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Abstract: In this paper, a new Lagrange relaxation based decomposition algorithm for the inte-
grated offshore oil production planning optimization is presented. In our previous study (Gao et al.
Computers and Chemical Engineering, 2020, 133, 106674), a multiperiod mixed-integer nonlinear
programming (MINLP) model considering both well operation and flow assurance simultaneously
had been proposed. However, due to the large-scale nature of the problem, i.e., too many oil wells
and long planning time cycle, the optimization problem makes it difficult to get a satisfactory solution
in a reasonable time. As an effective method, Lagrange relaxation based decomposition algorithms
can provide more compact bounds and thus result in a smaller duality gap. Specifically, Lagrange
multiplier is introduced to relax coupling constraints of multi-batch units and thus some moderate
scale sub-problems result. Moreover, dual problem is constructed for iteration. As a result, the origi-
nal integrated large-scale model is decomposed into several single-batch subproblems and solved
simultaneously by commercial solvers. Computational results show that the proposed method can
reduce the solving time up to 43% or even more. Meanwhile, the planning results are close to those
obtained by the original model. Moreover, the larger the problem size, the better the proposed LR
algorithm is than the original model.

Keywords: mixed integer nonlinear programming (MINLP); Lagrange relaxation algorithm; large-
scale; offshore oil production; planning optimization

1. Introduction

Oil and gas resources are the blood of national development. Oil and gas production
plays an extremely important role in promoting industrial development and social progress.
In recent years, China′s dependence on foreign crude oil continues to increase, posing
a serious threat to national energy security [1]. In order to alleviate the shortage of oil
and gas resources in China, on the one hand, China has actively taken measures to save
energy and reduce emissions and put forward the goals of green, low-carbon and eco-
nomic development. On the other hand, the survey report of the United States Geological
Survey (USGS) [2] indicates that global deep-water oil resources have great exploration
and development potential. Exploration shows that China′s deep-water areas are rich in
oil and gas resources [3]. The vast deep-water area of the South China Sea has the basic
geological conditions for the formation of large and medium-sized oil and gas fields and
good oil and gas exploration prospects and resource potential [4]. In the last 10 years,
most of the newly discovered oil and gas fields in China have been located at sea, and the
proportion of deep-sea oil and gas fields keeps increasing [5]. The rapid development of
offshore engineering equipment has greatly enhanced the ability of deep-water oil and
gas exploration and development. Policies have supported and guided the process of
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deep-water oil and gas exploration and development. However, persistently low oil prices
have had a devastating impact on offshore oil development [6]. Reducing production costs
is a priority in response to falling oil prices. Planning and scheduling optimization is an
attractive alternative to reducing production costs.

Due to the high complexity and lack of connection between the above-water platform
and underwater oil production, the research on modeling and planning optimization of
the whole process hybrid system combining above-water and underwater is rare, or the
specific research is only carried out for a certain oil production link, without considering all
links together, such as injection and flooding, artificial lifting and crude oil storage. So, it is
difficult to optimize and balance the offshore oil and gas production process, all resources
and equipment. Moreover, the harsh underwater environment of deep-sea oil production
will bring a series of pipeline transportation safety problems, so the flow safety guarantee
is closely related to the whole production process, but there are few studies that consider
both process optimization and flow safety guarantee. Based on this, in order to maximize
the comprehensive economic benefits and ensure the smooth progress of the oil production
process, it is necessary to carry out research on the flow assurance guarantee and plan
optimization of offshore oil and gas production.

The early research fields of production planning mainly focus on batch production
process and petroleum refining process in petrochemical enterprises [7–11]. Gupta et al. [12]
set up a multi-period MINLP model for the development of offshore oil and gas, consid-
ering the three-phase mixing ratio of oil, gas and water, the installation and expansion
of oil tankers, the connection between pipelines and FPSO and drilling and production
speed. Vijay et al. [13] built a MINLP model aiming at the problem of offshore oil and gas
infrastructure construction and production equipment sharing. Aseeri et al. [14] studied
offshore oil and gas production optimization problem under the financial risk management
strategy, considering the sequence and productivity of platform construction, drilling and
oil well production and budget constraints. Ortiz-Gomez [15] studied different complex oil
well production plans in the same reservoir with the fixed topology and described three
mixed integer multiperiod optimization models to solve the oil production profiles and
operation/shut of oil wells in each time period. At the level of production planning, Lu [16]
comprehensively considered manufacturing resource planning (MRPII), customers′ orders
and constraint theory to make production planning, so as to carry out effective production
scheduling control. Saravanan [17] studied how to improve productivity in small-scale
industries by implementing lean tools to reduce delivery times. At present, there are few
studies on the planning optimization of oil and gas production.

In the previously published article, a comprehensive planning issue considering both
oil well operation and flow assurance was given. In particular, a multi-period mixed integer
nonlinear programming (MINLP) model was proposed to minimize the total operation
cost, considering well production state, polymer flooding, energy consumption, platform
inventory and flow assurance. By solving this integrated model, each well’s working
state, flow rates and chemicals injection rates can be optimally determined [18]. Compared
with individual optimization, integrated optimization can save more energy and greatly
reduce costs. When confronted with the industrial cases, a large-scale model with plenty
of variables and lots of constraints is obtained, finally resulting in solving difficulty. Lots
of efforts and attempts have been done to overcome the solving difficulty. For now,
the known solving strategies of MINLP problems are global optimization algorithm [19],
branch and bound algorithm [20,21], external approximation algorithm [22], particle swarm
optimization algorithm [23], decomposition algorithm [24–26] and so on. Despite the
valuable progress in solving algorithms, the direct use of these algorithms in our MINLP
model is not applicable because of the unacceptable solving time. To improve the solving
efficiency, it is necessary to make optimization decisions for the real-world offshore oil and
gas production case in a reasonable time.

