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Abstract: In this study, the Method of Fundamental Solutions (MFSs) is adopted to model Chemical
Vapor Infiltration (CVI) in a fibrous preform. The preparation of dense fiber-reinforced silicon carbide
composites is considered. The reaction flux at the solid surface is equal to the diffusion flux towards
the surface. The Robin or third-type boundary condition is implemented into the MFS. From the
fibers’ surface concentrations obtained by MFS, deposition rates are calculated, and the geometry
is updated at each time step, modeling the pore filling over time. The MFS solution is verified by
comparing the results to a known analytical solution for a simplified geometry of concentric cylinders
with a concentration set at the outer cylinder and a reaction at the inner cylinder. MFS solutions are
compared to published experimental data. Porosity transients are obtained by a combination of MFSs
with surface deposition to show the relation between the initial and final porosities.

Keywords: chemical vapor infiltration; pores; reinforced silicon carbide (SiC) composites; preforms
of fibers; method of fundamental solutions; diffusion equation

1. Introduction

Chemical Vapor Infiltration (CVI) was developed as a method to densify porous
graphite bodies [1]. The CVI process has been widely used in the development of composite
materials; more than half of all carbon/carbon composites are made by CVI [2]. The
composites produced are often highly heat- and wear-resistant, and, as a result, they have
been used in the industry [3] as a key enabling technology to reduce fuel consumption and
emissions in gas turbine engines [4], heat exchangers and furnaces [5]. CVI is preferable
to other methods of ceramic processing because it is a low-stress, low-temperature, and
relatively easy-to-control process. There are many different CVI processes used in the
industry today to deposit the desired solid product on preform surfaces [6].

At its basic form, CVI involves introducing reactants into a porous preform. The
reactants then form precursors, which are deposited on the internal surfaces of the preform,
causing the internal surfaces to grow and the solid portion of the preform to become
thicker. As fibers grow and the preform becomes increasingly infiltrated, some areas of the
geometry are closed off to reactant gas. This leads to voids forming in the geometry and
increased porosity when infiltration is completed. Accounting for these voids, which could
be detrimental to the quality of manufactured products, is imperative in modeling the CVI.

The modeling of CVI processes is important to predict infiltration, including whether
voids may form and their location. The algorithmic goal of this paper is to introduce the
Method of Fundamental Solutions (MFSs) to model the CVI of representative nests of
fibers representing a portion of an actual preform. The objective of the present study is
to implement the Robin or third-type boundary condition to the MFS, which is typically
solved for Dirichlet boundary conditions. The main idea of MFSs consists of representing
the solution to the problem as a linear combination of the fundamental solutions with
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respect to source points located outside the domain and particular boundary conditions at
collocation points. Then, the initial problem is reduced to the determination of unknown
coefficients of the linear combination [7]. As a fundamental solution, it automatically
satisfies the governing equation, and only the boundary conditions need to be satisfied [8].
The MFS has substantial advantages over traditional finite-volume and finite-difference
mesh-based methods because the MFS does not require cumbersome entire 3-D domain
meshing. Instead, MFS requires the placement of fundamental solutions (singularities) only
at the boundaries of the considered geometry.

Numerical experiments show that, in contrast to other boundary element methods
(BEM), the MFS [9] requires relatively few boundary points and singularities to produce
accurate results [10]. The CVI is modelled in the present study by solving the diffusion
equation with a surface chemical reaction, using Green’s functions for the Laplace operator
to obtain the concentration of the reagent throughout the domain. From the concentrations
at the fiber surfaces, the fiber growth rate can be calculated, and then the geometry is
updated to reflect the calculated fiber growth. During the simulated CVI process, the fiber
diameters grow, and the domain is filled with larger-size fibers. When the domain is fully
infiltrated by CVI, the MFS solution reaches a steady state. The MFS has not been used
to model CVI in prior studies, to the best of the author’s knowledge. Past studies were
concerned with the use of BEM and related methods for potential theory [11], elasticity and
acoustics [12] and multiphase transport in unsaturated swelling porous media [13].

