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Abstract: This paper introduces a novel and cost-effective method for detecting adulterated diesel,
specifically targeting contamination with kerosene, by leveraging machine learning and the refractive
index values of mixed diesel samples. It proposes a laser-based sensor, employing COMSOL simula-
tions for synthetic data generation to facilitate machine learning training. This innovative approach
not only streamlines the detection process by eliminating the need for expensive equipment and
specialized personnel but also enables on-site testing without extensive sample preparation. The sen-
sor’s design, utilizing light refraction and reflection principles, allows for the accurate measurement
of diesel adulteration levels. Validation results showcase the machine learning models’ high precision
in predicting adulteration percentages, as evidenced by an R-squared value of 0.999 and a mean
absolute error of 0.074. This research signifies a leap in sensor technology, offering a practical solution
for rapid diesel adulteration detection, especially in developing countries, by minimizing reliance
on advanced laboratory analyses. The sensor’s design aligns with the requirements for low-cost IoT
technology, presenting a versatile tool for various applications.

Keywords: light reflection/refraction; sensor; refractive index; diesel adulteration; kerosene;
COMSOL Multiphysics; machine learning; models

1. Introduction

Diesel adulteration is a widespread issue in many countries, driven by the price dis-
parity between similar quantities of different products [1]. This practice poses a significant
threat to national interests, with petroleum products like high-speed diesel and petrol being
particularly vulnerable due to their high demand, cost, and occasional scarcity.

Among these, diesel, extensively used in heavy vehicles, is commonly tampered with
using domestically available, subsidized kerosene, causing substantial damage to vehicle
engines and reducing fuel efficiency [2]. The similar properties of kerosene and diesel
facilitate this illicit practice for financial gain. Kerosene, with a calorific value of 45 KJ/g, is
distributed at reduced rates by some governments for household and industrial use, yet
unscrupulous individuals mix it with diesel, exploiting these overlapping properties [3].

Diesel, a complex blend of hydrocarbons (C9–C19) with a specific calorific value and
distillation range and a composition that includes 15–30% aromatics and 70–85% saturated
aliphatics, contrasts with kerosene’s hydrocarbon range (C6–C16) [4]. Despite efforts by
government bodies to monitor diesel and petrol quality through random sample collection,
existing laboratory analyses are flawed, allowing adulterated samples to pass. The literature
lacks fully accurate and cost-effective methods for qualitative adulteration assessment in
diesel. Recent advancements claim more precise quantification methods, though some
physical parameter-based analyses remain impractical.

Specific gravity is a measure of the density of a substance compared to the density of
water at a specified temperature. For diesel, this property is important because it affects
the fuel’s energy content, combustion characteristics, and behavior in engines. The specific
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gravity of diesel samples ranges between 0.800 and 0.850. In comparison, kerosene’s specific
gravity spans from 0.780 to 0.820, showing a considerable overlap [5]. Therefore, it becomes
difficult to distinguish between pure diesel, pure kerosene, and their mixtures based
solely on this property. This overlap presents a significant challenge for quality control,
requiring more sophisticated analytical techniques to accurately detect and quantify the
extent of adulteration.

The process of separating and identifying polycyclic aromatic compounds in diesel
can be efficiently conducted using techniques such as two-dimensional microbore high-
performance liquid chromatography [6], high-resolution mass spectrometry [7], and micro-
fabricated gas chromatography [8], yet challenges persist due to the hydrocarbon overlap
in diesel and kerosene, and conclusive detection remains complex.

Jabin et al. [9] introduced a novel approach for detecting diesel adulteration using a
silver-coated surface plasmon resonance (SPR)-based biosensor. The sensor’s performance
was analyzed using COMSOL Multiphysics V-5.1 and MATLAB-V16 software. Their
experimental evaluation focused on key optical parameters of the SPR-PCF (photonic crystal
fiber), including birefringence, coupling length, power fraction, etc. This advancement is
considered significant in the field of photonics.

Another research work evaluated the efficacy of infrared (IR) spectroscopies [10] in con-
junction with advanced statistical models like partial least squares (PLS) regression, support
vector machine regression (SVR), and multivariate curve resolution with alternating least
squares (MCR-ALS) for quantitatively and qualitatively identifying kerosene in commercial
diesel. These models proved accurate in quantifying kerosene concentrations ranging from
2.5% to 40% by volume, with low errors (RMSEC < 2.59% and RMSEP < 5.56%) and a high
correlation between actual and predicted values.

