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Abstract: The traditional electrochemical caustic soda recovery system uses the generated pH
gradient across the ion exchange membrane for the regeneration of spent alkaline absorbent from
CO2 capture. This electrochemical CO2 capture system releases the by-products H2 and O2 at the
cathode and anode, respectively. Although effective for capturing CO2, the slow kinetics of the
oxygen evolution reaction (OER) limit the energy efficiency of this technique. Hence, this study
proposed and validated a hybrid electrochemical cell based on the H2-cycling from the cathode to
the anode to eliminate the reliance on anodic oxygen generation. The results show that our lab-scale
prototype enabled effective spent caustic soda recovery with an electron utilisation efficiency of
90%, and a relative carbonate/bicarbonate diffusional flux of approximately 40%. The system also
enabled the regeneration of spent alkaline absorbent with a minimum electrochemical energy input of
0.19 kWh/kg CO2 at a CO2 recovery rate of 0.7 mol/m2/h, accounting for 30% lower energy demand
than a control system without H2-recycling, making this technique a promising alternative to the
conventional thermal regeneration technology.

Keywords: CO2 capture; electrolysis; hydrogen cycling; anion exchange membrane; caustic regeneration

1. Introduction

Global warming has emerged as one of the major environmental challenges facing the
world. Carbon dioxide (CO2) is the key greenhouse gas that drives global warming and
accounts for approximately 55% of observed global warming [1]. The CO2 concentration in
the atmosphere has increased by 3% since 1950 [2]. To combat global warming, deploying
carbon capture technologies to reduce the carbon footprint is imperative. Direct air cap-
ture (DAC) and point-source capture from existing CO2 have been extensively reviewed
with detailed analysis determining energy efficiency, chemical principle, and commercial
viability [3–7].

Several mature carbon capture technologies are commercially available [8–12]. Among
these technologies, chemical absorption with alkaline hydroxide solutions (NaOH or
KOH) is the most common CO2 separation method employed by industrial large-scale
plants [13,14]. In this process, the CO2-rich gas stream is pressurised and passed into the
absorption tower. The CO2 dissolves into the liquid phase and chemically reacts with the
alkali according to the following reaction:

CO2 + 2 NaOH → Na2CO3 + H2O

∆H0 = −109.4 kJ/mol (1)

Previous studies showed high capture yields ranging from 90 to 99% [15–17]. After
reaching CO2 saturation capacity, the spent sorbent is regenerated, either by a temperature
swing or pressure swing, leading to a high-purity CO2 gas stream. After CO2 stripping, the
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regenerated CO2-lean solvent is pumped back into the absorber for another cycle [18,19].
The conventional regeneration of spent sorbent, which implies the conversion of sodium
carbonate to sodium hydroxide, requires an energy input of 1.1 kWh/kg CO2, whereas
the thermodynamic minimum energy required is 0.69 kWh/kg CO2 [20,21]. The compara-
tively high energy consumption and low regeneration efficiency (<90%) of conventional
regeneration technologies [22] necessitate the development of more efficient technologies
for CO2 capture.

Alternative methods have been explored to reduce energy requirements. CO2 capture
and release through an electrochemical process may offer a solution to address these
drawbacks. The fundamental of this technology in CO2 capture relies upon aqueous acid-
base neutralisation pathways. An electrochemically generated pH gradient between the
cathode and anode chambers is the primary driver for CO2 capture and recovery. The anode
and cathode chambers are typically separated by an Anion Exchange Membrane (AEM)
allowing ion migration while providing the individual electrode physical compartments.
After CO2 absorption in an alkaline solution, CO2 generates carbonate ions. The entire
reactions involved in the CO2 absorption could be written in ionic terms as follows:

CO2(g) ↔ CO2(aq) (2)

CO2(aq) + H2O ↔ HCO−
3 + H+ (3)

CO2(aq) + OH− ↔ HCO−
3 (4)

HCO−
3 ↔ CO2−

3 + H+ (5)

H2O ↔ OH− + H+ (6)

The spent sorbent containing HCO−
3 /CO2−

3 is then pumped into the cathode compart-
ment. The (bi)carbonate species migrate through the AEM under an electric field towards
the anode compartment. The pH decrease caused by the anodic half-reaction results in the
conversion of carbonate to carbonic acid, which then decomposes to form CO2:

