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Abstract: Since visible-light communication (VLC) has become an increasingly promising candidate for
6G, the field of underwater visible-light communication (UVLC) has also garnered significant attention.
However, the impairments introduced by practical systems and the time-varying underwater channels
always limit the performance of underwater visible-light communication. In this paper, we propose and
experimentally demonstrate an autoencoder-based geometric shaping model (AEGSM) framework to
jointly optimize quadrature amplitude modulation (QAM) signals at the symbol-wise and bit-wise levels
for underwater visible-light communication. Unlike traditional geometric shaping (GS) methods, which
only give theoretically optimal shaping solutions, our framework can always obtain the globally optimal
shaping scheme for a specific channel condition or different application scenarios. In our AEGSM
framework, an autoencoder is used to find the optimal shaping scheme at the symbol-wise level and
a revised pairwise optimization (RPO) algorithm is applied to achieve bit-wise optimization. In a real
UVLC system, 2.05 Gbps transmission is achieved under the hard decision–forward error correction
(HD-FEC) threshold of 3.8× 10−3 by employing the autoencoder-based 8QAM (AE-8QAM) optimized
by the AEGSM, which is 103 Mbps faster than the Norm-8QAM. The AE-8QAM also shows its resistance
to nonlinearity and enables the UVLC system to operate within a larger dynamic range of driving
voltages. The results substantiate the potential and practicality of the proposed AEGSM framework in
the realm of underwater visible-light communication.

Keywords: underwater visible-light communication; geometric shaping; autoencoder; pairwise
optimization; quadrature amplitude modulation

1. Introduction

In recent years, visible-light communication (VLC) has become an increasingly promis-
ing candidate for next-generation communications (6G) [1,2]. As a short-range optical
wireless communication technology, VLC uses the intensity modulation of visible light
to send data in the ultra-high frequency band. Compared with conventional wireless
communication systems, VLC has many advantages, including high efficiency and anti-
electromagnetic interference and being energy-saving and authorization-free [2–4]. With
the continuous development of visible-light technology, VLC is becoming a popular re-
search topic for specific communication scenarios, such as intersatellite communication
and underwater visible-light communication (UVLC) [5,6].

Underwater visible-light communication (UVLC), which mainly uses blue and green
light (λ = 450 ∼ 550 nm) to transmit information in water with relatively low attenuation,
can be classified as a light-emitting diode (LED)-based [7] and laser diode (LD)-based [8]
system. The modulation bandwidth of LD is generally larger than that of LED, but the
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divergence angle of LD is relatively small, so strict alignment is required in LD-based visible-
light communication systems [9]. Therefore, LED-based underwater VLC systems are more
suitable for application scenarios involving mobile autonomous underwater vehicles and
remotely operated underwater vehicles due to their wide lighting area coverage [10].
However, in the real LED-UVLC system, the modulation bandwidth of LEDs [11,12] is
limited and the optoelectronic device has a nonlinear response, resulting in severe inter-
symbol interference (ISI) and nonlinear interference for the transmitted signal [13]. In
order to combat the nonlinear effects and limited bandwidth of the system and achieve
high-speed information transmission, it is necessary to employ appropriate modulation
formats and efficient digital signal processing methods to increase the transmission capacity
of the system.

In general, spectrum-efficient modulation formats, such as quadrature amplitude
modulation–discrete multitone modulation (QAM-DMT) and carrierless amplitude and
phase modulation (CAP), are widely used to reach a high transmission data rate [14]. A
large-coverage underwater single-input multiple-output VLC system over 1.2 m based on
blue LED chips and 2 × 2 PIN arrays, using quadrature amplitude modulation–discrete
multitone modulation (QAM-DMT), achieved a data transmission rate of 1.8 Gbps [15].
Recently, a transmission rate of 2.85 Gbps was achieved using 64QAM-carrierless amplitude
and phase (CAP) modulation based on the constellation division scheme and blue LED [16].