The simplified surface chemical reaction—which is discussed in this paper—is a one-
step isothermal irreversible surface reaction involving the transformation of decomposed
methyl-trichlorosilane (CH3SiCl3, abbreviated as MTS) to solid silicon carbide (SiC) [14–16].
The recent Ref [16] that models the CVI at a macro-scale reaction surface does not predict
changes in porosity at the scale of individual fibers.

There are several methods used to transport reactants in a CVI process. These methods
are classified by whether they use forced convection or diffusion and whether thermal
gradients are imposed [17]. The most widely used CVI is isobaric and isothermal, for
which transport occurs entirely by diffusion [6,18]. This type of CVI is modeled in the
current study. For an isothermal CVI process, near-surface pores tend to close early in the
process, restricting gas flow to the interior surfaces [19]. To counteract this effect, machining
and re-infiltration may be necessary to ensure the desired density—this results in a longer
production time and more expensive end products. Therefore, the computational prediction
of voids and porosity is important for CVI practitioners.

CVI processes are generally slow—taking on the order of days to infiltrate—where
fiber growth is on the order of microns per hour. As a result of the time scales of the reaction
and the growth rates in the CVI processes, a quasi-steady approach is used in the current
study to model infiltration. Most current models are based on the pseudo-steady-state
hypothesis [20]—mass and momentum transfer are very rapid compared to changes in
pore geometry. This quasi-steady approach, which is used in the present study, involves
solving the steady-state Laplacian for concentration at every time step and then updating
the geometries based on the calculated growth rates and time step increment.

Due to the complex geometries of the fibrous preforms which are infiltrated, simplified
models of the considered processes have been developed. Many of these models are one-
dimensional transient pore models. After these simplifications are made, many of these
models can be solved analytically. An isothermal CVI reaction was modeled in the frame
of the 1-D approach in [21]. A tapered pore was considered in [22]. The analytical solutions
to the simplified pore models are limited to the infiltration of a singular round pore [6,23].
In terms of modeling CVI, MFS offers a clear advantage in the broad range of geometries,
which can be handled. Using MFS, an arbitrary fiber cross-section is computed in this study.

In Ref [20], the modeling of the CVI process involves understanding the following
three steps: (1) the mass transport of the reagent to the fibrous substrate, (2) the deposition
kinetics of the solid matrix, and (3) the change in the preform structure that accompanies
deposition onto the fibers. The first and second steps are well understood and can be



Math. Comput. Appl. 2024, 29, 27 3 of 14

modeled reasonably well. The third step (i.e., the description of the change in the pore
structure and surface area) is the most difficult to determine. This step is addressed in the
current study.

In Ref [24], the same CVI process is considered in which the MTS dissociates and
deposits silicon carbide (SiC) at the solid fiber surface. The Level-Set Method (LSM) [24],
based on the solution of the Hamilton–Jacobi level set equation [25], is different from MFS
in that it assumes a constant deposition front speed. The advantage of using MFS is that it
does not require an assumption about the uniformity of the deposition rate.

The numerical objective of the present study is to implement the MFS derivatives of
unknown concentrations of CVI feedstock gas to facilitate the Robin boundary condition
at the deposition surface. From the fibers’ surface concentration of the reagent obtained
by MFS, deposition rates are calculated, and the geometry is updated at each time step;
therefore, the pore filling is modeled over time. The MFS solution is verified by comparison
to a known analytical solution for a simplified geometry of concentric cylinders with a
concentration set at the outer cylinder and a reaction at the inner cylinder. Finally, the MFS
solution is compared to published CVI experimental data to demonstrate the practicality of
the developed algorithm.

This paper is composed as follows: Section 2 includes governing equations and the
MFS methodology, as well as the verification of the MFS methodology by comparing it to
an analytical solution for diffusion between cylindrical surfaces and deposition at one of
the surfaces; next, Section 3 discusses the obtained computational results and provides a
qualitative comparison to the experimental results; finally, Section 4 provides analytical
conclusions as well as areas for the further application and development of this study.