Nonetheless, additional methods have also been employed in this domain, including
NMR spectroscopy [11–13], fiber optic technique [14–16], fluorescent paper strips [17],
optical sensor [18,19], infrared spectrometer [20–23], ultrasonic technique [24], artificial
intelligence (AI) prediction [25], computational technique [26], and many other chemical-
based techniques [27–29].

Recent advancements have positioned machine learning models as a novel approach
for examining diesel adulteration. Bhowmik et al. [25] explored how ethanol blended with
adulterated diesel could improve exhaust emissions without compromising engine per-
formance. Utilizing experimental findings, a gene expression programming (GEP) model,
rooted in artificial intelligence (AI) and encompassing multiple parameters, was crafted to
delineate the connection between various inputs (e.g., engine load and shares of kerosene
and ethanol) and outputs (e.g., BTE, BSEC, NOx, UHC, and CO) for Diesosenol implemen-
tations. This model demonstrated remarkable accuracy, validated by a comparison with
empirical data and statistical evaluations, displaying minimal mean square error values
between 0.00002 and 0.00031.

Each of these techniques can provide valuable information about the presence of adul-
terants in diesel. However, the choice of method often depends on the specific requirements
of the testing, including the need for accuracy, speed, cost-effectiveness, and the ability to
perform analyses on-site. Some of these techniques, such as SPR or IR spectroscopy [9,10],
have a high initial cost for equipment and may require calibration for different types of
diesel. It also might be less effective in distinguishing between similar types of hydro-
carbons or detecting low concentrations of adulterants. Others, such as gas and liquid
chromatography [8,27], require skilled operators, time-consuming sample preparation,
and are not suitable for on-site testing. The equipment is expensive as well and requires
skilled operation. Furthermore, no technique can be suitable for all types of adulterants,
particularly organic ones. Chemical sensor techniques may not detect unknown adulter-
ants or those present in very low concentrations, and sensor degradation over time can
affect reliability [30].

Machine learning and neural network-based techniques can analyze complex datasets
using spectroscopic techniques (like NIR and FTIR) to improve the accuracy and prediction
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of adulteration levels. AI can handle large data volumes, making it suitable for detecting
subtle patterns indicative of adulteration. Yet, this method requires extensive datasets for
training and may be complex to set up, and the accuracy depends significantly on the
quality and diversity of the training data [31].

Relative to the previously discussed methods and techniques that necessitate expensive
equipment, consumables, laboratory apparatus, and operation by trained professionals,
certain optical techniques may prove more economical in the long term. This cost-efficiency
stems from their reduced need for consumables, advantages like lasting durability, low
upkeep, the possibility for automated operation, and the capability to conduct tests without
damaging the samples [18–23].

However, optical techniques also have disadvantages, such as limited sensitivity,
especially when certain types of adulterants have similar refractive indices or densities
to diesel, which makes the adulterants difficult to detect. They are also not effective for
precise quantification of adulteration levels.

The use of optical sensors alongside digital and AI technologies serves as a prospective
means of improving the efficiency of the performance and analysis of data; hence, this
approach could significantly reduce costs and lead to the development of superior detection
methods. Even though it is a yet-understudied method used for detecting diesel fraud,
distressingly, few studies have investigated this issue [32–36].

This manuscript introduces a novel method combining light reflection principles with
a machine learning ML framework to detect diesel adulteration with kerosene instantly.
Traditional methods for detecting fuel adulteration, as aforementioned, often involve
complex laboratory analyses, which are time-consuming and not feasible for real-time
application. Recent advancements have explored optical techniques and ML algorithms
for adulteration detection; however, these approaches have faced challenges, including the
need for extensive real-time data for ML model optimization and limitations in sensitivity
and specificity.

Our research stands at the forefront by employing COMSOL Multiphysics and ML to
design a sensor that overcomes these challenges. Unlike previous studies that separate the
application of optical studies and ML, our approach integrates them, enhancing the ability
to detect adulteration with high precision even with limited data sources. This integration
is crucial, considering the dynamic nature of diesel properties and the variety of adulterants
used. The novelty of our study lies in the creation of synthetic data through simulations
in COMSOL Multiphysics, enabling the training of an ML model without the extensive
need for real-world contaminated samples (reference the importance of synthetic data in
overcoming data scarcity in ML models).

Moreover, the proposed model introduces a cost-effective laser configuration, lever-
aging Snell’s law to analyze light interactions with adulterated diesel. This approach
allows for the estimation of kerosene concentrations in diesel, a significant step forward in
real-time adulteration detection.