It is worth noting that the constellation distribution schemes in QAM modulation
formats currently used in underwater visible-light communication are mostly fixed and
not adaptable, which makes it difficult to achieve an optimal performance for visible-
light transmission based on norm QAM modulation under certain channel conditions.
The design and optimization of constellations for specific channels is always a challenge.
Geometric shaping (GS), probabilistic shaping (PS), and their combination have greatly
advanced the development of constellation design [17–19]. To find better constellation
schemes, an improved pairwise optimization (PO) algorithm was proposed to design
a multi-dimensional constellation, which is based on minimizing the analytical BER of
given M constellation points and bit mapping [20]. However, the constellation design
generated by the PO algorithm is always based on prior theoretical knowledge, which
cannot guarantee optimal performance in practical systems due to nonlinearity or other
impairments. In other words, there is always a gap between the performance of current
shaping schemes based on theoretical models and the optimal performance of real systems.
Thus, designing a constellation-shaping scheme that is adaptive and closer to the specific
real system is a critical issue in LED-based VLC systems.

With the development of deep learning, the concept of end-to-end communication was
proposed to coordinate the optimization between transmitter and receiver in the traditional
communication model, which is considered as a communication method that achieves
global optima [21]. Based on end-to-end communication, novel autoencoder-based learning
of joint geometric and probabilistic constellation shaping for coded modulation systems
was proposed [22]. Geometrically shaped multi-dimensional modulation formats are
designed via deep learning methods [23], and an end-to-end-based multi-dimensional GS
strategy is proposed to achieve phase noise robustness [24]. Additionally, a differentiable
GS method based on a blind phase search was also proposed for phase noise channels [25].
For visible-light communication, end-to-end communication based on an autoencoder
has also gradually become a hot research topic. An autoencoder based on a data-driven
channel model used to optimize end-to-end VLC systems has been proposed [10,26–30].
In [30], a deep-learning-based E2E VLCnet was suggested to realize flicker reduction
and dimming operation. Since most previous studies have only been validated with a
simulation experiment, in [29], an autoencoder was deployed in a real VLC system for the
first time and successfully achieved a transmission rate of 1.875 Gbps under the 7% HD-FEC
threshold. However, this work cannot further improve the transmission rate, because it
discards almost all communication techniques and digital signal processing methods, only
using two neural networks to send and receive data. How to combine autoencoder and
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digital signal processing algorithms to achieve jointly optimal communication performance
is still a great challenge.

In this work, for the first time, we propose and experimentally demonstrate an
autoencoder-based geometric shaping model (AEGSM) framework to jointly optimize
quadrature amplitude modulation (QAM) signals at the symbol-wise and bit-wise levels
for underwater visible-light communication. Unlike traditional GS methods, which only
give theoretically optimal shaping solutions, our framework can always obtain the globally
optimal shaping scheme for a specific channel or different application scenarios. Compared
with the conventional autoencoder-based geometric shaping model or other geometric
shaping methods, our framework realizes the effective combination of end-to-end learning
and traditional geometric shaping theory so that the obtained constellation scheme can
further guarantee optimal BER performance on the basis of ensuring optimal SER perfor-
mance. And due to its adaptability, it is suitable for any channel condition or application
scenario, bringing new inspiration to the other communication fields. In a real UVLC sys-
tem, a 2.05 Gbps transmission is achieved under the hard decision–forward error correction
(HD-FEC) threshold of 3.8× 10−3 by employing the autoencoder-based 8QAM (AE-8QAM)
optimized by the AEGSM, which is 103 Mbps faster than the Norm-8QAM. The AE-8QAM
also shows its resistance to nonlinearity and enables the UVLC system to operate within
a larger dynamic range of driving voltages, extending it by 58.37%. The research results
confirm the potential and great advantages of the proposed AEGSM framework in the field
of underwater visible-light communication.