After the Lagrange multiplier-based coupling constraints relaxation algorithm was
first introduced in the 1970s, there have been many variations and successful applications in
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process system engineering community. Held [27] used this algorithm to solve the traveling
salesman problem. Then Fisher et al. [28] applied Lagrange relaxation (LR) algorithms
to solve the job shop scheduling problem. Although the optimality was theoretically
guaranteed, it was proved not to be effective for practical problems. Until the 1990s,
Luh et al. [29] applied LR algorithm to parallel machine scheduling. The mechanism of
fast estimating rescheduling cost by solving Lagrange multipliers was discussed in detail.
This was the first attempt in which LR algorithm was used in a practical scheduling issue.
From then, studies have focused on improving the efficiency of the algorithm. Luh [30]
and Yu [31] proposed an augmented LR algorithm to improve the lower bound quality
and reduce the duality gap by introducing the penalty of the constraint destruction degree.
Susara and Grossmann et al. [32] proposed a heuristic algorithm based on LR to solve the
long-term design and planning of offshore hydrocarbon field infrastructures with complex
economic objectives. They proposed an iterative format to speed up the solution of the
problem, providing new ideas for subsequent research. Campanagara [33] presented a
predictive control approach that obtains a high thermal comfort level optimizing the use of
an HVAC (Heating, Ventilation and Air Conditioning) system by means of a cost function.
Meanwhile, they used Lagrangian dual method to optimize the procedure, which allows
the use of parallel programming paradigms in an easy way. At present, the LR algorithm
has been applied to various industries, such as mining, high-speed railway, power industry,
water conservancy, etc. To the best of our knowledge, there is little report about LR in oil
and gas production optimization, especially in the offshore oil and gas domain. Motivated
by the wide and successful application of LR, a batch decomposition method based on
LR is proposed in this paper to accelerate the solving speed. The algorithm relaxes the
multi-batch supply constraint, which is a coupling constraint in the original problem,
to obtain a relaxation of the original problem. This relaxation problem is decomposed
into several independent single-batch sub-problems to solve the difficult problem of long
solution times for large-scale problems. The case study shows that the proposed algorithm
can reduce the solution time to 43% (or even more) and the optimality gap is also reduced
to 0.72%.

In our previous study, the research mainly focuses on the integrated planning opti-
mization model considering the well operation and flow assurance. Following the previous
studies, in order to cope with the difficult situation of solving the multi-cycle full process
integrated MINLP model, this paper further investigates the batch decomposition strategy
based on Lagrangian relaxation algorithm to improve the solving efficiency. The rest is
organized as follows. First, Section 2 gives the problem statement and process description.
Based on process analysis, Section 3 gives a detailed solution algorithm. Section 4 takes the
actual production process as an example to verify the feasibility of the proposed Lagrange
batch decomposition algorithm, and results directly solved by the solver are compared.
Finally, a conclusion is drawn in Section 5.

2. Process Description and Problem Statement
2.1. Process Description

From the wells to the platform, the whole production process can generally be divided
into three parts: the under-well reservoir process, the under-water production process and
the over-water platform section (Figure 1).

Wells are widely distributed in oilfield. Typically, an oilfield contains a lot of reservoirs,
each of which in turn contains many wells. Wells can be divided into different batches
of oil wells by the wells’ geological properties and physical characteristics, as shown in
Figure 2. Wells belonging to the same batch interconnect with each other through a complex
comprehensive pipeline network to convey liquid to manifold (i.e., PLEM in Figure 2).
Wells in the same reservoir are grouped into one batch and normally share a surface
equipment, usually named floating production, storage and offloading unit (FPSO). The
whole oil and gas production process include five parts: optimization of oil well start-up
and shutdown operation, optimization of electric submersible pump energy consumption,
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optimization of FPSO storage, optimization of polymer injection and flooding and flow
safety guarantee. The key and difficult points of system integration modeling are:

1. Optimize the capacity consumption of electric submersible pump (ESP) under chang-
ing flow conditions;

2. Use the flow guarantee mechanism to balance the optimal operation scheme of oil
wells and ensure the flow safety;

3. Allocate the injection strategy of each well with a given amount of polymer;
4. Integrate well and platform operations to separate or store oil/gas delivered to

the platform.

Figure 1. An integrated oil production system.

Figure 2. Illustration of pipeline network and well batch in oilfield.

Considered in terms of practical industrial problems, the following issues need to be
considered in planning modelling:

1. To facilitate modeling, the entire offshore oil and gas production process is regarded
as a continuous production process, and all production-related variables can be
connected through time;



Processes 2021, 9, 1257 5 of 19

2. The whole oilfield is divided into several blocks according to geographical location,
product characteristics and other conditions, and the modeling is optimized according
to the blocks;

3. To ensure smooth production, start-up and shutdown operation of each underwater
well shall be considered;

4. In order to ensure safe production, considering the protective effect of flow assurance
guarantee on the production process, the cost of single wax removal is considered.