2. Theoretical Model and Numerical Methodology

A 3-D fiber preform of straight fibers is approximated by parallel long cylinders of a
given initial diameter in contact with feedstock gas (see Figure 1). The one-step isothermal
irreversible surface reaction of the transformation of decomposed MTS to solid silicon
carbide is assumed. The densification of the set of fibers by CVI is a slow process. The fiber
size and the geometry of fibers change because of deposition, where the deposited film
thickness is updated after every time step; however, the changes in geometry are small
per time step. Instead of modeling the actual transient process, a quasi-steady approach is
taken where the change in reagent concentration over each time step is treated by a steady
state analysis.
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Figure 1. Infiltration for randomly placed fibers with aligned axis: (a) initial geometry of fibers and
(b) final geometry after the deposition process has concluded. The deposited layer (grey) and fibers
(black) are shown.
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In CVI modeling, it is necessary to solve the diffusion equation to obtain the concen-
tration of species in the computational domain as well as the surface chemical reaction and
growth rate resulting from the deposited material. The distribution of species concentration
is described using the following concentration transport equation:

∂c
∂t

+ u
∂c
∂x

+ v
∂c
∂y

+ w
∂c
∂z

= D
[

∂2c
∂x2 +

∂2c
∂y2 +

∂2c
∂z2

]
, (1)

where D is the diffusion coefficient.
Since the concentration update at each time step is obtained by steady-state analysis,

the term ∂c
∂t can be eliminated in the above equation. Also, in this study, geometries

involving fibers in cross-section (x, y) are considered. These geometries of fibers are
assumed to be uniform along the third z-axis, and as a result, the ∂c

∂z terms can be eliminated
in the above equation.

For the considered CVI geometry, the characteristic length, L, is small, and the charac-
teristic velocity, u, is also small. This results in a very small Peclet number:

Pe =
u·L
D

≪ 1 (2)

The advective effects are negligible in the CVI process due to the very small Peclet
numbers involved, and Equation (1) is further reduced to the following:

0 =
1

Pe

[
∂2c
∂x2 +

∂2c
∂y2

]
. (3)

Equation (3) is a Laplace operator, which can be solved using Green’s functions with
boundary singularities. Using Green’s function for the Laplace operator in two dimensions,
the solution is given by [26]

cj =
1

2π

N

∑
i=1

Filn
(
ri,j

)
, (4)

where N is the number of observation points and singularities, Fi represents the strength
of the i-th singularity, i represents the index (location) of singularity, j represents the
index (location) of the observation point, c represents the concentration at the observation
point, and positive ri,j is the distance between the observation point j and location of the
singularity, i.

To find the unknown strength of singularity, F, solving a linear system of equations
for the number of singularities, 1 ≤ I ≤ N, and observation points, 1 ≤ j ≤ N, is the same
and equal to N. The linear system based on Equation (4) for known concentrations in
observation points is given below:

c1
c2
c3
...

cN

 =
1

2π


ln(r1,1) ln(r1,2)
ln(r2,1) ln(r2,2)

ln(r1,3) · · ·
ln(r2,3) . . .

ln(r1,N)
ln(r2,N)

ln(r3,1) ln(r3,2)
...

...

ln(r3,3) · · ·
...

. . .

ln(r3,N)
...

ln(rN,1) ln(rN,2) ln(rN,3) . . . ln(rN,N)




F1
F2

F3
...

FN

 (5)

To avoid the high condition numbers of linear systems that need to be solved, singu-
larities are located outside of the computational domain (submerged). The submergence of
singularities for Stokes equations is discussed in [27,28] and the references therein. If the
problem set up includes only the Dirichlet (or first-type) boundary condition, the left-hand
side of Equation (5) is known, and one should solve the linear system with respect to the
unknown vector of strength of singularities, F. Boundary conditions of this type correspond
to observation points at domain boundaries, where boundary concentrations are given.
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In general, the kinetics of the formation of SiC involves several species and intermedi-
ate reactions, while a reduced single-step reaction is used in the present study, see Ref [16]
and the references therein, as follows:

C2H2 + 2SiCl2 + H2→2SiC(solid) + 4HCl (6)