2. Principle
2.1. Overview of the Autoencoder-Based Geometric Shaping Model

The real underwater visible-light communication system design adopts a modular ap-
proach, and the entire communication system consists of multiple sub-modules, including
source coding, channel coding, modulation, channel estimation, and channel equalization.
Every model has to be as realistic as possible for an optimal performance. However, the
traditional GS methods used in UVLC are based on a series of ideal model blocks, each of
which is built based on a prior mathematical theory. This means the traditional GS methods
can only work with ideal and static systems, and they cannot be optimal solutions for real
UVLC systems. Using deep learning and autoencoder techniques, we can employ a neural
network to model the entire visible-light communication system and use an autoencoder to
automatically generate an initial shaping scheme to guarantee the best SER performance.
In order to further ensure the optimal BER performance, a revised pairwise optimization
(RPO) algorithm can be used to find the best bit representation for each constellation point
to obtain a globally optimal shaping scheme. The principle of the autoencoder-based
geometric shaping model (AEGSM) using end-to-end learning is shown in Figure 1.

As shown in Figure 1, the autoencoder-based geometric shaping model framework
consists of three main modules, namely symbol-wise optimization, bit-wise optimization,
and the UVLC test. The symbol-wise optimization module is divided into three steps:
collecting symbol data, training the channel model, and training the autoencoder. In the
first step, the data to be sent are first mapped by the Norm-8QAM to obtain the original
constellation, and after up-sampling, IQ separation, and CAP modulation, it is sent to
the arbitrary waveform generator to obtain the transmitted signal. At the receiving end,
the signal passing through the actual underwater visible-light channel is subjected to
corresponding CAP demodulation, down-sampling, and post-equalization processing to
obtain the distorted constellation. After the distorted constellation is mapped to a symbol
for performance testing, it is sent to the second step as the label of the channel model
training, and the corresponding input is the original constellation obtained in the first step.
In the stage of training the self-encoder, the channel model trained by the second step is
embedded between the encoder and the decoder, and the weights are frozen to simulate
the real underwater optical channel. The autoencoder performs unsupervised learning to
find the optimal constellation distribution scheme at the symbol-wise level. In the bit-wise



Photonics 2023, 10, 809 4 of 15

optimization module, the constellation distribution generated by the autoencoder is paired
with the optimal bit representation under the optimization objective of the RPO algorithm.
In the final step, the UVLC test module, the data to be sent are mapped by the AE-8QAM
and processed by corresponding DSP methods, including up-sampling, IQ separation,
and CAP modulation. After DA conversion, the processed signal is then input into the
actual underwater visible-light communication system. At the receiving end, the received
signal is first subjected to AD conversion and sequentially undergoes CAP demodulation,
down-sampling, post-equalization, and AE-8QAM de-mapping for performance testing.
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Firstly, to train the channel model based on the neural network, the signal to be sent
is modulated by norm QAM-CAP and transmitted in the real underwater visible-light
system. Then, we collect the constellation signals of the transmitting end and receiving end
to use as the input and labels of the channel training, respectively, and conduct channel
training. Next, we embed the trained channel model weights into the autoencoder and
freeze the channel model. The autoencoder then undergoes unsupervised learning to
generate a symbol-wise optimal reshaping scheme. In the second stage, driven by the
optimization function of the pairwise optimization algorithm, we fix the constellation
distribution generated by the autoencoder, and continuously adjust the bit mapping of
the constellation symbols to achieve bit-wise optimization of the constellation scheme.
After obtaining the jointly optimized shaping scheme, we deploy it in the real underwater
visible-light system to replace norm quadrature amplitude modulation and map the data
to be sent. At the receiving end, we use the corresponding constellation scheme to de-map
the received signal after DSP processing to calculate the bit error rate and evaluate the
performance.