CO2−
3 +H+ ↔ HCO−

3 + H+ ↔ H2CO3 ↔ CO2 + H2O (7)

In this context, various cell configurations have been introduced in recent years. An
early attempt was made by Walke et al. [23] to separate CO2 from flue gas using an elec-
trochemical cell to drive CO2, in the forms of (bi)carbonate species, across an AEM into a
CO2-recovery stream. Another approach used an oxygen cycling electrochemical cell to pro-
duce a CO2-rich effluent from the combustion of fossil fuel [24]. Recently, an alkaline water
electrolyser was employed to remove CO2 from biogas [25]. Mohammadpour et al. [26]
developed a three-chamber electrochemical cell that enabled the recovery of CO2 in an
intermediate chamber to prevent CO2 contamination of the anodic O2 outlet gas.

Theoretically, the electrolysis of water in standard conditions requires thermodynamic
minimum energy of 237 kJ/mol (equivalent to a cell voltage of 1.23 V) [27]. In practice,
additional energy is also required to overcome activation overpotential, mainly from
intrinsic kinetic barriers associated with half-reactions at each electrode, particularly at the
anode [28,29]. Taking all overpotentials into account, the cell voltage of a typical alkaline
electrolyser varies between 1.8 V and 2.4 V [30,31]. However, electrolytic H2 and O2
formation during pH gradient generation in the electrochemical cell may not be desirable
and may present additional obstacles to the CO2 removal process. For example, co-mixing
H2 and CH4 when using the alkaline water electrolyser for CO2 removal from anaerobic
digester biogas could present some challenges, including increased probability of ignition,
material degradability in contact with H2, and leakage [32].

Additionally, oxygen formation is a kinetically sluggish reaction that often demands
significantly higher voltage compared to the thermodynamic minimum voltage at a given
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current density [33]. Therefore, it is necessary to improve the energetic performance of
the electrochemical CO2 capture technique in order to make it competitive and practical.
Recently, Muroyama et al. [34] developed an electrochemical hybrid cell powered by H2
cycling from the cathode to the anode to generate a pH gradient for CO2 capture from a wide
range of gas mixtures. Their approach takes advantage of replacing the oxygen evolution
reaction (OER) at the anode with the spontaneous hydrogen oxidation reaction (HOR).

In the hybrid cell, the generated H2 at the cathode is fed into the anode to substitute
the sluggish OER. Each half-cell reaction can be represented as follows:

Cathode:
2 H2O + 2e− → H2 + 2OH− (8)

Anode:
H2 + 2OH− → 2H2O + 2e− (9)

Thermodynamically, this electrochemical cell can be operated at a cell voltage of zero
if the hydrogen pressure difference between the cathode and anode side is zero (Nernst
equation). However, a wide pH gradient between two compartments required for carbon
equilibrium kinetics and overpotentials such as activation and ohmic overpotentials causes
an increase in minimum energy requirement.

The previous study demonstrated that CO2 separation can be achieved using the
described electrochemical cycles [34]. However, further research is still required to identify
the challenges and explore the potential of this technique for commercial use. Therefore,
this study aimed to fill these gaps through a series of experiments to characterise the
performance of a lab-scale electrochemical hybrid cell for CO2 capture. In particular,
comparison of the energy demand between the water electrolyser system and the hybrid
cell for regeneration of spent alkaline solution for CO2 capture was conducted. We also
identified the effect of key operational parameters, including H2 loading rate into the
anode compartment, back diffusion, and H2 utilisation rate, on the performance of the
electrochemical hybrid cell.

2. Experimental Section
2.1. Materials

All materials were used as delivered without any further treatments (Figure 1). All
the chemical reagents used were analytic-grade reagents purchased from Chem-Supply,
Australia (Gillman, Australia). A commercial anion exchange membrane (AMI-007, Mem-
branes International Inc., Ringwood, NJ, USA) was used for the experiments carried out in
this study. Platinised carbon cloth electrodes with a Pt loading of 0.2 mg/cm2 and thickness
of 0.365 mm and woven carbon cloth with a microporous layer with a thickness of 0.410 mm
were purchased from Fuelcellstore (Bryan, TX, USA). Graphite plates with the serpentine
flow field were machined out by Rongxing Group (Zhengzhou, China). Each flow field
channel was 50 mm long, 2 mm wide and 3 mm deep. The ribs that formed the channels
were 2 mm wide. The Viton® fluoroelastomer gasket (Fuel cell store, Bryan, TX, USA) was
used in cell fabrication to ensure a good seal.