Taking the process flow diagram of offshore oil and gas production process shown
in Figure 2 as the research object, the system integration modeling is carried out in con-
sideration of equipment optimization at the operational layer and flow safety assurance
technology. Several assumptions are made in this study as follows:

1. The production wells are separated and totally independent of each other. It is natural
because each well has its own independent reservoir.

2. During the middle and later periods of oilfield development, artificial lift technology
and polymer flooding is indispensable;

3. All the electric submersible pumps have the same working characteristic curve;
4. Geological properties characterizing the well are available;
5. In the absence of polymerization flooding, oil recovery rate remains the lowest;
6. The location of easily blocked pipeline section is known;
7. Ignore the pressure change in the pipe.

With the above assumptions, the model relies on the following given information:

1. A planning horizon and planning period;
2. Production tasks for each batch of oil wells along the planning horizon;
3. Working load range of oil production wells;
4. A set of storage bins, their minimum and maximum stock and initial inventories;
5. The penalty of switching operations and stock out;
6. A set of cost coefficient and model parameters.

The decision variables are:

1. The production rate and operating state of each oil well in each time period;
2. The detailed delivery quantity in each oil batch in each time period;
3. The injection displacement volume of each well;
4. Diesel fuel consumption within each planning period;
5. The wax removal cycle of each well.

The integrated planning model defined as a multi-period MINLP has been developed
in our previous report. To improve readability, the original model is detailed as follows.

Mathematically, the objective function is given as follows:

minZ = Z1 + Z2 + Z3 + Z4 + Z5 + Z6 (1)

The objective described in Equation (1) aims at minimizing the overall cost (Z), which
includes the oil well open-close switching penalty(Z1), energy consumption (Z2), oil inven-
tory (Z3), and chemicals cost (Z4), wax removal cost (Z5) and the costs of stock out penalty
(Z6). Constraints related to Z1 to Z6 are shown in Equations (2)–(48). The specific meaning
of each equation has been specified in our published articles 18.

Z1 = ∑
i

∑
t

αiw fi,t (2)

w fi,t + wi,t ≥ wi,t+1 ∀i ∈ I, t ∈ T (3)

w fi,t + wi,t+1 ≥ wi,t ∀i ∈ I, t ∈ T (4)

pend
i = pin

i −
141.2xi,tBµ

kh

(
1
2

[
ln

0.000246kt
Φµcir2

i
+ 0.80907

])
∀i ∈ I, t ∈ T (5)
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pend
i = pin

i − c1xi,t(lnDr + c2) ∀i ∈ I, t ∈ T (6)

XPi,t = πixi,tai0(ai1 + ln Dr) ∀i ∈ I, t ∈ T (7)

pend
i,t = pin

i,t − XPi,t ∀i ∈ I, t ∈ T (8)

pin
i,t − XPi,t ≥ plow

i ∀i ∈ I, t ∈ T (9)

SPi,t = bi0(bi1 + ln Dr)(1− wi,t) ∀i ∈ I, t ∈ T (10)

pend
i,t − pin

i,t + XPi,t ≥ −M(1− wi,t) ∀i ∈ I, t ∈ T (11)

pend
i,t − pin

i,t + XPi,t ≤ M(1− wi,t) ∀i ∈ I, t ∈ T (12)

pin
i,t − plow

i − XPi,t ≥ −M(1− wi,t) ∀i ∈ I, t ∈ T (13)

pend
i,t − pin

i,t − SPi,t ≥ −M(1−Yi,t + wi,t) ∀i ∈ I, t ∈ T (14)

pend
i,t − pin

i,t − SPi,t ≤ M(1−Yi,t + wi,t) ∀i ∈ I, t ∈ T (15)

pin
i,t − pup

i + SPi,t ≤ M(1−Yi,t + wi,t) ∀i ∈ I, t ∈ T (16)

pend
i,t − pup

i ≥ −M(Yi,t + wi,t) ∀i ∈ I, t ∈ T (17)

pend
i,t − pup

i ≤ M(Yi,t + wi,t) ∀i ∈ I, t ∈ T (18)

pin
i,t − pup

i + SPi,t ≥ −M(Yi,t + wi,t) ∀i ∈ I, t ∈ T (19)

pin
i,t = pend

i,t−1 ∀i ∈ I, t ∈ T (20)

pin
i,1 = pinitial

i ∀i ∈ I (21)

elecost = ∑
i

∑
t

βi(xi,t, wi,t) ∀i ∈ I, t ∈ T (22)

wi,txmin
i ≤ xi,t ≤ wi,txmax

i ∀i ∈ I, t ∈ T (23)

Z2 = pe1 · elecost (24)

Ik,t = Ik,t−1 + ∑
i∈K

xi,t − prk,t ∀k ∈ K, t ∈ T (25)

Ik,1 = Iinitial
k ∀k ∈ K (26)

Imin ≤ Ik,t ≤ Imax ∀k ∈ K, t ∈ T (27)

Z3 = ∑
k

∑
t

γ·Ik,t ∀k ∈ K, t ∈ T (28)

∆Ei,t =
wi,t
(
xi,t − xmin

i
)

xmin
i

∀i ∈ I, t ∈ T (29)

log Pi,t = Ai + Bi∆Ei,t ∀i ∈ I, t ∈ T (30)

Z4 = ∑
i

∑
t

δ·Pi,t ∀i ∈ I, t ∈ T (31)