2.2. Autoencoder-Based Symbol-Wise Optimization

During the symbol-wise optimization stage, we use an autoencoder to find the optimal
constellation distribution to guarantee the best SER performance. Regarding the autoen-
coder, we regard the transmitting part of the communication system as an encoder, and
the receiving part as a decoder, and what is transmitted in the channel is the constellation
scheme learned by the encoder. In order to allow the gradient of the receiver network to
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backpropagate to the transmitter network, we need an additional channel neural network
to model the real underwater visible-light channel and embed the channel model between
the encoder and decoder, and finally a complete autoencoder for geometric shaping can be
obtained. The neural network structure of the autoencoder is shown in Figure 2.
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For encoders, their input is a one-hot vector, and the index of the non-zero position
in the vector represents the symbol to be transmitted. To simulate the inter-symbol inter-
ference between consecutive samples introduced by the channel effect, multiple encoders
are connected in parallel to represent different moments, and the results they produce
represent the real transmitted constellation sequence. For the channel model, it is trained
in advance to learn the channel response of the actual underwater visible-light channel
and then embedded into the autoencoder to act as the actual channel. The constellation
sequence output to the encoders is firstly concatenated by a flatten layer and is then fed
into the network-based channel to simulate real transmission in the underwater visible-
light channel. After passing through the channel network, the distorted constellation is
directly decoded by the decoder. The decoding result of the decoder is backpropagated
under the action of the loss function, and the encoder is prompted to generate a globally
optimal constellation distribution to adapt to the actual underwater visible-light channel.
Once the learning of the autoencoder is completed, it will have the ability to generate the
symbol-wise optimal constellation scheme to ensure the best SER performance.

The training of the autoencoder is divided into two phases: neural-network-based
channel training and transceiver training. During the neural-network-based channel
training phase, we use a multilayer perceptron to emulate the UVLC channel response for
constellations of QAM signals and connect the computation graph between the encoder
and decoder for the gradient backpropagation. The transmission equation of the neural-
network-based channel can be expressed as

Yout = W3Trelu(W(2)Trelu(W(1)TX + b(1)) + b(2)) + b(3) + noise (1)

where W(i) and b(i) represent the weight matrix and biases of the i− th layer, relu(·) is the
rectified linear unit (ReLU) [31], X is the input constellations of transmitted signals, and
Yout is the channel output constellations. In order to imitate the real time-varying UVLC
channel, additive white Gaussian noise (AWGN) is added on the output constellation of
the whole neural-network-based channel model. The loss function for training the channel
model can be expressed as

L = ‖Y−Yout‖2 (2)

where Y is the received constellations, and Yout is the corresponding model output con-
stellations. The constellations of Norm-8QAM signals before and after passing through
the real underwater visible-light channel are used as the input and labels for the channel
model training to approximate the complicated channel effect.



Photonics 2023, 10, 809 6 of 15

During the transceiver training phase, the neural-network-based channel needs to be
frozen to simulate the real channel. The randomly transmitted symbol m ∈ {1, . . . , M} is
transformed into an M× 1 one-hot vector, sin, where the m− th element is equal to 1. The
encoder learns to find the constellation of the one-hot vector and send the constellation
to the neural-network-based channel model while the decoder learns to de-map and
reconstruct original information, sout, according to the constellation received from the
channel model. The output sout of the decoder is a probability vector over the M possible
classes, where the largest probability term is trained to have the same index as the “1” term
in the encoder’s corresponding one-hot input s.

As we only take the randomly generated one-hot vector as the input and label, the
training of the transceiver can be regarded as an unsupervised learning process. The modi-
fied stochastic gradient descent algorithm Adam [32] is employed to train the transceiver.
In the training process, Adam uses the cross-entropy loss to calculate the gradient of the
whole network and update the weights of the encoder and decoder.

In this case, the network of the transceiver will self-optimize to find the most suitable
constellation distribution for real underwater visible-light channel transmission. The loss
function of this training procedure can be expressed as

L =
M

∑
n=1
−sn log(sout,n) (3)

where sn and sout,n represent the n− th elements of s and sout, respectively.

2.3. RPO-Based Bit-Wise Optimization

Since the training of the autoencoder is at the symbol-wise level, the shaping scheme
generated by the autoencoder will no longer conform to Gray coding. Although it can
guarantee the lowest SER in transmission, it cannot guarantee the lowest BER. Thus, the
pairwise optimization algorithm [20] is applied to optimize the shaping scheme generated
by the autoencoder at the bit-wise level. We use a two-dimensional I/Q constellation
with M equally likely symbols {s1, . . . , sM} to encode log2 M bits, whose bit mapping is
represented by βi, i ∈ (i, . . . , M). The Hamming distance h

(
βi, β j

)
is defined as the number

of bits that differ between si and sj. The upper bound of the analytical expression of the
symbol error rate (SER) can be expressed as Q(‖si, si‖/