2.2. Hybrid Cell Fabrication and Testing

The experiments were carried out using a two-compartment apparatus with an active
surface area of 25 cm2. Two commercial platinised carbon cloth electrodes with a loading of
0.2 mg Pt/cm2 (Fuel Cell Store) were employed as the catalytic site of the anode and cathode
and were placed against the membrane. A graphite plate with integrated serpentine flow
channels (1 mm width and 1 mm depth) was used as the current collector and structural
support on the cathode side. Two commercial woven carbon cloths were employed at
the anode and cathode as a gas diffusion layer (GDL) to decrease the contact resistance
between catalytic sites and the current collector. The whole cell was encased between a
graphite plate with flow fields (anode) and a Perspex plate (cathode) using incompressible
Polytetrafluoroethylene (PTFE) gaskets. A pocket with a working volume of 50 mL was
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manufactured on the cathode Perspex plate to provide a water layer for the H2 formation
reaction. The cell was compressed using 8 bolts and torque value of 5 N.m.
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Figure 1. Schematic diagram of the hybrid electrochemical cell for regeneration of spent sorbent used
for CO2 capture.

Tests in this work were conducted with a bicarbonate-rich solution, as each bicarbonate
ion molecule carries one CO2 per one negative charge, thereby it may achieve a high CO2
diffusional flux to electron ratio for the electrolysis process. The NaHCO3 solution (1 M)
was recirculated continuously from a tank to the cathode side by a peristaltic pump to
sustain (bi)carbonate concentration.

The membrane was soaked in 0.5 M NaHCO3 solution for 24 h prior to operation. In
the hybrid cell mode operation, H2 gas was fed via a peristaltic pump (7554-95 Masterflex,
Vernon Hills, IL, USA) from a non-reactive Tedlar gas sampling bag (CEL Scientific Corp.,
Santa Fe Springs, CA, USA) into the flow field of the anode side. To avoid dehydration of
the membrane, the inlet hydrogen stream to the anode was passed through a humidifier
at 50 ◦C. In the water electrolysis mode, H2 feed to the anode was replaced by 1 M of
NaHCO3 solution. The CO2 content in the outlet streams was monitored continuously
using CO2 sensors (CO2 meter GC-0016, Ormond Beach, FL, USA) and accompanying
software. A U-tube manometer with oil displacement connected to a Burkert solenoid
valve was inserted into the gas outlet line to measure the output gas flow rate to evaluate
the Faradaic efficiency and CO2 relative flux.

The electrochemical cell was coupled with a potentiostat and operated in a three-electrode
configuration using a silver–silver chloride (Ag/AgCl) reference electrode mounted on the
cathode side. A loop control mechanism was developed using LabViewTM 2018 version
softwareto control the potentiostat, and pumps and collect the data from the probes and
sensors. All experiments were performed at atmospheric pressure and room temperature of
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25 ± 1 ◦C. In accordance with our previous study [35], the integrity of the electrochemical
experiments conducted in this work was verified to assure that the data obtained were
reproducible with ≤10% variation.

2.3. Calculation

To investigate the performance of the experimental setup, some operational parameters
such as Faradaic efficiency, relative CO2 flux and gas permeability of membrane were
calculated. Faradaic efficiency was determined based on the H2 utilisation rate on the
anode side as follows (Equation (10)):

Faradaic efficiency =
2

.
nH2F

I
(10)

where
.
nH2 is the difference in H2 molar flow rate (mol/s) between inlet and outlet of the

anode. F (96485 A s/mol) is the Faradaic constant and I is the current (A).
The relative CO2 diffusional flux was defined as (Equation (11)):

Relative diffusional flux =

.
nCO2F

I
(11)

where
.
nCO2 is the molar flow rate of CO2 recovery on the anode side (mol/s).