Qin −Qout −Qr = Qacc (32)

Qin = ρCpvATL∆t (33)

Qout = ρCpvATL+∆L∆t (34)

Qacc = ρCp A∆L∆Te (35)

Qr =
2πrk1∆L∆t(Tek,t − Tout)

Rt
∀k ∈ K, t ∈ T (36)
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Rt =
1

hinr
+

1
λins

ln
r + s + stub

r + stub
(37)

wi,tTemin
k ≤ Tek,t ≤ wi,tTemax

k ∀k ∈ K, t ∈ T, ∀i ∈ I (38)

Z5 = f loor
(

TT
Tlk

)
·τ (39)

Mli = 2Fd

K

∑
k

xi
ek

2 + Dkek
2

Dk
2 + 2ek

2 + 2Dkek
∀i ∈ I (40)

Vlk =
Mlk
Gl
∀k ∈ K (41)

vk =
Dk −

√
Dk

2 − 4Vlk
πLk

2
∀k ∈ K (42)

Tlk =
h

2vk
∀k ∈ K (43)

0 < h ≤ hmax (44)

Z6 = ∑ θ·(dt − prt) (45)

dt = ∑
k

dk,t ∀t ∈ T (46)

prt = ∑
k

prk,t ∀t ∈ T (47)

prk,t ≤ dk,t ∀t ∈ T, k ∈ K (48)

2.2. Problem Statement

The MINLP model is theoretically difficult to solve especially for the industrial case. In
addition, long-period planning time horizon and a large amount of parallel equipment will
result in a large number of continuous and discrete variables, leading to the difficulty of low
solving efficiency. In order to further improve the solving efficiency and meet the actual
industrial production requirements, a batch decomposition algorithm based on Lagrange
relaxation (LR) is proposed in this paper to solve the MINLP model. Problems that can
use LR algorithm generally have the following characteristics: the objective function is
differentiable with respect to the decision variables and constraints and there is a strong
coupling between the constraints. The idea of LR [34] is to introduce Lagrange multipliers,
which combine coupling constraints with multipliers as a form of relaxation into the
original objective function as a penalty term. The original problem is transformed into
a relaxation problem without the coupling constraint, thus decomposing the relaxation
problem into sub-problems with multiple decision variables, fewer constraints and that is
easier to solve. The batch decomposition algorithm based on Lagrange relaxation proposed
in this paper decomposes the simultaneous optimization of multi-batch well packs into
the optimization of single-batch well packs. Lagrange multipliers are introduced to relax
the coupling constraints of multi-batch well packs, and dual problems are constructed to
form cyclic iterations. Lagrange multiplier is introduced to relax the multi-batch coupling
constraint to the objective function, the single-batch subproblem is obtained, and the
solution is taken as the upper bound of the original problem. Secondly, the Lagrange dual
problem is constructed, and the solution of the dual problem is taken as the lower bound of
the original problem. The quality of the solution is judged by the duality gap between the
upper and lower bounds, and the iterative algorithm is realized by continuously updating
the multiplier by the step-by-step gradient method, which solves the large-scale problem
caused by multi-batch coupling and simultaneous solution and greatly accelerates the
solution speed.
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2.3. LR Algorithm Implementation

The main steps of solving the planning problem are as follows: The multi-batch
supply constraints as coupling constraints, i.e., Equation (48), are relaxed and embedded
as a penalty term multiplied by Lagrange multipliers in the objective function, leading to a
relaxation of the original problem. The relaxation problem can be decomposed into several
single independent batches of sub-problems that are easier to solve. The Lagrange dual
problem is represented by the LR method trying to maximize the dual objective function
based on the duality theory. The solution of the dual problem is the lower bound of the
original problem. Then, a feasible solution is constructed according to the solutions of the
subproblems as the upper bound of the original problem. The goodness of the solution is
judged by the duality gap of the upper and lower bounds. The sub gradient optimization
method is used to update Lagrange multipliers. Until the iteration termination condition is
met, the algorithm is terminated. The block diagram of LR algorithm is shown in Figure 3.

Figure 3. LR algorithm block diagram.

3. Multi-Well Batch Decomposition Algorithm

The wells in different blocks are divided into different well batches k. The production
tasks of each well batch should meet the established annual production plan. Furthermore,
each oil well batch relates to the others through underwater pipelines, with coupling
constraints. Therefore, the multi-well batch coupling constraint is relaxed into the objective
function of the original problem, and the relaxation problem is constructed to eliminate the
coupling relationship between each well batch. At the same time, the relaxation problem is
generally separable, which can be decomposed into sub-problems of each single well batch.
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The objective function of the optimization problem is Equation (1), which means to
find the minimum value of the total production cost.