In summary, this manuscript contributes a unique perspective to the field by merging
optical principles with ML for detecting diesel adulteration. It offers a new, affordable, and
portable solution for on-the-spot analysis, addressing a significant gap in current research.
Future works will delve into the development phase and experimental validations, further
solidifying this innovative approach’s applicability and effectiveness.

This paper is structured to outline the conceptual framework and methodology behind
the proposed sensor in Section 2, laying the groundwork for the methodologies applied.
Section 3 provides a detailed exposition of the machine learning approach, including the
definition of the dataset and the models utilized within the machine learning framework.
Section 4 then presents the results, along with a discussion evaluating the effectiveness and
performance of the machine learning models deployed.
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2. Optical-Based Sensor Mechanism

COMSOL Multiphysics® [37] is used to define the sensor’s operating principle and
generate synthetic data for the input-output of the regressors in the machine learning
tool. This simulation entails representing the layout of the sensor as a 2D rectangular
configuration, akin to a container or tank in which the diesel sample is subjected to testing.

The fundamental principle underpinning the sensor’s functionality involves the re-
fraction and reflection of laser light within the diesel sample. Once the laser light is emitted
into the sample, it traverses until it reaches the base of the container, where it reflects off
the surface and travels back through the sample before exiting toward a designated area
known as the “sensing zone”, positioned along the laser’s trajectory. Within this zone,
the distance d, defined as the light path from its point of entry to its intersection with the
sensing zone, is calculated. This distance d depends on various factors, including the light’s
wavelength, transmission angle, refractive index, and the temperature of the diesel sample.

This section outlines the key parameters and equations used in the COMSOL Multi-
physics simulation to analyze the sensor’s design and operational principles. The sensor
model is divided into three primary components: a cap that accommodates the laser source,
a container for the diesel sample, and a sensing zone equipped with sensors located on the
container’s upper surface. Defined within COMSOL, the sensor’s geometry is conceptual-
ized as a 2D structure, distinguishing two distinct areas: air (with a refractive index nair = 1)
and the diesel sample (with a refractive index nd). Figure 1 displays a three-dimensional
depiction of the sensor’s conceptual design.
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Figure 1. Visual representation displaying the 3D design of the proposed sensor, highlighting the
light path from the laser source towards the sensing zone.

Nonetheless, the sensor conceptualization and the data collected via COMSOL in this
study pertain to a 2D analysis. The sensor possesses a rectangular geometry, measuring
30 cm in length and 15 cm in width (Figure 2). The laser is positioned at the incidence
point O within the cap and emits light at an incidence angle θi. This angle can be altered
through a system combining a mirror and a servo motor, as illustrated in Figure 1. Upon
transitioning from air into a diesel sample, the light beam refracts at an angle θt relative
to the normal. Snell’s law, which establishes the correlation between nair, nd, θi, and θt,
governs this behavior and is incorporated into the simulation, as described by Equation (1):

nair sin θi = nw sin θt (1)
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To reach the sensing zone located a distance d away from the initial point of incidence
O, the transmitted light navigates through the diesel sample medium at a refraction angle
θt. The determination of d is subject to several influencing factors, including the incident
light wavelength λ, the angle of incidence θi, the refractive index nd of the diesel sample,
and the depth ratio of air to diesel within the medium, denoted as Wair/Wdiesel .

In COMSOL, the modeling of electromagnetic wave propagation utilizes the “Geo-
metrical Optics” time-dependent physics interface. In this study, diffraction effects at the
edges and corners of the geometry are neglected by setting the wall boundary conditions
to “disappear” options, ensuring perfect absorption. To accurately capture the refraction
between air and diesel, the step size for the optical path length is set to 0.01 cm.

COMSOL calculates the ray’s time (source-to-target) to reach the sensor zone. On
the other hand, the beam travels at the speed of light, and the duration is expressed in
nanoseconds, or Angstroms. It is challenging to locate a time sensor that can precisely
measure the nanoscale time difference that occurs between beams after they arrive at
the detecting zone. Consequently, it is useless to examine the source-to-target time that
COMSOL collected. Thus, the focus of this study is primarily on the distance d parameter,
dependent on the λ, nd, T, θi, and Wair/Wdiesel parameters. Simulations are carried out to
compute the distance d for a wavelength λ of 450 nm, an angle θi ranging from 10◦ to 40◦

with a 1◦ step, a width Wdiesel ranging from 1 cm to 5 cm with a 0.5 cm step, and a refractive
index nd with a 1 × 10−4 step. The small increment in the nd computation is designed to
guarantee precise identification of the sample’s refractive index, given the close similarity
between the refractive indices of diesel and its adulterants.