√
4N0/8), where Q(x) represents

the Gaussian Q equation, ‖·‖ represents the norm operation of the vector, and N0 is the
variance of the two-dimensional Gaussian noise. When converting the symbol error rate
(SER) into the bit error rate (BER), the result obtained by using the Gaussian Q equation is
the weight of the Hamming distance between symbols. Ultimately, the objective function
of the revised pairwise optimization (RPO) algorithm for two-dimensional constellation
can be expressed as

Minimize :
1
M

M

∑
i=1

M

∑
j=1,j 6=i

h(βi, β j) ·Q(

∥∥si − sj
∥∥

√
4N0/N

) (4)

Driven by the objective function, by fixing all constellation points and continuously
adjusting the bit mapping between any two symbols, we can achieve the bit-wise opti-
mization of the constellation generated by the autoencoder and finally obtain the jointly
optimized shaping scheme.

To evaluate the performance of the shaping scheme and demonstrate the effectiveness
of the autoencoder-based geometric shaping model (AEGSM) framework, taking the eight-
order symbols as an example, we deploy the autoencoder-based 8QAM (AE-8QAM) scheme
generated by the AEGSM in the simulation system and the real system, respectively, and
compare it with the Norm-8QAM scheme and the PO-8QAM scheme, which is generated
entirely by the PO algorithm in detail.
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3. Simulation and Results

In this section, we will provide the detailed parameters of the proposed AEGSM
system and a comparison of the performances of the AE-8QAM, Norm-8QAM, and PO-
8QAM in a simulation environment. The parameters of the autoencoder are summarized
in Table 1. The neural-network-based channel model is optimized via stochastic gradient
descent (SGD), and the training batch size is 256. The parameter N is selected upon
the principle that (2N + 1)·2 should converge towards the optimal length of the channel
memory. Through continuous experimentation and exploration, we determine N to be 12
to simulate the memory of the channel to the greatest extent. After completing the training
of the channel model, we embed the channel model into the autoencoder and freeze its
weights, and then use Adam to train the encoder and decoder weights in the autoencoder
with a batch size of 128. When the training is completed, we use the RPO algorithm to
optimize the shaping scheme generated by the autoencoder at the bit-wise level, and then
we can obtain the AE-8QAM.

Table 1. Structure and parameters of the autoencoder.

Type of Layer Number of Neurons Activation

Transmitters–Encoder
Input 8 None
Hidden Layer1 256 ReLU
Hidden Layer2 256 ReLU
Hidden Layer3 256 ReLU
Output 2 None
Flatten
Neural-Network-Based Channel Model
Input (2N + 1) × 2 None
Hidden Layer1 66 × 2 ReLU
Hidden Layer2 18 × 2 ReLU
Output 2 None
Receiver–Decoder
Input 2 None
Hidden Layer1 256 ReLU
Hidden Layer2 256 ReLU
Hidden Layer3 256 ReLU
Hidden Layer4 256 ReLU
Output 8 Softmax

Two types of channels are used in our simulation experiments. The first type of
channel is the additive white Gaussian noise (AWGN) channel, which can be expressed as

y = x + nWGN (5)

where x and y represent the input and output of the channel, and nWGN represents the
white Gaussian noise.

The second type of channel is the simulated VLC (simu-VLC) channel, which contains
frequency fading, additive noise, and nonlinear distortions. It can be expressed as

y = IFFT
[
e− f FFT[ f (x)]

]
+ nWGN (6)

where f (·) represents the nonlinear effect of the LED light source, f is the frequency, and
e− f is the negative exponential frequency fading of the UVLC channel. The function
expression of f (·) can be described as

f (x) =
3.036

1 + e−3∗vpp∗x/(max(x)−min(x))
− 2.206 (7)
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where vpp represents the simulated driving voltages [33].
The performance of the Norm-8QAM and PO-8QAM severs as the baseline in the

simulation. The transmitted signals are mapped by our AE-8QAM, and then after being
CAP-modulated, they are sent to the simulation channel, and finally the received signals
are demodulated and de-mapped to calculate the BER, and their performance is compared
with baseline.