3.1. Construction of Lagrange Relaxation LRP

Where the total cost is expressed as the superposition of costs of each link, as shown
in Equation (49):

Z = Z1+Z2+Z3+Z4+Z5+Z6

= ∑
i

∑
t

∂
i
w fi,t + pe1·elecost + ∑

k
∑
t

γIk,t + ∑
i

∑
t

δ·Pi,t + f loor
(

TT
Tlk

)
·τ + ∑

t
θ·(dt − prt)

= ∑
i

∑
t

∂i[wi,t(1− wi,t−1) + wi,t−1(1− wi,t)] + pe1·∑
i

∑
t

βi(xi,t, wi,t) + ∑
k

∑
t

γIk,t + ∑
i

∑
t

δ·Pi,t

+ f loor
(

TT
Tlk

)
·τ + ∑

k
∑
t

θ·(dk,t − prk,t)

(49)

The original optimization problem satisfies the constraint conditions from Equations (2)–(48).
A set of Lagrange multiplier λk,t is introduced to relax the batch demand constraint (48)

into the objective function to obtain the Lagrange relaxation problem (LRP), as shown in
Equation (50):

ZLRP = min{Z + λT(prk,t − dk,t)
}

(50)

where the batch demand constraint (49) can be converted into the form of Equation (51):

prk,t − dk,t = ∑
i

xi,t + Ik,t−1 − Ik,t − dk,t (51)

The objective function of the relaxation problem can be translated into Equation (52):

ZLRP
= min

{
Z + λT (prk,t − dk,t)

}
= Z+∑

k
∑
t

λk,t

(
∑
i

xi,t + Ik,t−1 − Ik,t − dk,t

)
= ∑

i
∑
t

∂i[wi,t (1− wi,t−1) + wi,t−1(1− wi,t)] + pe1·∑
i

∑
t

βi(xi,t, wi,t)

+∑
k

∑
t
flIk,t + ∑

i
∑
t

δ·Pi,t + f loor
(

TT
Tlk

)
·τ

+∑
k

∑
t

θ·(dk,t − prk,t) + ∑
k

∑
t

λk,t

(
∑
i∈I

xi,t + Ik,t−1 − Ik,t

−dk,t)

(52)

Similar terms in the relaxation problem are combined and converted into the form
that can be decomposed into single-well batch sub-problems, as shown in Equation (53):

ZLRP
= ∑

i
∑
t

∂i[wi,t (1− wi,t−1) + wi,t−1(1− wi,t) + pe1σi|xi,t+1 − xi,t|]

+∑
k

∑
t
(∑

i
λk,t + pe1βiwi,t)xi,t

+∑
k

∑
t
[(fl− λk,t)Ik,t + λk,t Ik,t−1] + ∑

i
∑
t

δ·Pi,t

+ f loor
(

TT
Tlk

)
·τ + ∑

k
∑
t
[(θ − λk,t)dk,t − θprk,t]

(53)

The relaxation problem satisfies the constraints of Equations (2)–(47).
Each term in the above equation can be derived from the well batch k. Therefore, given

a set of values of Lagrange multiplier λk,t, the Lagrange relaxation problem for multiple
well batches can be decomposed into a single well batch problem for each well in each well
batch, as shown in Equation (54) below:
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minLi(λ)

Li(λ) = ∑
t


∂i[wi,t(1− wi,t−1) + wi,t−1(1− wi,t) + pe1σi|xi,t+1 − xi,t|]

+(λk,t + pe1βiwi,t)xi,t + δ·Pi,t
+[(θ − λk,t)dk,t − θprk,t]


+ f loor

(
TT
Tli

)
·τ, ∀i ∈ I

(54)

The single well batch subproblem satisfies the constraint conditions of Equations (2)–(47),
and the final production target only needs to complete the annual planned production task
of the corresponding well batch. The feasible solution obtained by solving the subproblem
is regarded as the upper bound of the optimal solution of the original problem.

3.2. Construct Lagrange Duality Problem

The Lagrange relaxation problem is constructed to obtain the lower bound of the
optimal solution of the original problem. However, the quality of the approximate optimal
solution obtained by using this lower bound can hardly be satisfied. So, the Lagrange
dual problem needs to be constructed to improve the quality of the lower bound and get a
tighter bound.

Lagrange relaxation problem (LRP) is considered, as shown in Equation (55):

ZLRP= minL(λ)

= minx,w



∑
i

∑
t

∂i[wi,t(1− wi,t−1) + wi,t−1(1− wi,t) + pe1σi|xi,t+1 − xi,t|]

+∑
k

∑
t

(
∑
i
(λk,t + pe1βiwi,t)xi,t

)
+ ∑

k
∑
t
[(fl− λk,t)Ik,t + λk,t Ik,t−1]

+∑
i

∑
t

δ·Pi,t + f loor
(

TT
Tlk

)
·τ + ∑

k
∑
t
[(θ − λk,t)dk,t − θprk,t]


(55)

Equation (55) is the function of decision variables xi,t and wi,t, satisfying the constraint
conditions Equations (2)–(47), with the purpose of obtaining the minimum cost of the
objective function.

Then the dual problem can be expressed as the following Formula (56):

ZDP = max(minL(λ)) (56)

s.t. λ ≥ 0 (57)

The above equation is the function of Lagrange multiplier λ. The fixed decision
variable obtained from the relaxation problem is taken as the input of the dual problem,
and Equation (57) is taken as the constraint condition of the dual problem. The maximum
value in the minimum problem is obtained to provide a tighter lower bound.

3.3. Algorithm Iteration

In order to make the feasible solution obtained by the decomposition algorithm
approach to the optimal solution of the original problem step by step, the Lagrange
multipliers given at the beginning need to be updated iteratively. So, the upper and lower
bounds provided by the dual problem and the relaxation subproblem are closer and tighter
until the desired requirements of the decision maker are met.

