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Abstract: Digital twins are an emerging technology that can be harnessed for the digitalization of
the industry. Steel industry systems contain a large number of electro-hydraulic components as
proportional valves. An input–output model for a water proportional cartridge valve was derived
from physical modeling based on fluid mechanics, dynamics, and electrical principles. The valve is a
two-stage valve with two two/two-way water proportional valves as the pilot stage and a marginally
stable poppet-type cartridge valve as the main valve. To our knowledge, this is the first time that
an input–output model was derived for a two-stage proportional cartridge valve with a marginally
stable main valve. The orifice equation, which is based on Bernoulli principles, was approximated by
a polynomial, which made the parameter estimation easier and modeling possible without measuring
the pressure of the varying control volume, in contrast with previous studies of similar types of valves
situated in the pilot stage part of the valve. This work complements previous studies of similar types
of valves in two ways: (1) data were collected when the valve was operating in a closed loop and
(2) data were collected when the valve was part of a press mill machine in a steel manufacturing plant.
Model parameters were identified from data from these operating conditions. The parameters of the
input–output model were estimated by convex optimization with physical constraints to overcome
the problems caused by poor system excitation. For comparison, a simple linear model was derived
and the least squares method was used for the parameter estimation. A thorough estimation of the
parameters’ relative errors is presented. The model contains five parameters related to the design
parameters of the valve. The modeled position output was in good agreement with experimental
data for the training and test data. The model can be used for the real-time monitoring of the valve’s
status by the model parameters. One of the model parameters varied linearly with the production
cycles. Thus, the aging of the valve can be monitored.

Keywords: proportional cartridge valve; water hydraulics; white box modeling; system identification;
hydraulic press; steel industry

1. Introduction

A digital twin is a virtual representation of a physical entity. It aims to be the digital
mirror of a system’s behavior by accounting for condition monitoring, allowing for its
control, and creating predictions of its behavior. It is also one of the enablers of Industry 4.0.
We can find different definitions in the literature, but this concept was introduced in 2003 [1].
According to a narrower definition [2], a digital twin has the following characteristics: it is a
model of a physical object that exists, it is associated with a data set that evolves and grows
with time, the parameters of the model are updated continuously from the data, and it can
render predictions with a high enough level of accuracy and confidence for application.
Furthermore, according to this definition, the model should be a physics-based type of
model. Therefore, digital twins of mechatronic devices, where sensors collect data that are
sent to their virtual mirror and actuators allow one to control the system’s behavior, play
an essential role in the digitalization of the industry [3,4]. In this study, we formulated a

Processes 2024, 12, 693. https://doi.org/10.3390/pr12040693 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12040693
https://doi.org/10.3390/pr12040693
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-7448-603X
https://orcid.org/0000-0003-2887-049X
https://doi.org/10.3390/pr12040693
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12040693?type=check_update&version=2


Processes 2024, 12, 693 2 of 21

digital twin of a valve that fits the definition in [2]. Such digital twins have the advantage
of being interpretable for engineers who work with certain specific applications [5].

Digital twins can be used for modeling various technical systems in the steel indus-
try. Feng Xiang described how to apply digital twins when considering data over the
entire life cycle of a product [6]. Karandaev et al. (2021) developed a digital twin for the
purpose of mirroring and controlling metal behavior in wire-rolling processes [7]. Gasi-
yarova et al. (2021) developed an observer of angular gaps in a rolling stand’s mechanical
transmission, where this observer contained information about the transmission’s failure,
which was achieved by considering the algorithm’s computational cost for real-time moni-
toring [8]. A comparison of some types of behavioral models used for digital twins of a
ring-rolling machine was investigated in Bautista and Rönnow (2023); specifically, autore-
gressive with exogenous variables (ARX), autoregressive moving average with exogenous
variables (ARMAX), and orthonormal basis function (OBF) models were investigated [9].
OBF-ARX and OBF-ARMAX were used for digital twins of the various subsystems of a
ring-rolling machine in [10].

Hydraulic valves are used in hydraulic control systems for the modulation and control
of the position, speed, or force of actuators. They provide the interface between the power
elements, which are generally pumps, and the actuators, which are usually hydraulic
cylinders. A more detailed description of hydraulic valves and its classification can be found
in [11]. Electro-hydraulic proportional/servo valves have certain disadvantages compared
with high-speed on/off valves, such as a complex structure and high power losses. Research
on high-speed valves is currently being carried out because of their fast response. However,
the flow capabilities of high-speed on/off valves are insufficient for applications with large
flow requirements. Two-stage proportional cartridge valves are used in such applications.
Two-stage proportional cartridge valves with a poppet-type construction, which give better
sealing compared with the traditional large flow proportional cartridge valve, have been
succesfully used in large-flow, fast-response, and high-pressure applications [12,13].