The H2 gas permeability of membrane (1 barrer= 10−10 cm3 cm cm−2 s−1 cmHg−1)
was defined as:

P =
QH × L

∆PH × A
(12)

where QH (cm3/s) is the flow rate of H2 diffused across the membrane, ∆PH (cmHg−1) is
the partial pressure difference over the length of the membrane, and L (cm) and A (cm2)
are the thickness and projected area of the membrane.

The net energy requirement for electrochemical CO2 separation (kWh/kg CO2) was
calculated using the following equation:

E = 0.001 ∗ IV
QCO2

(13)

where I is the current (A), V is the cell voltage (V), and QCO2
is the rate of CO2 regeneration (kg/h).

3. Results and Discussion
3.1. Polarisation Performance

The use of cathodic H2 as an anodic electron donor is thermodynamically more
favourable than the use of water leading to oxygen production. At the same time, cathodic
H2 represents a practical energy source (e.g., in fuel cells). To investigate the practical
benefits of sacrificing cathodic H2 and reusing it as an anodic electron donor, the current–
voltage polarisation curves of the described hybrid electrochemical cell were compared
with that of an alkaline water electrolyser.

The hydrogen oxidation reaction (HOR) was initiated at about −500 mV for the Pt-
loaded electrode, which is close to the equilibrium potential for HOR at pH = 7 (assuming
no pH gradient in the vicinity of the anode at which the equilibrium potential of HOR is
−414 mV). This means that, in contrast to anodic oxygen production from water splitting,
there was no substantial overpotential. The hydrogen oxidation reaction was recognised as
a fast electrochemical reaction [36,37], and thus the activation polarisation loss owing to the
charge transfer was close to zero. The anodic polarisation curve of the hybrid cell showed
a linear behaviour (Figure 2a), indicating that the total overpotential was dominated by
ohmic resistance due to ion transport, and the activation overpotential was negligible.
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The polarisation curve for water oxidation at a constant anolyte pH (~8) exhibited a
high activation barrier (Figure 2a). The water oxidation reaction theoretically occurred at a
potential of about +700 mV based on the Pourbaix diagram of water electrolysis, whereas
the onset anodic potential was between +1500 and +2000 mV. This suggests an experimental
overpotential between 800 and 1300 mV. After exceeding the water oxidation potential at
about 2000 mV, the current increased linearly with the anodic potential.

The cathode polarisation curves appeared similar for both electrochemical cells
(Figure 2b). The higher activation overpotential observed in the cathode polarisation curve
compared to that in the anode polarisation curve is attributed to slower kinetics of the
Volmer–Tafel mechanism of H2 evolution reaction than that of H2 oxidation reaction [38].

It is simple and convenient to evaluate the performance of two electrochemical setups
by comparing the potentials (here named indicative potential) at low current densities
after which a linear relationship between voltage and current signifies a constant resistance.
The main factor affecting the overpotential at indicative voltage is activation polarisation,
which dominates losses at low current densities, and the impact of ohmic losses resulting
from cell parts and their configuration is insignificant. In the presented experiments, this
indicative potential was observed at a current density of 100 A/m2. In the alkaline water
electrolyser, the indicative cell voltage required to achieve this current density of 100 A/m2

was about 3000 mV, whereas it was only 1200 mV for the hybrid cell. The additional voltage
of 1800 mV needed for the alkaline water electrolyser comprises a 700 mV difference in
theoretical anodic potentials between the OER in the alkaline water electrolysis cell and the
HOR in the hybrid cell. Furthermore, there was an additional 1100 mV of overpotential.

At potentials higher than the indicative potential, both electrochemical cells showed a
similar ohmic resistance of about 1.5 ohm.m2 across the anion exchange membrane. This
means using a gas phase anode in the hybrid cell did not have a prohibitive effect on the
anion transport across the AEM.