The updating principle of Lagrange multiplier adopts sub gradient descent algorithm,
as shown in Equation (58):

λ
j+1
k,t = λ

j
k,t + εjgk,t ∀t ∈ T, k ∈ K (58)
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The εj is the step size of the j iteration, and gk,t is the sub gradient of coupling constraint
in the Lagrange relaxation problem, which can be expressed as Equation (59):

gk,t = dk,t − prk,t = dk,t + Ik,t −∑
i

xi,t − Ik,t−1 ∀t ∈ T, k ∈ K (59)

Step size εj can be defined as the following Equation (60) [35]:

εh = v
L∗ − Lj

‖gj
k,t‖2

0 ≤ v ≤ 2, ∀t ∈ T, k ∈ K (60)

In the formula, L∗ represents the best objective function value found until the h step of
iteration. The size of duality gap is taken as the judgment criterion. Lj is the dual function
value obtained in the j iteration. v is the given initial step size, which is generally between
0 and 2. When the duality gap is less than a given requirement or reaches a certain CPU
time (number of iterations), the algorithm terminates. The duality gap can be expressed as
Equation (61):

η =
Lsub − LDP

LDP
× 100% (61)

In Equation (61), Lsub represents the value of the objective function corresponding
to the feasible solution of the subproblem, and LDP represents the value of the objective
function of the dual problem. All of the above symbols are detailed in Abbreviations.

4. Case Studies

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation and the experimental conclusions
that can be drawn. In order to compare with the solution results of ALPHAECP and verify
the advantages of this algorithm in solving large-scale problems, four cases with different
model sizes are given. Case 1 includes 1 oil well batch, 4 production wells and 12 planning
cycles. Case 2 includes 2 well batches, 8 production wells and 12 planning cycles. Case 3
includes 3 oil well batches, 12 production wells and 12 planning cycles, the same as the
case of published papers [18]. Case 4 includes 3 well batches, 12 production wells and
24 planning cycles. The crude oil requirement per well batch per month is given separately.

Given four cases, the model size gets progressively larger, with Case 2 having one
more well lot than Case 1, Case 3 having one more well lot than Case 2 and Case 4 having
one more planning cycle than Case 3. Case 1 is a single oil well batch problem, which
is not applicable to the proposed batch decomposition algorithm. It is directly solved
by ALPHAECP solver, and the results of Case 1 are used for comparison of other cases.
Other cases are solved by the proposed algorithm respectively, and the results of the
unique variables are compared to verify the solution effect of the algorithm on different
scale problems.

4.1. Results Presentation

As shown in Tables 1–4, the monthly plan arrangement of each batch of oil wells is
given in the table. There are four wells in each batch. The effectiveness of the algorithm is
verified by four examples.

Table 1. Case 1.

Well Batch
Monthly Demand of Production

1 2 3 4 5 6 7 8 9 10 11 12

1 12,600 15,000 15,000 16,200 9000 27,000 15,000 15,000 22,000 18,000 16,200 9000
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Table 2. Case 2.

Well
Batch

Monthly Demand of Production

1 2 3 4 5 6 7 8 9 10 11 12

1 12,600 15,000 15,000 16,200 9000 27,000 15,000 15,000 22,000 18,000 16,200 9000
2 21,000 16,800 18,000 9000 11,400 15,000 9000 18,800 15,000 14,400 15,000 19,800

Table 3. Case 3.

Well
Batch

Monthly Demand of Production

1 2 3 4 5 6 7 8 9 10 11 12

1 12,600 15,000 15,000 16,200 9000 27,000 15,000 15,000 22,000 18,000 16,200 9000
2 21,000 16,800 18,000 9000 11,400 15,000 9000 18,800 15,000 14,400 15,000 19,800
3 19,200 16,200 9000 9000 10,200 9000 23,400 16,200 9000 24,000 13,200 21,000

Table 4. Case 4.

Well
Batch

Monthly Demand of Production

1 2 3 4 5 6 7 8 9 10 11 12

1 12,600 15,000 15,000 16,200 9000 27,000 15,000 15,000 22,000 18,000 16,200 9000
2 21,000 16,800 18,000 9000 11,400 15,000 9000 18,800 15,000 14,400 15,000 19,800
3 19,200 16,200 9000 9000 10,200 9000 23,400 16,200 9000 24,000 13,200 21,000

13 14 15 16 17 18 19 20 21 22 23 24
1 21,000 16,800 18,000 9000 11,400 15,000 9000 18,800 15,000 14,400 15,000 19,800
2 19,200 16,200 9000 9000 10,200 9000 23,400 16,200 9000 24,000 13,200 21,000
3 12,600 15,000 15,000 16,200 9000 27,000 15,000 15,000 22,000 18,000 16,200 9000

These cases are computed by GAMS win32 24.0.2, and subproblems are solved by
the solver of ALPHAECP in an Intel core i5-7500 CPU, 3.41 GHz machine with 8 GB of
RAM. The model size statistics directly solved by ALPHAECP solver are shown in Table 5.
Furthermore, the comparison results between multi-well batch model solution and LR
algorithm are shown in Table 6.

Table 5. Directly solved model size statistics.

Case Formula for
the Number

Number of
Nonlinear

Terms

Number of
Discrete

Variables

Number of
Continuous

Variables

Duality GAP
(%)

CPU Run
Time (S)

CASE 1 2219 180 768 1587 1 100
CASE 2 4438 394 1536 3174 1 1000
CASE 3 6656 591 2304 4760 1 7200
CASE 4 13,312 1167 4608 9520 5 14,400

Table 6. Comparison of algorithms.

