
Supplementary material: The theoretical and mathematical foundations of the SOM 
algorithm.  

 

Simplex Lattice Design (SLD) 
SLD are used to study the effects of the mixture compounds on the response variable. In 

which it provides an equally spaced distribution of points over the factor space [1–4]. A {q, m} 
simplex lattice design for q components consists of points defined by the following coordinate 
settings, where the proportions assumed by each component take the m + 1 values, equally spaced 
values from 0 to 1. Component levels are obtained through Eqn. (1): 
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the design space consists of all possible combinations (mixtures) of the proportions used, and m 
is called the degree of a lattice. The number of points (N) of an SLD is given by Eqn. (2) [1,2]. 
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Some SLD plans are shown in Figure S1. 

 
Figure S1. – Some {q, m} lattices design for a {3, 2} its design space has 6 points (left) and for a {4, 2} design 
space has 10 points (right). 

Simplex-Centroid Design (SCD) 
An alternative to the simplex model was introduced by Scheffé [5] named with simplex-

centroid design (SCD), in which only the centroid points are included [1,2,4–6]. In an SCD for q-
components, there are 2q-1 points, corresponding to the q permutations of (1, 0, 0, ...,0), the ቀ௤
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ቁ permutations of (⅓, ⅓, ⅓, 0, ..., 0), and the overall centroid 
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Most of the experimental runs in the SCD occur on the boundary of the region and 
experimental region, consequently including only the q – 1 of the q components. It is usually 



desirable to augment the simplex lattice or simplex centroid with additional points in the interior 
of the region where the blends will consist of all q mixture components [1,2,7]. 

Some SCD plans are shown in Figure S2. 

 
Figure S2. – Some simplex-centroid design {3, 2} for 3 components with 7 points (left) and {4, 2} 4 
components with 14 points (right). 

Simplex Axial Design (SAD) 
SAD was developed by [8] for use in screening experiments or measuring individual 

component effects, where most points are positioned inside the simplex and are mixtures of q 
components [4]. The axis of component i is the imaginary line or ray extending from the base 
point xi = 0, xj = 1/(q – 1) for all j ≠ i to the opposite vertex, where xi = 1, xj = 0 for all j ≠ i. All points 
in an axial design are positioned on the axes of the factor space. The base point will always lie at 
the centroid of the (q – 2)-dimensional boundary of the simplex that is opposite to the vertex xi = 
1, xj = 0 for all j ≠ i. In this design, all points are in the axial; the simplest form of axial design is 
one in which points are positioned equidistant from the overall centroid ൫1 ൗݍ , 1 ൗݍ , … , 1 ൗݍ  ൯ . 
Points located in the middle from the general centroid to the vertex are called axial 
points/mixtures [1,2,4].  

A SAD plan is shown in Figure S3. 

 
Figure S3. – Simplex axial design for 3 components has 10 points. 



Extreme Vertices Designs (EVD) 
EVDs are types of MDs that include only a subpart or a smaller space inside the simplex 

[4,9–11]. This condition occurs when additional constraints of the form of upper and/or lower 
limits are established for the proportions of the components located within the simplex. The 
general form of the constraints mixing problem is x1 + x2 + ... + xq = 1 with li ≤ xi ≤ ui, for i = 1, 2,..., 
q, where li is the lower limit of the i-th component and ui is the upper limit for the i-th component, 
with li ≥ 0 and ui ≤ 1 [2]. Three forms of the constrained mixture problem are most widely used, 
being D-optimality (determinant), G-optimality (global), and I-optimality (integrated). The D-
optimal design focuses on estimating the best possible model coefficients; this criterion results in 
maximizing of the parameter estimates, the G-optimal design minimizes the maximum value of 
prediction variance, and the I-optimal design seeks to minimize the average scaled prediction 
variance over the design region [12,13]. 

To the EVD with lower limits, the perception of pseudocomponents is applied [1]. Defined 
in the Eqn. (3). 
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with ∑ ௝݈ < 1௤
௝ୀଵ . The pseudocomponents are transformed into formulations for the original 

components by reversing the transformation to have again ∑ ௜ݔ
ᇱ = 1௤

௜ୀଵ , thus being able to use 
simplex plans. To obtain the value of xi for a given ݔ௜

ᇱ, it is necessary to manipulate the Eqn. (3), 
obtaining Eqn. (4). 
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For this situation, the feasible region of the simplex is no longer a triangular simplex and has 
developed an irregular shape [1].  

An EVD plan is shown in Figure S4. 

 
Figure S4. – Extreme vertices designs for 3 components has the following constraints (left) and in terms of 
pseudocomponents (right). 

SOM algorithm 
SOM-type ANN routine developed was used according to the algorithm described in 

Haykin [14] and was applied using the Matlab software routine. 
The function chosen to represent the topological neighborhood in Eqn. (5). 
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where ߪ is the effective radius of the topological neighborhood, and ࢏,࢐ࢊ is the lateral distance 
between the “winning neuron” i and the excited neuron j. Over the training epochs, there is a 
reduction in the neighborhood's size due to an exponential decay, Eqn. (6). 

where 0ߪ is the effective radius in the initialization of the algorithm, ߬1 is the time constant, with 
߬1 = 1000/log 0ߪ being recommended, and n is the number of training epochs. 

During the adaptive process, it is necessary that the synaptic weight vector (wj) of the j 
neuron in the grid be modified in relation to the input vector x. The modification process is a 
modification of the Hebb postulate of learning, described by Eqn. (7). 
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where ߟ(n) is the learning rate, which, as shown, is variable and decreases during the training 
epochs, n. The learning rate decrease may be modeled by an exponential decay, as described in 
Eqn. (8). In this equation, 0ߟ is the initial learning rate, and ߬2 is another time constant; the 
recommended values are respectively 0.1 and 1000: 

(݊)ߟ =  ݊଴ exp(−݊ ߬ଶ⁄ ) (8) 

Table S2 

In this study, all 52 countries reported were considered in the analysis, where n represents 
the sum of scientific papers using MDs in each continent, see Table S2. 

Table S2. – Scientific papers published between 2016 and 2020 using Mixture Designs by continent. 

Continents Beverage Food Health Others Sum 
America* 21 17 20 10 68 

Africa 4 6 9 3 22 
Asia 14 13 31 10 68 

Europe 7 12 18 4 41 
Oceania 2 0 0 1 3 

Sum 48 48 78 28 202 
Brazil 13 11 11 7 42 

*Brazil included in the sum. 
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