The concentration of acetylene (C2H2) at the fibers’ surface exposed to the above CVI
chemical reaction is not known, and can be calculated using the following equation [29],
assuming the equality of the reaction flux at the solid surface, k cwall , to the diffusion flux
towards the surface, D

(
∂c
∂n

)
wall

:

cwall =
D
k

(
∂c
∂n

)
wall

, (7)

where c is the volume molar concentration of C2H2 in mol/m3, cwall is the surface molar
concentration of C2H2 at the wall in mol/m2, and k is the reaction rate constant, which is
calculated below using the Arrhenius equation [30]:

k = Aexp
(
− Ea

RT

)
, (8)

where A is the pre-exponential factor, Ea is the activation energy, R is the ideal gas con-
stant, and T is the reactor temperature. Since the CVI processes modeled using MFS are
isothermal, for a given reaction, k is assumed to be a constant and calculated using (8). The
reaction rate is dependent on the temperature only.

Refs. [16,31] reported that the concentration of SiCl2 gas has little effect on SiC growth.
The values of parameters in Equation (8), such as activation energy Ea = 355.5 kJ/mol and
pre-exponential factor A = 10−3 1/s, are obtained experimentally in Ref. [31] and used in
the present study.

The diffusion coefficient, D, of C2H2, is computed as the ratio of thermal diffusivity
(see [16] for the procedure of its calculation) and the Lewis number. The value of the Lewis
number for C2H2, LeC2H2 = 0.75 [16].

Equation (7) represents the Robin, or third-type boundary condition, which is a linear
combination of the values of a function and the values of its derivative on the boundary of
the domain. MFS is rarely used with this type of boundary condition. One example is the
MFS implementation of the partial slip boundary conditions for Stokes equations [27]. To
implement this boundary condition for Equation (7), one needs to take the derivative of (4).
For instance, the derivative of (4) by x is expressed as follows:

∂c
∂x

=
1

2π

N

∑
i=1

Fi

∂
(

ln
(

ri,(x,y)

))
∂x

=
1

2π

N

∑
i=1

Fi
1

ri,(x,y)

∂ri,(x,y)

∂x
=

1
2π

N

∑
i=1

Fi
x − xi
ri,(x,y)

2 , (9)

where ri,(x,y) =
√
(xi − x)2 + (yi − y)2 is the distance between the location of the i th

singularity, (xi, yi), and an arbitrary point within the computational domain, (x, y).

To derive the above equation, note that the derivative of r by x is
∂ri,(x,y)

∂x = x−xi
ri,(x,y)

.

The concentration derivative normal to the fibers’ surface in Equation (7) at observation
point j is calculated by taking the directional derivative of (5) and substituting the coordinate
of observation points, x = xj, into Equation (9). To calculate the directional derivative,
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the derivative of the concentration with respect to both x and y Cartesian coordinates is
calculated at the following observation points:



∂c1
∂x
∂c2
∂x

∂c3
∂x
...

∂cN
∂x

 =
1

2π



rx (1,1)

r2
(1,1)

rx (1,2)

r2
(1,2)

rx (2,1)

r2
(2,1)

rx (2,2)

r2
(2,2)

rx (1,3)

r2
(1,3)

· · ·
rx (2,3)

r2
(2,3)

. . .

rx (1,N)

r2
(1,N)

rx (2,N)

r2
(2,N)

rx (2,1)

r2
(3,1)

rx (3,2)

r2
(3,2)

...
...

rx (3,3)

r2
(3,3)

· · ·
...

. . .

rx (3,N)

r2
(3,N)

...
rx (N,1)

r2
(N,1)

rx (N,2)

r2
(N,2)

rx (N,3)

r2
(N,3)

. . . rx (N,N)

r2
(N,N)




F1
F2

F3
...

FN

 (10a)



∂c1
∂y
∂c2
∂y

∂c3
∂y
...