Case Cost Relative Value of
Difference (%)

Duality GAP
(%)

CPU TIME
(S)

Relative Value of
Difference (%)

CASE 1
ALPHAECP 163,786,288 1 12.27

LR

CASE 2
ALPHAECP 355,809,355

4.7
1 242.02

43.7LR 372,569,324 0.98 136.25

CASE 3
ALPHAECP 515,030,600

4.1
1 2515.13

48.9LR 535,930,049 0.96 1283.64

CASE 4
ALPHAECP 941,556,300

3.8
5 14,400

61.6LR 978,023,560 0.72 5531.25

4.1.1. Case 1: Single Oil Well Approval for 12 Months

The production schedule of Case 1 is shown in Table 1. Case 1 is a single-well batch
problem, which can be solved directly by using the built-in ALPHAECP solver of GAMS.
The solution gap is set at 1% and the CPU runtime is set at 100 s. The statistical results
of Case 1 are shown in Table 5. The solution of single well batch is not applicable to the
proposed batch decomposition algorithm, and the results are used to compare the results
of the four cases to verify that large-scale problems are difficult to be solved directly. Thus,
the validity of the algorithms in this chapter is highlighted by comparison.
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4.1.2. Case 2: Two Oil Wells Were Approved for 12 Months

In Case 2, the size of the simulated reservoir can be divided into two different pro-
duction blocks according to geographical conditions. Each block is the same batch of oil
wells, and each block contains four production wells. Draw up the production plan for
the next 12 months according to the market demand for different oil well batches. Table 2
shows the given monthly production schedule. The directly solved model size statistics are
shown in Table 5. Then, the batch decomposition algorithm based on Lagrange relaxation
proposed in this paper is used to decompose the two batches of the original problem into
single batches to solve the sub-problems respectively. At the same time, LR dual problem
is constructed to solve iteratively. Among them, the single-batch sub-problem and dual
problem of Lagrange are solved directly by using the ALPHAECP solver built by GAMS.
The comparison results of the two algorithms are shown in Table 6.

In Case 2, the total cost increased by 4.7% compared with the direct solution of LR
algorithm. The solution time was significantly reduced by 43.7%.

Figure 4 shows the optimization solution results of Case 2. It can be seen from the
figure that the output of each month plus the inventory of each month can meet the delivery
requirements of that month. Therefore, there are no out-of-stock penalties occurring and
the production planning requirements given in Case 2 can be met on time. So, applying
the batch decomposition algorithm based on Lagrange relaxation to solve the planning
optimization problem of the 12-month batch size of two oil wells, the market demand is
satisfied, the process is not punished and the results are effective.

Figure 4. Results of Case 2.

4.1.3. Case 3: Three Oil Wells Were Approved for 12 Months

In simulation case 3, the monthly production plan arrangement is shown in Table 3,
the directly solved model size statistics are shown in Table 5 and the comparison of solution
results of the two algorithms is shown in Table 6.

In Case 3, compared with the direct solution, the total cost of LR algorithm increased
by 4.1%. The solution time was significantly reduced by 48.9%.

Figure 5 is the optimization results of Case 3. It can be seen from the figure that the
output of each month plus the inventory of each month can meet the delivery requirements
of that month. Therefore, there is no shortage penalty and the production plan requirements
given in Case 3 can be completed on time. The results obtained by LR algorithm are effective
and can meet the production requirements.
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Figure 5. Results of Case 3.

4.1.4. Case 4: Three Wells Group of 24 Months

In simulation case 4, the monthly production schedule arrangement is shown in
Table 4, and the directly solved model size statistics are shown in Table 5, and the compari-
son of solution results of the two algorithms is shown in Table 6.

In Case 4, the total cost of solving LR algorithm increased by 3.8% compared with the
direct solution. The solution time was significantly reduced by 61.6%.

Figure 6 shows the optimization solution results of Case 4, which is similar to Case 3.
The result solved by LR algorithm can meet the production demand and be efficient.

Figure 6. Results of Case 4.

4.2. Results Presentation

The three control case groups with different sizes are compared, and the relationship
between solving gaps and computing time is shown in Figure 7. The blue line is the trend
of solving gaps directly solved by the ALPHAECP solver for MINLP model at a specified
time and a specified suspension gap. Furthermore, the red line is the trend of solving gaps
solved by LR algorithm for MINLP model. Obviously, in three cases of different sizes,
the GAP value of the model solved by LR algorithm converges faster and can reach the
required optimal GAP value in a shorter time.
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Figure 7. Relationship between optimum gap and computational time, (a) Case 1, (b) Case 2, (c) Case 3.

The results of the four cases are compared together to verify the proposed batch
decomposition algorithm for solving problems of different sizes.

The final algorithm comparison results of the four cases are shown in Table 6 above.
By comparing the solution results of each case in the table above, the following conclusions
can be drawn. In terms of CPU running time, the Lagrange relaxation-based batch decom-
position algorithm proposed in this chapter on is at least 40% better than solving directly
using the solver. Whether the problem of larger model size is caused by the increase in the
number of devices or the increase in the planning period, the algorithm can significantly
improve the solving efficiency, with the average solution time increasing by 49%. Moreover,
the larger the problem size to be solved is, the greater the improvement of the solving
efficiency will be. However, the final cost obtained by this algorithm is not better than that
obtained by ALPHAECP. The reason may be that the solution obtained by this algorithm
is only approximately the optimal solution. By relaxing the constraint into the objective
function, the final optimization cost may become higher. However, as the problem gets big-
ger, the solutions get closer and closer. The results obtained by the proposed LR algorithm
may not be globally optimal. The focus is to improve solving efficiency and to obtain the
solution in reasonable time for industrial-scale problem.