Figure 3 illustrates a comparison of BER performance versus different SNRs with
different shaping schemes in the AWGN channel. We can see that in the case of an extremely
low signal-to-noise ratio, none of the three shaping schemes can resist strong noise, so they
all show extremely poor performance, and there is no obvious performance gap. Thus,
the constellations of the three schemes in region (i) are all severely distorted. But with
the improvement in the signal-to-noise ratio, the performance of the PO-8QAM and AE-
8QAM gradually improves compared to that of the Norm-8QAM due to their self-adaptive
ability. According to the constellations in region (ii) and region (iii), the AE-8QAM and
PO-8QAM can be adaptively adjusted according to the channel signal-to-noise ratio to
achieve a better performance. At this time, the PO-8QAM and AE-8QAM show almost the
same performance, which means that the PO-8QAM can achieve an optimal transmission
performance like the AE-8QAM under the ideal AWGN channel, in line with the theoretical
model of the PO algorithm.
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In the second type of simulation channel, the comparison of BER performance versus
the estimated SNR of the entire channel with different shaping schemes is shown in Figure 4.
It is worth noting that the signal-to-noise ratio at this time is estimated using the EVM
algorithm [34]. Similarly, the three shaping schemes have poor performance at a very low
SNR, and the constellations in region (i) also exhibit great distortion. Additionally, due to
the addition of nonlinearity, the performance at this time is worse than that in the Gaussian
white noise channel under the same SNR. The constellations in the three regions of Figure 4
are more severely distorted than those in Figure 3, and there are more obvious nonlinear
distortions in the constellations. These distortions reflect the unique characteristics of the
nonlinear simulation channel compared to the Gaussian channel. It is noted that as the
SNR increases, both the AE-8QAM and PO-8QAM also show better performances than
the Norm-8QAM, but at the same time, the AE-8QAM starts to perform better than the
PO-8QAM. This means that the AE-8QAM has a stronger ability to resist nonlinearity and
adaptive ability for specific channels.
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We then test the BER of the three shaping schemes by adjusting the Vpp parameters
of the simu-VLC channel. The signal-to-noise ratio of Gaussian white noise is fixed at
15dB. Figure 5 shows the BER versus simulated Vpp with different shaping schemes in
the simu-VLC channel. As Vpp increases and the nonlinear effect of the system becomes
more and more significant, the AE-8QAM achieves a significantly lower BER than the other
two schemes. When the Vpp is too large and the nonlinear effect of the entire channel
is very strong, the upper limit of the correct rate of transmission is limited, and the gain
of the AE-8QAM compared with the PO-8QAM is not further improved. Owning to the
lack of adaptability to different channel conditions, the Norm-8qm always presents the
worst performance. Although the PO-8QAM has a certain adaptive ability, it only makes
adjustments to the theoretical signal-to-noise ratio, and cannot consider the specific damage
caused by the channel. Therefore, it will have a poorer performance than the AE-8QAM.

Photonics 2023, 9, x FOR PEER REVIEW 10 of 16 
 

 

other two schemes. When the Vpp is too large and the nonlinear effect of the entire chan-

nel is very strong, the upper limit of the correct rate of transmission is limited, and the 

gain of the AE-8QAM compared with the PO-8QAM is not further improved. Owning to 

the lack of adaptability to different channel conditions, the Norm-8qm always presents 

the worst performance. Although the PO-8QAM has a certain adaptive ability, it only 

makes adjustments to the theoretical signal-to-noise ratio, and cannot consider the spe-

cific damage caused by the channel. Therefore, it will have a poorer performance than 

the AE-8QAM. 

 

Figure 5. BER versus simulated Vpp with different shaping schemes in simu-VLC channel. 