∂cN
∂y


=

1
2π



ry (1,1)

r2
(1,1)

ry (1,2)

r2
(1,2)

ry (2,1)

r2
(2,1)

ry (2,2)

r2
(2,2)

ry (1,3)

r2
(1,3)

· · ·
ry (2,3)

r2
(2,3)

. . .

ry (1,N)

r2
(1,N)

ry (2,N)

r2
(2,N)

ry (3,1)

r2
(3,1)

ry (3,2)

r2
(3,2)

...
...

ry (3,3)

r2
(3,3)

· · ·
...

. . .

ry (3,N)

r2
(3,N)

...
ry (N,1)

r2
(N,1)

ry (N,2)

r2
(N,2)

ry (N,3)

r2
(N,3)

. . . ry (N,N)

r2
(N,N)




F1
F2
F3
...

FN

 , (10b)

where rx (j,i) = xj − xi and ry (j,i) = yj − yi are the x and y coordinate differences, in
correspondence, between the observation point j and singularity point i in the x and y
directions, respectively.

To complete the directional derivative, the dot product of (10) is taken as the unit
vector normal to the surface, [nx, ny]:

∂c
∂n

=

[
∂c
∂x

,
∂c
∂y

]
·
[
nx, ny

]
(11)

By rearranging Equation (5) and substituting Equation (10) for an observation point, j,
the following equation at the deposition surface is obtained:

0 =
1

2π



ln
(
r1,j

)
− D

k

(
rx (1,j)

r2
(1,j)

nx +
ry (1,j)

r2
(1,j)

ny

)
ln
(
r2,j

)
− D

k

(
rx (2,j)

r2
(2,j)

nx +
ry (2,j)

r2
(2,j)

ny

)
ln
(
r3,j

)
− D

k

(
rx (3,j)

r2
(3,j)

nx +
r ,(3,j)

r2
(3,j)

ny

)
...

ln
(
rN,j

)
− D

k

(
rx (N,j)

r2
(N,j)

nx +
ry (N,j)

r2
(N,j)

ny

)



T


F1
F2

F3
...

FN

 , (12)

Boundary conditions (12) are used for observation points located at fiber surfaces
at which deposition occurs. For each observation point located at a boundary where
deposition occurs, Equation (12) is substituted into system (5) in place of the original row,
which corresponds to a given concentration at the boundary.

To construct the domain for a non-structured preform, fibers are placed randomly in
the domain, one at a time, until the desired porosity is achieved. The details of porosity
computations are presented at the end of this section. It should be noted that—even though
the initial porosity of the sample is the same—the actual geometry of the domain could be
different due to the random way the fibers are placed. The resulting linear system with
respect to the strengths of the singularities, F, is then solved using the backslash operator
in MATLAB, solving a linear system of equations [32].



Math. Comput. Appl. 2024, 29, 27 7 of 14

To verify that the MFS methodology solves the Laplace equation correctly for the
given boundary conditions, an analytical solution for concentration distribution between
the two concentric rigid cylinders is developed. This simplified set up reflects diffusion
toward the surface of a single fiber where the chemical reaction occurs. A diagram of this
test case is shown in Figure 2. In 1-D cylindrical coordinates, Laplace’s equation is written
as follows:

0 =
1
r

∂

∂r

(
r

∂c
∂r

)
(13)
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Figure 2. The set up of diffusion between two cylinders with surface reaction at the inner cylinder.
Concentration C at the outer cylinder surface is given. The inner cylinder surface reaction has a
reaction boundary at equilibrium.

Here, the outer cylinder surface has a known constant concentration, and the inner
cylinder, representing an isolated fiber, is a reaction boundary, as described by (7) (see
Figure 2). The analytical solution of the above equation with these boundary conditions is
given as follows:

c(r) =
C

D
k

1
ri
+ ln

(
ro
ri

)(D
k

1
ri
+ ln

(
r
ri

))
, (14)

where C is the constant concentration at the outer cylinder surface, D is the diffusion
coefficient, k is the reaction rate constant, and ri and ro represent the inner and outer radius
of the cylindrical surfaces, respectively.