3.2. Effect of H2 Loading Rate on the Polarisation Performance of the Hybrid Cell

One of the most important technical aspects of the hybrid cell is the supplementation of
sufficient H2 at the catalytic surface area of the anode to satisfy load demand. To investigate
the influence of the H2 inflow rate on the polarisation curve, four hydrogen inflow rates
were tested (Figure 3). By applying the Faraday calculation, the theoretical H2 consumption
rates corresponding to the current densities of 100, 200, and 300 A/m2 were about 1.5, 3,
and 5 mL/min, respectively (considering the surface area of 25 cm2). At a low H2 inflow
rate of 1.5 mL/min (equivalent to the theoretical current density of about 100 A/m2), the
anode showed a similar polarisation curve to the water oxidation reaction in Figure 2a at
high current densities. This was attributable to fuel starvation on the anode side where the
H2 supply could not meet the theoretical H2 demand. Thus, the HOR was substituted with
the oxidation of accumulated water on the surface.
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With higher H2 flow rates, the polarisation curve increasingly resembled that of the
hybrid cell. A surplus hydrogen supply improved the polarisation performance of the
hybrid cell by 30%. A similar trend was reported by Li et al. [39], who showed that the
polarisation performance of the cell gradually increased with increasing H2 flow rates to
the anode. During the H2 oxidation, the input H2 was consumed at the anode, which
caused the depletion of reactant near the electrode surface, hence the kinetic limitation.
The higher H2 inflow rate ensured a high hydrogen partial pressure in the anode chamber,
which resulted in an increase in the drag force of convective diffusion from the diffusion
layer to the catalyst layer to avoid gas transport losses [40,41].

3.3. H2 Back Diffusion across the AEM

Any H2 crossover through the AEM would decrease the efficiency of the hybrid cell.
The H2 gas permeated through the AEM owing to the partial pressure gradient. The rate of
gas crossover through the membranes followed Fick’s law, which is directly proportional
to the diffusion coefficient and concentration gradient across the membrane and inversely
related to the membrane thickness [42].

In order to measure the gas crossover rate through a dry AMI-7001 anion exchange
membrane with a thickness of 0.45 mm, the H2 gas content in the cathode compartment
was recorded over time in the absence of an electric field, while H2 gas was purged at
atmospheric pressure on the other side of the membrane (Figure 4a). H2 crossover current
densities calculated from Faraday’s laws of electrolysis in A/m2 are shown in Figure 4b.
The H2 flux density was about 120 A/m2 at maximum driving from across the membrane
and decreased over time as the H2 concentration on the permeate side increased, resulting
in a reduction in the driving force for H2 crossover. The H2 crossover obtained in the
present study was about three times higher than that measured for an AEM-based water
electrolyser in Pushkareva et al. [43]. This could be attributable to the fact that the AEM
employed in their measurement was hydrated, which diminished H2 diffusion across the
membrane. The diffusion coefficients of H2 in water and air are 5.13 × 10−9 m2/s and
0.61 × 10−4 m2/s, respectively [44,45].

The H2 permeability of the dry AMI-7001 was also calculated (Equation (12)). Dry
AMI-7001 showed a high H2 permeability of about 2500 barrer. Huang et al. [46] reported a
similar H2 gas permeability using dry QPIM-1 AEM, followed by an exponential decline
when the membrane was hydrated. It is worth mentioning that H2 flowed much slower
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through the hydrated membrane than the dry one because the water molecule occupied
the flow paths of the porous media.
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Figure 4. (a) H2 gas concentration in the permeate side and (b) current density changes of a
two-compartment cell due to gas crossover across the AEM (AMI-7001).

3.4. Faradaic Efficiency

Theoretically, the amount of H2 consumed by the anode should follow Faraday’s
law, which is shown in Equation (10). During actual operation, however, possible leakage
through sealing material and H2 crossover through the AEM may reduce the Faraday
efficiency. Nonetheless, the result showed that high Faraday efficiency of >90% was
achieved with the tested system at high current densities (Figure 5). This suggests that the
H2 crossover through the hydrated AMI-7001 was insignificant at high current densities,
as explained in Section 3.3. However, at lower current densities, the Faraday efficiency
decreased to about 60%. Apparently, the effect of hydrogen gas leakage through the
membrane or sealing material depends on the current density. Further study is required to
verify this dependence.
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3.5. CO2 Recovery Investigation

In electricity-driven CO2 removal using an AEM-based electrochemical cell, the dis-
solved CO2 in the catholyte, in the form of HCO3