Numerous studies have explored diesel adulteration by assessing the refractive index
of various adulterated diesel samples. Bhausaheb et al. [38] tested ten fuel and kerosene
samples, each obtained from different reputable sources. Then, different ratios were
combined to create admixtures of kerosene in diesel, corresponding to adulteration volume
percentages varying from 10% to 100%. Refractive index readings at room temperature
from the refractometer for the 10 distinct diesel samples varied from 1.4600 to 1.4612,
with an average of 1.4606, and from 1.4445 to 1.4471, with an average of 1.453, for the
kerosene samples. For the admixture samples, results show a refractive index of 1.4587,
1.4571, 1.4556, 1.4550, 1.4523, 1.4507, 1.4491, 1.4477, 1.4461, and 1.4444, corresponding to
10% to 100% kerosene adulteration, respectively. It was observed that the refractive index
decreases as the proportion of kerosene increases, displaying a linear relationship between
the refractive index and the percentage of kerosene.

Kanyathare et al. [39] introduced a method for detecting adulterated diesel oil by
comparing the refractive index of mixtures of suspected adulterated and authentic diesel
oils using a refractometer. The process benefits from the availability of genuine diesel from
regulatory authorities and employs the Lorentz–Lorenz formula to estimate the permittivity
changes, aiding in the detection of counterfeit diesel. It suggests the potential for creating a
calibration curve library for all diesel types in a country to facilitate screening. The values of
the refractive indices obtained were also in the range of the ones obtained in reference [38].
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Thus, based on the above, the refractive index is swept in the simulation study from
1.4444 to 1.4604 with 1× 10−4 increments to cover the maximum range of adulterated diesel
concentration.

As aforementioned, the output of the simulation study is the measurement of the
parameter d for each change of the parameters θi (from 10◦ to 40◦ with a 1◦ increment),
Wdiesel (from 1 cm to 5 cm with a 0.5 cm increment), and nd (from 1.4444 to 1.4604 with a
1 × 10−4 increment).

In the following section, we will outline the preparation of the dataset by establishing
the input-output parameters for the machine learning model and subsequently assess its
performance.

3. Machine Learning Regression Models for Diesel Purity Prediction

As referenced above, the simulation COMSOL Multiphysics software is used to an-
alyze the effects of reflection/refraction, which are characterized by multiple variables,
including Wdiesel , θi, nd, and d. Changing these variables will impact the distance d. The
effects of different values of each variable are modeled to get a more accurate result. The
final outcome is the distance d produced for each variable. The simulation and training
variables forming the dataset are:

• Incident angle θi from 10◦ to 40◦ with a 1◦ increment.
• Diesel sample depth Wdiesel from 1 cm to 5 cm with a 0.5 cm increment.
• Refractive index of the diesel sample nd from 1.4444 to 1.4604 with a 1× 10−4 increment

to cover all possible adulterated diesel volume percentage.

The categorization of diesel adulteration volume percentage is determined by the
refractive index, as indicated in Table 1.

Table 1. Refractive index range and corresponding diesel volume percentage adulteration.

nd Range Diesel Volume Percentage Adulteration

1.4604 to 1.4588 0 (pure diesel)
1.4587 to 1.4572 10
1.4571 to 1.4557 20
1.4556 to 1.4541 30
1.4540 to 1.4524 40
1.4523 to 1.4508 50
1.4507 to 1.4492 60
1.4491 to 1.4478 70
1.4477 to 1.4462 80
1.4461 to 1.4445 90

≤1.4444 100 (pure kerozene)

The data obtained from these simulations were aggregated and reformatted to create a
dataset that defines the adulterated diesel volume concentration as output based on the
value of the predicted nd (Table 2). Table 2 presents a portion of the dataset obtained from
COMSOL, featuring selected values of incident angles and refractive indices of adulterated
diesel at various diesel depths.

The adjusted variables will together create the input dataset for the regression models,
which will then be utilized to calculate the percentage of adulteration in diesel. In this
section, we delve into the presentation of machine learning regression models to predict
diesel concentration/purity based on the data influenced by the light reflection/refraction
concept, given in Table 1. We will discuss the pivotal role of normalization, elucidate the
process of data partitioning, describe the input–output relationships, introduce relevant
equations, and underscore the significance of model evaluation.
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Table 2. Input–output data parameters from a subset of the entire dataset.