The set up of the 2-D MFS solution for the same geometry is shown in Figure 3.
The red markers show the location of the singularities, and the blue markers represent
observation points where the boundary conditions are set up. The observation points
are placed on the inner and outer cylinders while the singularities are placed inside the
cylinders at a submergence depth of 0.1 r, where r is the radius of the inner or outer cylinder
in correspondence. The number of singular points and collocation points is the same. The
analytical solution (14) and the MFS solution calculated using Green’s free space function
for the Laplace operator with corresponding boundary conditions (5, 12) are shown in
Figure 4.
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The MFS computations with N = 18, 36 and 72 Stokeslets per cylinder surface are
shown in Figure 4. Each surface has an equal number of observation points and Stokeslets.
The obtained c(r) for N = 36 and N = 72 Stokeslets per cylinder practically coincide with
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each other and with the analytical solution (14). The number of observation points and
singularities per fiber, Nf = 36, is therefore used in the computations in the next section.

After the steady MFS solution for the concentration of a given geometry of fibers
with deposited film has been calculated, the concentration of the reactant at the fiber’s
surface can then be used to calculate the growth rate [14] of deposited material before
proceeding to the next time step. The CVD model [16] considers C2H2 as a precursor
species of decomposed MTS in the gas phase, where the C2H2 concentration determines the
SiC film formation rate. After calculating the concentration at the wall using (7), the growth
rate of the fiber could then be calculated as follows by multiplying the concentration at the
wall, calculating the reaction rate using the Arrhenius Equation (8), and determining the
ratio of the molar mass (Mreactant) to the density of deposited film ( ρ f ilm ):

δ = 2
M f ilm

ρ f ilm
· k·cwall , (15)

where δ is the growth rate of the fiber and cwall is the surface molar concentration of C2H2
at the wall in mol/m2.

The density of SiC film is ρSiC = 3210 kg/m3 [16]. Coefficient 2 in the above for-
mula appears because, by Equation (6), two molecules of SiC are synthesized by a sin-
gle C2H2 molecule and the reaction rate is calculated by the concentration of C2H2 in
Equations (7) and (8). The new location of the deposited surface is obtained by adding the
deposited layer thickness, δ ∆t, in the normal direction to the fiber.

Void tracking is an important part of modeling CVI. Figure 5 shows a depiction of
a void. The area outlined in red is not accessible to reactant gas. The void-forming fiber
surfaces do not continue to grow during the rest of the simulation. To determine the location
of these voids, the computational domain is meshed. The concentration at boundaries
where C > 0 is then set to 1 and any mesh point within a fiber is assumed to be a C = 0
boundary condition. The Laplace operator (3) for the concentration is then solved using a
finite-difference scheme. After the solution has converged, any mesh point with C > 0 has
access to the reactant and is not in a void, while any mesh point with C = 0 is either part of
the fiber or in an area surrounded by fibers and has no access to the reactant. Solving (3)
using a finite difference scheme is performed entirely for void tracking purposes and is not
used to calculate concentrations or growth rates within the computational domain. This is
a similar method to that developed in [24].
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Once the growth rate is obtained using (15), the singularity and observation points
are moved in the normal direction to the local surface, and the MFS solution is repeated at
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the next time step. This process continues until either the sample has been fully infiltrated
(porosity is no longer decreasing) or the specified end time is reached.

The porosity of the samples is calculated by generating 10,000 random points within
the computational domain. Whether the generated point is within a fiber or not is deter-
mined using the fiber center and observation points. The number of total points in fibers
divided by the total number of points is the specimen’s porosity. To determine the accuracy
of this porosity measurement, a sample with a known 80% porosity is measured 30 times.
The average of the measurements is 79.93%, which is close to 80% (known porosity). The
porosity minimum and maximum are 79.23% and 80.73%, respectively. The 3-σ range is
78.73–81.27%.

This section introduced the Robin boundary condition to the MFS to solve the diffusion
equation with a chemical deposition reaction at the surface. The numerical procedure is
coupled with the model of growth of deposited solid film. The validation of this proposed
approach by comparing it to an analytical solution was successful.

3. Computational Results and Discussion

To further verify the MFS’s ability to model Chemical Vapor Infiltration, comparisons
are made to experimental snapshots (Figure 6) and the quantitative data of infiltrated
geometry (Table 1).