−/CO3
2−, is transferred through an

AEM to the anolyte, where it is stripped as CO2 gas at low pHs. Previous work [35] has
shown that in traditional O2-forming electrolytic cells, a catholyte pH of nine enabled
high-energy-efficient CO2 transfer to the anode. In the current cell, CO2 flux at pH 9 was
maintained with 1M bicarbonate solution circulating from a tank to the cathode side of the
cell. CO2 flux across the AEM was determined by measuring the CO2 emission from the
anode (Figure 6a). The CO2 flux across the AEM was proportional to the current density,
indicating there was no concentration overpotential in the systems within the studied
current densities.
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Figure 6. The CO2 recovery rate from the permeate side (a) and relative diffusional flux, (b) as a
function of the applied current density.

In the 1 M bicarbonate solution used as catholyte in this study, the main anion to act
as a charge transferring species to transport the dissolved CO2 at pH 9 is HCO3

−. Hence,
at a current efficiency of 100%, one Faraday of charges would theoretically transfer one
mole of “CO2” as HCO3

−. However, the results showed that the measured dissolved CO2
flux across the AEM accounted for only about 40% within the applied current densities
(Figure 6b), which is similar to the findings reported for CO2 separation from flue gas
using an O2 cycling electrochemical cell [24,47]. This relatively low efficiency proved that
apart from bicarbonate, other anions participate in charge transfer across the AEM, or some
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CO2 gas diffuses back to the catholyte through the AEM. Hydroxyl and/or carbonate ions
could contribute to some charge transfer. Considering the extremely alkaline medium
near the membrane/electrode interface, where the H2 generation reaction occurs, the
concentrations of hydroxyl and carbonate ions could be dramatically higher than that in
the bulk electrolyte, facilitating their migration across the AEM. Since carbonate requires
twice as much the charge as required for bicarbonate, the migration of hydroxyl and/or
carbonate ions was likely responsible for the loss of current efficiency. Another possible
reason for this could be ion transport limitation across the ion exchange membrane, which
violates the electroneutrality condition [48].

3.6. Energy Requirement Analysis

In this section, a simplified economic assessment is performed to compare the practical
energy demand of conventional technologies for CO2 removal from a gas mixture with
newly developed electrochemical systems. The electrochemical systems for this separation
process are classified into two categories: (i) redox cycling mode (H2 cycling, O2 cycling,
quinone cycling, and copper ion cycling), and (ii) non-redox cycling mode (membrane
electrolysis) (Table 1). The energy demand for CO2 capture via electrochemical systems was
estimated by considering both the cell voltage and the Faradaic efficiency (Equation (13)).
The latter affects the operating current densities required for the process, whereby low
current densities require larger equipment (electrode and membrane sizes). The energy
content of H2 (33.24 kWh/kg H2) [49] was taken into account, and the generated H2 was
not recycled in the electrochemical cell. The CO2 recovery rate was calculated based
on the reported current densities, as the current density is directly related to the CO2
recovery (Figure 6a).

A comparative study in this work showed that an H2 cycling-based electrochemical
cell is able to regenerate the spent alkaline solution for CO2 capture with a minimum
energy input of 0.19 kWh/kg CO2 (equivalent to a cell potential of approximately 300 mV)
at a CO2 recovery rate of 0.7 mol/m2/h (equivalent to I = 20 A/m2), while it was about
0.31 kWh/kg CO2 (equivalent to a cell potential of 1700 mV) for the water electrolysis
device. Therefore, replacing the water electrolysis cell with the hybrid cell could save up to
30% of the energy input for electrochemical CO2 capture within the CO2 recovery rate in
this work.

Other studies [25,34] also showed the energy expenditure of water electrolysis is
higher than that of the electrochemical cycle systems, mainly due to sluggish four-electron
transfer OER at the anode, which is an energy-intensive half-reaction [50]. The newly
developed electrochemically mediated amine regeneration (EMAR) approach offers a
competitive advantage over other electrochemically driven techniques. This technique
is based on copper redox cycling, which requires a minimum energy of 0.22 kWh/kg
CO2 [51]. However, the amine-based absorbent employed in the EMAR technique causes
some challenges related to corrosion and degradation [52]. Huang et al. [53] designed an
energy-efficient electrochemical setup that was based on using quinone redox reactions
to create a pH gradient for CO2 capture. They employed a mixture of Tiron and NaOH
solutions, termed Na2Q, as an absorbent medium for CO2 capture. However, the quinone
reduction reaction is difficult to achieve at elevated catholyte pH values, which causes poor
regeneration of alkaline absorbents.