4. Experimental Setup 

Figure 6 presents the experimental setup of an underwater VLC system with CAP 

modulation. At the transmitter end, the original data are mapped to 8QAM complex sym-

bols. Then, the symbols are up-sampled with an up-sampling factor of 4. The complex up-

sampled symbols are separated to in-phase (I) and quadrature (Q) and filtered by a pair 

of pulse-shaping filters. After this, the digital signal is converted to an analog signal using 

a 4.2 GSa/s arbitrary waveform generator (AWG, Tektronix AWG710B). The sampling rate 

of the AWG can be set according to specific experimental needs. The generated analog 

signal is first pre-equalized by a circuit[35] and amplified by a 1 GHz electrical amplifier 

(EA, Mini-Circuits ZHL-2-8-S+), and then it is coupled with a direct current using a 4.2 

GHz bias tee (Mini-Circuits ZFBT-4R2GW-FT+) to drive a green silicon substrate LED. 

Before the LED, we use a lens to transmit parallel light to emit it into the water. The green 

light passes through a 1.2 m tank filled with water whose temperature is controlled at 25 

degrees Celsius. 

 

Figure 6. Experimental setup of UVLC system with a green LED. 

Figure 5. BER versus simulated Vpp with different shaping schemes in simu-VLC channel.

4. Experimental Setup

Figure 6 presents the experimental setup of an underwater VLC system with CAP
modulation. At the transmitter end, the original data are mapped to 8QAM complex symbols.
Then, the symbols are up-sampled with an up-sampling factor of 4. The complex up-sampled
symbols are separated to in-phase (I) and quadrature (Q) and filtered by a pair of pulse-
shaping filters. After this, the digital signal is converted to an analog signal using a 4.2 GSa/s
arbitrary waveform generator (AWG, Tektronix AWG710B). The sampling rate of the AWG
can be set according to specific experimental needs. The generated analog signal is first
pre-equalized by a circuit [35] and amplified by a 1 GHz electrical amplifier (EA, Mini-Circuits
ZHL-2-8-S+), and then it is coupled with a direct current using a 4.2 GHz bias tee (Mini-
Circuits ZFBT-4R2GW-FT+) to drive a green silicon substrate LED. Before the LED, we use a
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lens to transmit parallel light to emit it into the water. The green light passes through a 1.2 m
tank filled with water whose temperature is controlled at 25 degrees Celsius.
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At the receiver end, another lens is used to focus light on a PIN (Hamamatsu S10784),
which converts the optical signal to electrical signals. An iris diaphragm is placed between
the lens and PIN to avoid receiver saturation. The electrical signal is then amplified by a
pair of differential EAs and is sampled with a digital real-time oscilloscope (OSC, Agilent
MSO9254A, Santa Rosa, CA, USA) at a sampling frequency of 2 GSa/s. The received
digital signal is equalized by a wave-wise Volterra equalizer in the time domain and
demodulated via CAP demodulation. Later, the signal is down-sampled and de-mapped
after symbol-wise equalization. At last, we calculate the bit error ratio (BER) and compare
the transmission performance among the AE-8QAM, Norm-8QAM, and PO-8QAM. The
wavelength of the employed LED is 520 nm, and the −10dB bandwidth of the LED is
30 MHz. The bias current we use in the experiment is 258 mA and the power is 100 mW
according to our measurements.