Research on cartridge valves has been ongoing for the last two decades [14,15]. The en-
ergy required by a system to control the hydraulic cylinder position was reduced in Song
Liu and Bin Yao (2002) through a particular combination of five proportional cartridge
valves [16]. The same authors developed an adaptive robust control of the same hydraulic
system by considering the valve manufacturer’s information about flow characteristics
instead of identifying the flow model parameters with experimental data [17]. Then, they
identified the flow mapping of the cartridge valve in different ways [18,19]. A reduction
in the energy consumption was achieved by introducing an accumulator and designing a
new controller [20]. A directional control valve with a three-stage structure based on two
high-speed on/off solenoid valves as the pilot stage and two poppet-type cartridge valves
as the secondary stage was proposed in [21] to get a fast response and maximize the flow
and pressure. Daling Yue et al. (2021) proposed a control strategy based on optimizing the
duty ratios of positive and negative pulse voltages to decrease the opening and closing
times of a screw-in cartridge valve [22]. The same research group further developed opti-
mizations in the opening and closing times of a valve by proposing a hybrid voltage control
strategy in which a preload voltage and hold voltage stage were added to the positive
pulse and negative pulse voltages [13]. A cartridge proportional valve, similar to the one
under study in this work, was investigated in prior studies. In these studies, the medium
used to transfer energy between the power element and the actuator was water, and the
valves were used for large flows under high-pressure conditions, as was the case in our
study. The analytical expressions of the behavior of an injection machine with non-linear
flow forces under different poppet geometries of a cartridge valve were studied and vali-
dated by physical simulations using AMESim, thereby demonstrating that using the most
optimal choice of parameters results in improved process performance [12]. An optimal
design of a two-stage proportional cartridge valve with two two/two-way water hydraulic
proportional valves as the pilot stage and a poppet-type cartridge valve as the main valve
was proposed in [23]. An extensive physical model of the valve was also developed and
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implemented in Matlab/Simulink R2019a to simulate the dynamic behavior of the valve.
A multi-objective optimization was carried out to obtain a desired step response of the
valve. The flow force was obtained from CFD simulations after optimizing the dimensional
parameters of the valve orifice to minimize the flow force. A prototype was developed and
experimentally tested to validate the simulated dynamic simulations [23].

Hydraulic valves are dynamic systems; as such, they can be modeled by physics-based
or behavioral models, in which the former are derived from the laws of physics, and the
latter describe the relationship between input and output signals via, for example, artificial
neural networks [24]. Junhui et al. proposed a proportional directional valve, and they
described its dynamical behavior by a physics-based model [25]. A physics-based model
for describing the non-linear valve flow of a proportional valve was developed for the
robust control of its position [26]. Physics-based models were used to model and control the
position of proportional directional valves [27]. A physics-based model was proposed for a
proportional pressure-reducing valve and was formulated by considering the dead zone
and hysteresis effects for pressure tracking with a robust control method [28]. Regarding
poppet-type cartridge valves and a physics-based model, parameter identification was used
to identify the valve flow mapping, as well as the valve flow rate [18,19,21]. Michele pro-
posed a novel Hammerstein dynamical model for modeling a hydraulic actuation system;
this model was constructed for the purpose of control, and the model was constructed using
a neural network in the non-linear static part and an ARX model for the linear dynamical
part [29]. Black box models were used for system identification in hydraulic directional
control valves [30]. A large servo-valve-controlled hydraulic system’s pressure dynamics
was modeled using neural network model structures [31].

In this study, we derive for the first time (to our knowledge) a model and identify the
parameters of a water two-stage proportional cartridge valve for high-pressure hydraulics.
The pilot stage had two 2/2-way water proportional valves, and the main valve is a
marginally stable poppet-type cartridge valve. In contrast, previous studies of poppet-
type cartridge valves used a stable configuration. Additionally, this work is based on
identifying the model parameters rather than optimizing the design parameters [23]. We
also approximate the orifice equation via a polynomial to make the parameter estimation
easier, as well as to make modeling possible without a pressure sensor in the control
volume (which is situated in the main stage, cf. [23]). The parameters related to the flow
mappings and flow rate were estimated for several poppet-type cartridge valves [18,19,21]
with data collected in the laboratory. This is the first identification of a system of two valves,
i.e., the control valve and the main valve, where the main valve is a poppet-type cartridge
valve. Moreover, the data used to estimate the model parameters were collected when the
valve was part of a hydraulic press. It was operated as the plant in a closed-loop system.
The hydraulic press machine, which is composed of more than 50 valves and 5 hydraulic
cylinders, was situated in a steel manufacturing plant. Each hydraulic cylinder reaches
pressures of up to 2.5 × 107 Pa during a production cycle. The proposed model is derived
from physical modeling based on fluid mechanics, dynamics, and electrical principles.
The model parameters are related to the design parameters of the valve, and the parameter
estimation is sufficiently fast to update the model parameters between production cycles.
The estimated parameters could be used for real-time monitoring of the valve’s status,
as well as provide a diagnosis. The interpretation of the model parameters is relatively
easy since we use a physical model. The model can be used as a digital twin, where
the parameters are monitored to show the aging of the valve; this was seen in data from
industrial production.