Input Output

θi◦ W (cm) 1 1.5 2 2.5 3 3.5 4 4.5 5 nd Adulterated
Diesel %

10

d (cm)

5.17935546 5.12412847 5.06890149 5.01367451 4.95844752 4.90322054 4.84799356 4.79276657 4.73753959 1.4444 100
5.17854154 5.1229076 5.06727366 5.01163972 4.95600578 4.90037184 4.8447379 4.78910396 4.73347002 1.4492 60
5.17781708 5.1218209 5.06582473 5.00982856 4.95383238 4.89783621 4.84184004 4.78584387 4.72984769 1.4535 40
5.17666367 5.12009079 5.06351791 5.00694504 4.95037216 4.89379928 4.83722641 4.78065353 4.72408065 1.4604 0

15

7.86645862 7.78045004 7.69444146 7.60843288 7.5224243 7.43641572 7.35040714 7.26439856 7.17838999 1.4459 90
7.8657839 7.77943797 7.69309203 7.6067461 7.52040016 7.43405423 7.34770829 7.26136236 7.17501642 1.4485 70
7.86408253 7.77688591 7.15694609 7.07622259 6.99549909 6.91477559 6.8340521 6.7533286 6.6726051 1.4551 30
7.86336562 7.77581054 7.15561411 7.07455762 6.99350112 6.91244463 6.83138814 6.75033164 6.66927515 1.4579 10

28

15.5735981 15.3847557 15.1959133 15.0070709 14.8182285 14.6293861 14.4405437 14.2517013 14.0628588 1.4475 80
15.5712769 15.3812739 15.1912709 15.0012679 14.8112649 14.6212619 14.4312589 14.2412559 14.0512529 1.4519 50
15.5688679 15.3776603 15.1864528 14.9952452 14.8040377 14.6128301 14.4216226 14.230415 14.0392075 1.4565 20
15.5680341 15.3764097 15.1847853 14.9931608 14.8015364 14.609912 14.4182876 14.2266631 14.0350387 1.4581 10

40

24.4876426 24.1449694 23.8022962 23.459623 23.1169498 22.7742766 22.4316035 22.0889303 21.7462571 1.4456 90
24.4834672 24.1387064 23.7939455 23.4491846 23.1044238 22.7596629 22.414902 22.0701412 21.7253803 1.4505 60
24.4812673 24.1354065 23.7895457 23.4436849 23.0978241 22.7519634 22.4061026 22.0602418 21.714381 1.4531 40
24.4787423 24.131619 23.7844957 23.4373724 23.0902491 22.7431258 22.3960025 22.0488792 21.7017559 1.4561 20
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3.1. Dataset Preparation and Partitioning

In our study, we began with a comprehensive dataset comprising 4986 input parame-
ters, encompassing θi in degrees, Wdiesel in cm, nd and d in cm. To facilitate robust model
training and evaluation, we adopted a principled approach to data partitioning. Unam-
biguously, we allocated 70% of the dataset, amounting to 3490 samples, for model training.
The remaining 30%, consisting of 1496 samples, was reserved for rigorous testing of the
trained models. Additionally, we generated five sets of data for post-modeling analysis
and result presentation, ensuring comprehensive evaluation and validation.

3.2. Normalization for Enhanced Model Performance

Normalization serves as a critical preprocessing step to standardize the input data and
ensure uniform scaling across features. Leveraging the “sklearn.preprocessing.normalize”
function, we transformed θi and d data to a consistent range, promoting convergence and
stability in regression models. The normalization equation is presented in Equation (2):

xnorm =
x − min(x)

max(x)− min(x)
(2)

where x represents the input feature, min(x) is the minimum value of x, and max(x) is the
maximum value of x.

Our input parameters, denoted as x = [θi, d1, d2, . . . , d7], encapsulate the inci-
dent angles θi and distances d influenced by reflection/refraction and the diesel sample
Wdiesel , while the output variable y represents the refractive index nd predicted by the
regression models.