Table 1. Summary of experimental porosity data from simulations using MFS.

Specimen Temperature, ◦C Run Time,
Hours

Initial
Computed

Porosity

Initial
Experimental

Porosity

Final Porosity
Computed by

MFS

Final
Experimental

Porosity

1 1200 25 0.6378 0.64 0.1445 0.13

2 1200 31 0.6751 0.67 0.1883 0.24

3 1100 30.5 0.6533 0.65 0.1474 0.16

4 1200 66 0.6661 0.67 0.1573 0.20

5 1200 50 0.6318 0.63 0.1273 0.11

6 1200 22 0.7020 0.70 0.2363 0.28

In general, “real-time” simulations of CVI experiments with the same number of fibers
are not feasible at this time due to computational limitations and the complex asymmetrical
nature of the fiber preforms used. To model a woven fiber preform using MFS, millions
of singularities are required. The resulting matrix that would need to be solved to obtain
the strength of these singularities would, as a result, be on the order of 1012 entries. This
would need to be performed multiple times as time progresses throughout the infiltration
process. As a result, the set ups of fibers considered using computational techniques,
such as unidirectional fiber-reinforced substrates, are simplified versions of the actual
experiments [33].

A 3-D woven preform would need to be reduced to the hundreds of 2-D long cylin-
ders, with the Nc of the diameter of 8 microns (see Figure 6) located in a computational
domain representing a small section of the actual geometry. The total size S of the 2-D
computational domain encompassing Nc cylindrical fibers with porosity f is given by the
following expression:

S = NcπD2/(4(1 − f )) (16)

For Nc = 500 fibers used in computations with D = 8 µ and f = 0.7 (specimen #6 in
Table 1), the size of the computational domain is S = 83,773 µ2. When the number of fibers
used in MFS computations is doubled or halved, the obtained computational final porosity
does not change.
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The computational results in Figure 6a are generated by simulating a small section of
a woven geometry used in a CVI experiment using the same coordinates of the centers of
fibers as those in the experiments depicted in Figure 6b. The obtained value of the diffusion
coefficient, as outlined in Section 2, is D = 0.000528 m2/s at the conditions of experiments
in [34], in which the preforms are infiltrated at 1100–1200 ◦C under atmospheric pressure.

In Ref. [35] the maximum SiC deposition rate is 9.5 nm/min. For MFS simulations,
the chosen time step is ∆t = 6 s to ensure the maximum deposition of ~1 nm per time step.
This is a small added film thickness compared to ~8 microns diameter fibers (see Figure 6b)
that justify the use of an explicit in-time approach to model the film deposition. The initial
carbon interphase has a thickness ranging from 75 to 300 nm in experiments [34]. This layer
was not accounted for in present MFS computations because the diameter of the fibers is
much larger than the thickness of the initial carbon interface layer.

The initial porosity of this sample is 38.81%, and the final porosity after infiltration
using MFS is 13.75%. A qualitative comparison of the computational results using MFS
(Figure 6a) to the experimental results [35] (Figure 6b) is presented, showing a similar
pattern of pores.
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Figure 6. Comparison of infiltrated geometry (a) computed by MFS and (b) obtained experimentally,
see [35], Figure 4, reprinted with Elsevier’s permission.

The results of the experiments [34] and the results of MFS simulations are shown in
Table 1 in terms of the dynamics of porosity. The set ups of randomly generated circular
fibers at different known porosities are generated by randomly placing fibers in the domain
one at a time until the desired porosity is reached. The experimental conditions for specimen
4 in Table 1 [34] are mostly close to the results shown in Figure 6b [34].

The computations for listed specimens differ by initial porosity, run time, and tem-
perature. If specimens differ by temperature, it affects the chemical reaction rate k in
Equation (8). The initial porosities in computations are nearly identical to those in the
experiments, as they should be. Slight differences between the initial experimental and
computational porosities, ~0.005, are due to the computational porosity calculation and
computational placement of fibers, as previously discussed.