Overall, the electrochemical CO2 capture methods have often shown a minimum
achievable energy demand of about 0.2 kWh/kg CO2, which is considerably lower than the
energy demand reported for the conventional chemical scrubbing technology (1.1 kWh/kg
CO2) [54]. However, the CO2 recovery rate, which reflects the solvent regeneration rate,
is considerably low at this energy requirement. At high CO2 recovery rates, the energy
requirement for electrochemically CO2 separation is prohibitively expensive compared with
the conventional CO2 capture technologies such as chemical scrubbing due to low Faradaic
efficiencies [54]. For example, to capture CO2 from flue gas with a flow rate of 30–110 kg/h,
and CO2 partial pressure of 33–135 mbar (equivalent 90 to 140 mol CO2/h) with a typical
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electrochemical cell which constitutes of approximately 50 anodes and cathodes with a
surface area of about 1 m2 [55], a CO2 recovery rate of about 3 mol/m2/h is required to
regenerate the spent sorbent. At this CO2 recovery, the electrochemically CO2 capture
exhibits a high operational energy requirement (about 2 kWh/kg CO2).

Therefore, the electrochemical CO2 capture process shows that it can be a competitive
alternative to conventional technologies. However, the studied electrochemical designs
have been operated at low CO2 recovery rates, and optimisation for their performance at a
high CO2 recovery rate awaits future investigations.

Table 1. Summary of electrochemical CO2 capture methods.

Cell
Configuration Mechanism CO2 Sources

Faradaic
Efficiency

(%)

CO2 Recovery
Rate

(mol/m2/h)

Energy
Requirement

(kWh/kg CO2)
Reference

Non-redox
cycling mode

Water
electrolysis

Biogas (55% CO2,
45% CH4) 40 0.7–11 0.31–3.8 This study

Water
Electrolysis

Biogas (CH4 60%,
40% CO2) 20–80 1.8–6 1.01–5.8 [25]

Water
Electrolysis

Aqueous carbon-
ate/bicarbonate 10–100 0.37–7.4 0.63–5.6 [56]

Redox cycling
mode

H2 cycling Biogas (55% CO2,
45% CH4) 40 0.7–11 0.19–2.8 This study

H2 cycling CO2 gas mixtures
(50% CO2, 50% N2) 80 1.8–3.7 0.18 [34]

H2 cycling Aqueous carbon-
ate/bicarbonate N.A 1.8–5.5 2.3–3.2 [57]

O2 cycling Flue gas <25 0.37–1.8 0.48–0.73 [24]

O2 cycling Flue gas 45–65 0.07–0.7 0.8–1.1 [47]

Copper ion
cycling Flue gas 45–60 0.4–0.7 0.22–0.31 [51]

Quinone
cycling Flue gas 100 8.7 0.66 [53]

4. Conclusions

The technical and economic aspect of an electrochemical regeneration of spent alkaline
solution for CO2 capture was explored. The described hybrid cell using H2 cycling provides
a viable option to avoid the energy-intensive oxygen evolution reaction in the electrochemi-
cal regeneration of spent alkaline solutions for CO2 capture. Our experimental results show
that this approach could save up to 30% of the electrochemical work requirement for the re-
generation of alkaline absorbent. In comparison with conventional regeneration techniques,
electrochemical regeneration systems offer a low-cost opportunity for the deployment of
CO2 capture. Our assessment indicates that an advanced process modification is required,
particularly for achieving high absorbent regeneration rates while maintaining a low energy
requirement. Further, optimisation of the design and operation of the electrochemical cell
such as mixing, electrodes, and the membrane is necessary to improve the energy efficiency
of the process.
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Abbreviations

AEM Anion exchange membrane.
OER Oxygen evolution reaction.
HOR Hydrogen oxidation reaction.
GDL Gas diffusion layer.
EMAR Electrochemically mediated amine regeneration.
F Faradaic constant (96,485 A s/mol).
E Net energy requirement (kWh/kg CO2).
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