Regression models are fundamental tools in machine learning for predicting contin-
uous target variables based on input features. In our scenario of predicting diesel purity,
regression models play a crucial role in deciphering the complex relationships between
incident angles, distances affected by reflection/refraction, and refractive indices. In this
study, we explore a collection of regression techniques, including linear regression equa-
tions, gradient boosting regressors, decision tree regressors, random forest regressors, extra
trees regressors, and voting regressors. Each model encapsulates distinct methodologies to
infer the intricate relationships between input features and refractive indices, culminating
in accurate predictions of diesel purity. A brief description of each of the mentioned models
is presented in the following paragraph.

Linear regression establishes a linear relationship between the input features and the
target variable by fitting a straight line to the data points. This model learns the coefficients
(slope) and the intercept (bias) that minimize the difference between the predicted and
actual values. In our context, linear regression estimates the refractive index based on
angles and distances, offering interpretability and simplicity in model representation.

Gradient boosting is an ensemble learning technique that sequentially builds a series of
decision trees, each correcting the errors of its predecessor. In our scenario, GradientBoost-
ingRegressor constructs a strong predictive model by iteratively minimizing the residuals
between predicted and actual refractive indices. By combining weak learners into a robust
ensemble, GradientBoostingRegressor adapts to complex data patterns and offers superior
predictive performance.

Decision trees partition the feature space into hierarchical structures based on feature
thresholds, enabling intuitive decision-making. DecisionTreeRegressor constructs a binary
tree where each node represents a feature and each branch represents a decision based
on that feature. In predicting diesel purity, DecisionTreeRegressor recursively splits the
data to minimize the variance of refractive index predictions, offering transparency and
interpretability in model insights.

Random forests leverage the power of ensemble learning by constructing multiple
decision trees and aggregating their predictions. RandomForestRegressor introduces ran-
domness in tree construction by bootstrapping samples and selecting random subsets of
features, thereby reducing overfitting and improving generalization performance. In our
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context, RandomForestRegressor captures intricate relationships between angles, distances,
and refractive indices, offering robust predictions for fuel purity.

ExtraTreesRegressor, a variant of random forests, introduces additional randomness
during tree construction by selecting random thresholds for feature splitting. By incorporat-
ing feature randomness and bootstrap sampling, ExtraTreesRegressor explores the feature
space more comprehensively, thereby enhancing predictive performance and mitigating
overfitting concerns. In predicting diesel purity, ExtraTreesRegressor offers versatility and
robustness in capturing subtle variations in angle-distance-refraction relationships.

VotingRegressor aggregates predictions from multiple base estimators, including linear
regression, GradientBoostingRegressor, DecisionTreeRegressor, RandomForestRegressor,
and ExtraTreesRegressor. By combining diverse regression models, VotingRegressor har-
nesses the collective wisdom of individual estimators to improve prediction accuracy
and robustness. In our scenario, VotingRegressor provides a unified approach to diesel
purity estimation, leveraging the strengths of different regression techniques to enhance
predictive performance.

Scikit-learn, a popular machine learning library, offers default values for hyperpa-
rameters in its implementations of various models. For instance, in gradient boosting,
the default learning rate (eta) is typically set to 0.1, while the number of trees (nestimators)
defaults to 100. Decision trees often have default values such as ‘None’ for maximum depth
(allowing nodes to expand until all leaves are pure) and 2 for the minimum number of
samples required to split an internal node (min_samples_split). Random forests usually
default to 100 trees (nestimators), and while the maximum depth defaults to ‘None’, for our
modeling, it was set to 100. Additionally, ‘auto’ is the default value for maximum features,
which chooses the square root of the number of features for classification and the number
of features for regression. Linear regression in scikit-learn does not have hyperparameters
to tune by default, but if regularization is applied, the default alpha for Lasso or Ridge
regularization is set to 1.0. Similarly, for the extra trees regressor, the default number of
trees (nestimators) is 100, and while the maximum depth defaults to ‘None’, it is updated to
100 for this study. The maximum feature defaults to ‘auto’. These default values offer a
starting point for model training and can be adjusted through hyperparameter tuning to
optimize performance for specific datasets and tasks.

To measure the efficacy of our regression models, we employed a suite of evaluation
metrics, including mean squared error (MSE), R-squared (R2), mean absolute error (MAE),
and root mean squared error (RMSE). These metrics provide quantitative insights into
model performance, enabling nuanced comparisons and informed decision-making. The
equations for these metrics are provided in Equations (3)–(6):

MSE =

(
1
N

)
Σi = 1N(yi − yi)2 (3)

R2 = 1 − Σi = 1N(yi − yi)2Σi = 1N(yi − yi)2 (4)

MAE =
1
m∑m

k=1|yk −¥k| (5)

RMSE =
√

MSE (6)

where ¥k represents predicted values for interval k and yk represents the real output.
In the following section, we will showcase and assess the outcomes derived from the

various models employed.