After the geometry has infiltrated and computed using the MFS, the porosities of the
experimental sample and the simulated domain compare well; see the last two columns of
Table 1.

The final porosity for low-temperature case 3 is smaller in the experiments and in the
MFS simulations as the faster kinetics close the outer surfaces faster at higher temperatures.
Comparing case 1 with case 5 and case 2 with case 4 shows that the samples nearly reached
terminal porosity after 25–30 h. Processing in similar conditions for double the time did not
show a substantial change in the final porosity. To follow discussions in the experimental
study [34], decreasing the initial average porosity was very effective at decreasing the
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final porosity. As a result, the average final porosity decreased in case 1 by decreasing the
initial porosity compared to case 6. If the samples were ranked from the least porous to
most porous after the MFS-modeled infiltration, the specimens’ order would be the same
as the experiments (specimen 5, specimen 1, specimen 3, specimen 4, specimen 2, and
specimen 6).

This section compared the MFS results to the experimentally obtained pattern of voids
and the experimental porosity obtained for six different cases. There is a good correspon-
dence of computational results obtained by the MFS with Robin boundary conditions to
experimental data.

4. Conclusions

In the current study, the MFS method was developed and applied to the modeling
of Chemical Vapor Infiltration (CVI) with a surface chemical reaction. The MFS method
has not been used to solve CVI problems before. The concentrations of the reagent within
the preform were obtained using Green’s free space functions for the Laplace operator,
describing diffusion with boundary conditions corresponding to the CVI reaction at the
fiber surfaces. For the quasi-equilibrium at the fiber surfaces considered, the reaction flux
at the solid surface was equal to the diffusion flux towards the surface. To account for this
condition, the Robin/third-type boundary condition at the fiber surfaces was developed
and successfully incorporated with the MFS. These surface concentrations were used to
calculate the fiber growth rate due to deposition. Comparisons of analytical solutions for
the simplified geometry of two concentric cylinders mimicking a single fiber and MFS
solution to the experimental snapshot of the fiber preforms with deposition are presented.

The dynamics of pore size and location were computed using the proposed MFS
approach to evaluate the quality of the material obtained by CVI. Porosity transients were
obtained for the range of initial porosities to show the relation between the initial and final
porosities and the time needed to reach the final porosity.

The Method of Fundamental Solutions appears to be effective in modeling CVI with
simplified one-step chemical surface reactions. The method accounts for circumferential
variation in the deposition rate along the fiber’s surface, the depletion of the chemical
reagent at part of the fiber’s surface, the merging of fibers with the formation of voids
caused by deposition and the non-uniform distribution of the reactant throughout the
domain. The present version of MFS was developed to simulate a CVI process that is
isobaric and isothermal. The equality of reaction flux at the fiber’s surface and the diffusion
flux towards the surface was assumed. Extensions of the proposed approach to more
complex boundary conditions and the advection–diffusion equation will be addressed in
future research.
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Nomenclature

Symbols
A pre-exponential factor (1/s)
C constant concentration at domain boundaries for analytic solution
c (x, y) local concentration (mol/m3)
cwall concentration at fiber surface (mol/m2)
D diffusion coefficient (m2/s)
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Ea activation energy (J/mol)
F singularity strength
f porosity
i singularity point index in MFS
j collocation point index in MFS
k reaction rate constant (1/s)
Mfilm molar mass of deposited material (kg/mol)
N total number of observation points
Nf number of observation points per fiber surface
Nc number of cylindrical fibers in MFS computations
n normal direction
nx unit normal x-component
ny unit normal y-component
Pe Peclet number
R ideal gas constant (J/mol-K)
r radius (m)
ri inner cylinder radius (m)
ro outer cylinder radius (m)
ri,j distance from singularity i to observation point j
S size of computational cross-section of fibers computed by MFS
t time, s
T temperature (K or ◦C)
u, v, w Cartesian velocity components (m/s)
u, characteristic velocity to calculate Peclet number (m/s)
x, y, z Cartesian coordinates
Greek Symbols
δ growth rate of the fiber (m/s)
ρfilm density of deposited material (kg/m3)
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