5. Conclusions

The LR algorithm is used to decompose the large-scale MINLP problem, which is
solved optimally for multiple well batches simultaneously, into subproblems that are
solved independently for a single well batch. The multi-well batch coupling constraint
is relaxed into the objective function by introducing Lagrange multipliers to remove the
multi-batch coupling from the constraint. The relaxed problem is still of the MINLP model
and is still more difficult to solve than LP or MILP models. However, the problem uses the
LR algorithm to increase the feasible domain range and reduce the time required to search
for a solution. Moreover, the resulted small scale MINLP model is not approximated and
its result is more precise. The original problem is decomposed into several single batch
sub-problems and the feasible solution obtained by solving the sub-problems is taken as
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the upper bound of the original problem. The Lagrange dual problem is also constructed
as a lower bound on the original problem. The pairwise gap that exists between the upper
and lower boundaries is used as a criterion for judging the quality of the feasible solution.
The Lagrange multiplier is updated using the sub gradient method, which iteratively
updates the upper and lower bounds continuously, making them tighter and tighter until
the decision maker′s expectations are met. Four cases of different sizes are solved using
the algorithm in this paper and solved directly by the solver through the case of a given
four different scale, using this algorithm and direct solver. By analyzing and comparing
the two results, the algorithm proposed in this paper can effectively improve the solving
efficiency for tackling large-scale problems, with an average saving of 49% in solving time.
Furthermore, the greater the scale of the problem, the better the results and the more
instructive it is for practical industrial production.
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Abbreviations

ESP electric submersible pump
FPSO floating production storage and offloading
MILP mixed integer linear programming
LP linear programming
MINLP mixed integer nonlinear programming
i oil production well
k well batch
t time period
I oil production wells
K well batches
T time period
hin convection heat transfer coefficient
r radius of the tubing
ρg the density of gas phase
ρ1 the density of liquid phase
H1 the liquid holdup
G the mass flow of the mixture
λ the resistance coefficient
λins thermal conductivity of insulation materials
s thickness of the insulation blanket
stub thickness of the tubing
∆x valve opening change limit
hmax maximum wax deposit thickness
Ai, Bi coefficients of polymer flooding of well i
Fd distribution density of wax
Imax maximum inventory capacity of oil
Imin minimum inventory capacity of oil
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TL+∆L temperature of flowing-out
ai0, ai1 coefficients of pressure increase of well i
bi0, bi1 coefficients of pressure decrease of well i
c1, c2 coefficients of pressure variation equation which result from combinations
dk,t production demand of well batch k in time period t
dt demand of production in period t
ek pipe roughness of well batch k
pe1 power generation efficiency of diesel generator set in platform
plow

i up limit pressure of well i
pup

i down limit pressure of well i
pl0 inlet pressure
xmax

i maximum production rate of well i
xmin

i minimum production rate of well i
αi cost of start-stop operation of unit i
σi coefficient for electricity consumption of valve in well i
∆L length of pipeline segment
θ1 the line angle
A the pipeline cross-sectional area
TL temperature of flowing-in
Ts temperature of fluid at the fluid entry point
ρ is fluid density
Gl density of wax
Dr length of time period
M suitable upper limit
TT length of planning horizons
fl coefficient of inventory cost
δ cost coefficient of polymer flooding
θ punishment of delivery delay
τ coefficient of wax removal cost
pinitial

i initial bottom pressure for the well i
Iinitial
k initial inventory level for the oil batch k

Dk half of the radius of the annular region volume by uneven ups and downs.
λk,t a set of Lagrange multiplier
εj the step size of the j iteration
gk,t the sub gradient of coupling constraint
ν the given initial step size
η the duality gap
Te temperature inside the pipe
∆Ei,t recovery ratio differential of oil well i in period t
Ik,1 initial inventory of well batch k
Ik,t inventory of well batch k in the time period t
Mlk quality of the precipitated wax in pipeline of well batch k
Pi,t polymer flooding of well i in time period t
Qacc heat accumulation
Qin heat flow in
Qout heat flow out
Qr heat transferred
SPi,t pressure differential in the well bore when the well i is shut in
Tlk wax removal cycle of well batch k
Vlk volume of the precipitated wax in pipeline of well batch k
XPi,t pressure differential in the well bore when the well i is producing
Yi,t 0–1 variable indicating whether the well bore pressure reaches the maximum allowable

value in period t when well i is closed
elecost consumption of energy
pin

i,1 initial pressure of well i
pend

i,t well bore pressure of well i at the end of period t
pin

i,t well bore pressure of well i at the beginning of period t
prk,t production supply of oil well batch k in the time period t
prt production supply in period t
vk wax deposit rate in pipeline of well batch k
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w fi,t the occurrence of start–stop operation in equipment i during t week and t + 1 week.
wi,t 0–1 variable denoting whether well i is working in the period t
xi,t production rate of oil in well i in the period t
∆Te difference in temperature between the pipeline product and the ambient temperature outside
h wax deposit thickness
v fluid velocity in pipeline
ele energy supply
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