4. Results and Model Verification

Regression models can serve as powerful tools for predicting diesel purity based on
incident angle and distance data. Table 3 displays the outcomes for R2, MSE, RMSE, and
MAE calculated from the different models utilized. It reveals that the models are highly
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reliable, as evidenced by an R2 value of 0.999 and an MAE of 0.074. This confirms the
viability of the proposed models for mapping inputs to outputs.

Table 3. Errors in model regression.

R2 MSE RMSE MAE

GradientBoostingRegressor 0.9995755423 0.0000000090 0.0000948249 0.0000780582
DecisionTreeRegressor 0.9993493505 0.0000000138 0.0001174028 0.0001106952

RandomForestRegressor 0.9998072755 0.0000000041 0.0000638960 0.0000462553
LinearRegression 0.9976417782 0.0000000500 0.0002235102 0.0001711042

ExtraTreesRegressor 0.9999722953 0.0000000006 0.0000242260 0.0000124726
VotingRegressor 0.9997784577 0.0000000047 0.0000685067 0.0000536201

To determine which model shows the best performance, we typically look at various
performance metrics like R2, MSE, RMSE, and MAE.

In this case, the model with the highest R2 value and the lowest values for MSE, RMSE,
and MAE would generally be considered the best-performing model.

Based on the provided metrics from Table 2, the ExtraTreesRegressor model shows the
highest R2 value (0.9999722953) and the lowest MSE, RMSE, and MAE among all models.
Additionally, the RandomForestRegressor also performs exceptionally well, with a high
R-squared value (0.9998072755) and low values for MSE, RMSE, and MAE.

Both ExtraTreesRegressor and RandomForestRegressor are ensemble methods and
have likely benefited from their ensemble nature and randomness in the model building
process, which can help improve generalization and reduce overfitting. Therefore, based
on the provided metrics, ExtraTreesRegressor and RandomForestRegressor appear to show
the best performance among the models listed.

VotingRegressor was chosen for this study due to its ability to aggregate predictions
from multiple base estimators, including linear regression, GradientBoostingRegressor,
DecisionTreeRegressor, RandomForestRegressor, and ExtraTreesRegressor. By combining
diverse regression models, VotingRegressor leverages the collective wisdom of individual
estimators to improve prediction accuracy and robustness. Although it may not have the
highest R2 and MSE values individually when compared to some of the base estimators, its
strength lies in its ability to mitigate the weaknesses of any single model by averaging their
predictions, thus potentially enhancing predictive robustness. In our scenario of diesel
purity estimation, where accuracy and robustness are crucial, VotingRegressor offers a
unified approach that harnesses the strengths of different regression techniques, potentially
leading to enhanced predictive performance and more reliable results.

Figure 3 displays the error metrics and accuracy of the VotingRegressor model, demon-
strating a close match between simulated and forecasted test data for various percentages of
adulterated diesel, with slight fluctuations observed at specific data points. Importantly, the
data used for evaluation tests were distinct from those used in the model’s training phase.

A more comprehensive statistical analysis of the model is presented in Table 4, where
the different models are tested for predicting adulterated diesel concentration. This table
depicts the means of error prediction for modified diesel concentration values.

It is noteworthy to highlight that the benchmark dataset labeled in Table 4 has not been
employed during either the training or testing phases. The models’ average percentage
errors are 5.028 × 10−3%, 6.878 × 10−3%, 3.07 × 10−3%, 8.65 × 10−3%, 7 × 10−4%, and
3.87 × 10−3% for the gradient boosting regressor, decision tree regressor, random forest
regressor, linear regression, extra trees regressor, and voting regressor models, respectively.

These findings reveal the models’ expanding potential, highlighted by their accu-
racy in predicting diesel adulteration percentages using data not previously encountered
in training.
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Figure 3. The accuracy of voting regressor model predictions across the 1496 dataset sample test.

Table 4. Analysis of error rates and adulterated diesel percentage predictions for unseen data.

