Future research can enhance the methodology’s applicability by expanding the dataset
to include diverse geographical regions and varying levels of adulteration. Exploring
alternative spectroscopic techniques or combining multiple analytical methods may offer a
more comprehensive understanding of milk adulteration. Additionally, refining model pa-
rameters, such as adjusting hyperparameters in ANN or exploring different pre-processing
strategies, could further optimize the methodology’s performance, ensuring its continued
effectiveness in dairy quality control.
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