5. Experimental Results and Discussion

In this section, we compare the performance of the proposed AE-8QAM with the
Norm-8QAM and PO-8QAM in the real UVLC system. Before starting the performance
comparison, we first analyze the convergence of the neural-network-based channel model
and autoencoder in our AEGSM framework. Figure 7 illustrates the learning curve for
training loss and test loss of the channel model and autoencoder during symbol-wise
optimization. We can see that the training and testing loss of the channel and autoencoder
decrease quickly. In order to ensure that the training of the channel model and autoencoder
can fully converge, we set the epoch of both of them to 100.
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On the basis of training the AE, we further optimize the constellation distribution
output by the encoder at the bit-wise level and then deploy it to the real system for
performance testing. Figure 8 shows the BER performance of the Norm-8QAM, PO-8QAM,
and AE-8QAM versus Vpp in a real UVLC system. Additionally, to verify the performance
improvement brought about by bit-wise optimization, we also plot the BER performance
of the AE-8QAM without the RPO algorithm simultaneously. As Vpp increases from a
small value, the BER of all shaping schemes decreases until the optimal operating point
is reached. When the Vpp is too large, the signal suffers from strong nonlinearity and
is damaged seriously, so after the optimum point, the BER increases with Vpp. Figure 9
illustrates the constellation points of all shaping schemes received under different Vpp
values, which shows that the signal will be greatly damaged if the Vpp is too large or too
small. Compared with other shaping methods, the AE-8QAM has always achieved the best
performance due to its strong adaptive ability and anti-nonlinearity. At the same time, the
performance gap between the AE-8QAM without the RPO algorithm and the AE-8QAM
verifies the gains brought about by bit-wise optimization.
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Furthermore, to comprehensively explore the gains of different shaping schemes
under various equalization algorithms, three different symbol-wise post-equalization al-
gorithms are employed under the same experimental platform to perform symbol-wise
post-equalization: LMS equalization, Volterra equalization, and NN-based equalization.
Before performing symbol-level post-equalization, all received signals are processed with
wave-wise Volterra equalization to obtain the optimal performance. The Q factors of differ-
ent shaping schemes under different post-equalization procedures are shown in Figure 10.
It is worth noting that the Q factor of the AE-8QAM after NN-based equalization is only
increased by 0.30 dB compared with that after LMS post-equalization, which is lower than
the Nom-8QAM’s 0.90 dB and PO-8QAM’s 0.46 dB. This also confirms that the AE-8QAM
itself has a certain anti-nonlinear ability, so the gain of the AE-8QAM between using NN-
based post-equalization and LMS post-equalization is not obvious. However, since the
Norm-8QAM does not have an adaptive ability or anti-nonlinearity, there will be a more
obvious performance improvement after using NN-based post-equalization than that seen
when using LMS post-equalization.
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After investigating the BER performance and Q factor gains, we fix the bias and
amplitude of each shaping scheme to their optimal values and test their performance at
different transmission rates. Figure 11 represents the performance of the three schemes
under different bit rates, in which we can find a 103 Mbps improvement of the AE-8QAM
compared with the Norm-8QAM at the 7% HD-FEC threshold. The AE-8QAM optimized
by our AEGSM framework achieves highest transmission speed of 2.05 Gbps in the real
UVLC system. Throughout the experiment, the roll-off factor of the shaping filter is set
to 0.205. The carrier frequency is 407 MHz, and the bandwidth is 801 MHz when the
transmission rate achieves 2G. The spectrum of the corresponding transmitted signal at this
time is shown is on the right side of Figure 11. The parameters used in the digital signal
processing in the experiment are shown in Table 2.
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Table 2. Parameters for DSP processing.

Up-Sampling
Multiple Roll-Off Factor Bandwidth Carrier Frequency

4 0.205 sampling rate 1/
up-sampling multiple

sampling rate/up-sampling
multiple × [(1 + roll-off factor)

× 0.5 + 0.01]
1 This is the sampling rate of AWG, which is set according to the specific transmission rate requirements.

6. Conclusions

In this work, an autoencoder-based geometric shaping model framework is proposed
to jointly optimize QAM signals at the symbol-wise and bit-wise levels for underwater
visible-light communication with a green LED using CAP modulation. Traditional shaping
methods always give shaping schemes based on theoretical models, which do not consider
the specific characteristics of the actual transmission channel, resulting in errors caused by
the discrepancy between theory and reality. To solve this problem, we use a neural-network-
based model to model the entire underwater visible-light communication channel and use
an autoencoder to automatically generate a symbol-wise globally optimal shaping scheme.
A revised pairwise optimization (RPO) algorithm is then used for bit-wise optimization. In
the experiment, a 2.05 Gbps transmission can be achieved under the 7% HD-FEC threshold
by employing the autoencoder-based 8QAM (AE-8QAM) optimized by the AEGSM, which
is 103 Mbps faster than the Norm-8QAM. Besides, the AE-8QAM enables the UVLC system
to operate within a larger dynamic range of driving voltages, extending it by 58.37%, which
demonstrates its ability to adapt to dynamic signals and different channel conditions. Such
an auto-shaping framework can also bring new inspiration to other communication fields.
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