Real Predicted Error %

GradientBoostingRegressor

1.4588 1.45887 0.00476
1.4491 1.44912 0.0014
1.4567 1.45678 0.0052
1.4486 1.4485 0.0069
1.4538 1.4537 0.00688

DecisionTreeRegressor

1.4588 1.4589 0.00685
1.4491 1.4492 0.0069
1.4567 1.4568 0.00686
1.4486 1.4485 0.0069
1.4538 1.4537 0.00688

RandomForestRegressor

1.4588 1.45882 0.00171
1.4491 1.44909 0.00035
1.4567 1.45671 0.00103
1.4486 1.44853 0.00511
1.4538 1.4537 0.00715

LinearRegression

1.4588 1.45926 0.03133
1.4491 1.44912 0.00116
1.4567 1.45647 0.01558
1.4486 1.44892 0.0221
1.4538 1.45378 0.00127

ExtraTreesRegressor

1.4588 1.45881 0.00082
1.4491 1.4491 1.07 × 10−13

1.4567 1.4567 0.00027
1.4486 1.44862 0.00138
1.4538 1.45381 0.00103

VotingRegressor

1.4588 1.45893 0.0091
1.4491 1.44913 0.00182
1.4567 1.45665 0.0033
1.4486 1.44861 0.00091
1.4538 1.45374 0.00423

Detecting false diesel and measuring relevant concentrations still looks like an under-
developed research area, and existing studies show a shortage of emissions data obtained
through sensors based on machine learning [19,20] using an optical philosophy. The lim-
ited quantity of training data resulted in a decrease in the accuracy of the deep-learning
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neural network’s ability to correctly classify adulterated diesel, thereby affecting its perfor-
mance. Our research creates a synthetic dataset that creates the possibility of more accurate
forecasts with the help of actual data. As Figure 3 and Table 3 reveal, our model proves
that the d variable shows a significant correlation with adulterated diesel concentration
with additive use labeled, which means we are able to benefit from the generated data
without anomalies.

5. Conclusions

This paper outlines an innovative method for detecting adulterated diesel fuel, partic-
ularly when mixed with kerosene, by employing refractive index values of both authentic
and potentially adulterated diesel samples in conjunction with machine learning algorithms
to accurately ascertain the level of adulteration.

• In contrast to traditional detection methods that are expensive, require extensive
sample preparation, require skilled technicians, and are not adaptable for field testing
or versatile in detecting various diesel adulterants, our suggested approach leverages
the principles of optics of light reflection and refraction to create synthetic data for
machine learning analysis.

• Our laser-based sensor, designed using COMSOL, is composed of a simple setup in-
volving a diesel-filled container and an overhead laser. The laser light, after refracting
through the diesel, is measured for its reflection back to a sensor aligned with the laser.

• Various parameters are calculated, such as the distance from the laser to the point
of light detection, angles of incidence, and diesel depth. These parameters are then
utilized as synthetic data, streamlining the machine learning training phase, a typically
laborious aspect of AI implementation, to predict adulteration levels across a spectrum
from 0 to 100%.

• Different models have been tested to check the best performance looking at the hy-
perparameter metrics. The results validate our models’ high accuracy in predicting
unseen data, as evidenced by an R-squared value of 0.999 and a mean absolute error
of 0.074, confirming their potential for practical application.

• This sensor’s cost-effective and versatile design promotes its utility across various
applications, making it a promising solution for affordable, low-cost Internet of
Things technologies.

The implications of this research are significant, offering advancements in sensor
technology for the precise and accessible detection of diesel adulteration. This method is
especially advantageous for use in developing countries, where it could significantly dimin-
ish the dependence on intricate lab analyses by allowing for initial adulteration screening
on-site and thereby reserving detailed lab analyses for only the most challenging samples.
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Abbreviations

SPR Surface plasmon resonance
PCF Photonic crystal fiber
IR Infrared
PLS Partial least squares
SVR Support vector machine regression
MCR-ALS Multivariate curve resolution with alternating least squares
AI Artificial intelligence
ML Machine learning
GEP Gene expression programming
BSEC Brake specific energy consumption
NOx Nitrogen oxides
BTE Brake thermal efficiency
UHC Unburned hydrocarbon
CO Carbon monoxide
NIR Near-infrared
d Light path from its point of entry to its intersection with the sensing zone
nd Refractive index of diesel
nk Refractive index of kerosene
nair Refractive index of air
nw Refractive index of water
θi Incident angle
θt Transmitted angle
θr Reflected angle
Wair Depth of air
Wdiesel Depth of diesel sample
λ Wavelength of light
R2 R-squared
MSE Mean squared error
MAE Mean absolute error
RMSE Root mean squared error
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