2. Device and Operation

Figure 1 shows, in detail, the two-stage 2/2-way proportional cartridge valves under
study. The pilot stage involve two groups of proportional spool valves: group (I) with
three valves, and group (II) with another three. Each pilot valve is controlled by a solenoid,
and they contain a pre-loaded spring attached. A similar type of pilot valves can be seen in
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detail in [23]. An emergency shut-down valve (III), a pilot-operated spindle (IV), an LDTV
sensor (V), and two hydraulic circuits (one from (VI) to (VII), and another one from (VIII)
to (IV), which represent the lower chamber (X) and the upper chamber (XI)) are included.
Notice that there is no spring attached to the spindle (IV). More details about the spindle
in similar valves and an emergency shut-down valve type that could be used for this
application can be found in [23,32], respectively.

Figure 1. Mechanical scheme of the device. (I) Proportional pilot valves for the flow-in to the main
valve; (II) proportional pilot valves for the flow-out to the main valve; (III) emergency valve; (IV)
main valve’s spindle; (V) LDTV sensor of the main valve; (VI) entrance of the hydraulic circuit to the
pilot stage; (VII) hydraulic exit of the pilot stage; (VIII) and (IX) are the entrance and exit of the main
valve, respectively; and (X) and (XI) are the lower and upper chambers of the main valve, respectively.
The hydraulic circuit of the main valve is marked in red, the pressurized fluid of the hydraulic circuit
through the pilot valves is marked in yellow, and the fluid from the pilot stage to the reservoir is
marked in blue. The spindle is at its highest position. The image in the left-bottom corner shows the
pilot valves and the emergency valves in the steel manufacturing plant.

Figure 2 illustrates how the valve operates. There are certain differences, as can be seen
from Figure 1. The three valves of group (I) in Figure 1 are represented by an equivalent
single valve (I) in Figure 2. The valves (II) in Figure 1 are also represented by one equivalent
valve (II) in Figure 2. There is a difference between the area of the upper part of the spindle,
i.e., AT , and the area of the lower part, i.e., AB (see Figure 2). Thus, the cross-sectional areas
in contact with the fluid are different. PL AL is the force exerted by the liquid going from
(VIII) to (IX) to the spindle (IV).

To illustrate the valve’s behavior, we assumed the initial position of the spindle to be
at its lowest position, which is to say that when the lower part of the spindle touches the
bottom part of the container (x = 0), the pilot valves are closed, i.e., vin(t) = vout(t) = 0,
PR = 0, PZ > 0, and PL AL < PZ AT + Mg. If vin > 0 and vout = 0, Qin > 0; then, Qout = 0,
x increases, and fluid goes from (XI) to (VI). In contrast, if vin = 0 and vout > 0 when there
is fluid in (X) and PL AL < PZ AT , then Qin = 0 and Qout > 0, which makes x decrease when
the fluid went from (X) to (VII). In this study, the liquid that goes from (VI) to (VII), as well
as from (VIII) to (IX), is 94% drinking water and 6% Hysol SL 36 XBB, respectively. Other
additives that are used to harden the water and reduce the foam were Castrol Antifoam
101 and Castrol Antifoam S 105.
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Figure 2. Diagram of the device. (I) Proportional pilot valves for the flow-in to the main valve;
(II) proportional pilot valves for the flow-out to the main valve; (IV) main valve’s spindle; (VI) entrance
hydraulic circuit to the pilot valves; (VII) exit hydraulic circuit of the pilot valves; and (X) and (XI) are
the lower and upper chamber of the main valve, respectively. The two spindle’s cross-sectional areas
are found to be different, i.e., where AT is smaller than AB. The blue solid line in the lower chamber
defines the control volume in the main valve, which deforms according to x. The yellow and gray
colors indicate the fluid (water) and the solid piston (steel), respectively.

The operating conditions of the valve are determined by the fact that this is used for the
production of steel tubes and the valve is the plant in a closed-loop system. The operating
conditions can be split into (i), (ii), and (iii) (see Figure 3): (i) The initial conditions of the
valve occurs when x = 0 for the spindle (IV) of the main valve, when vin = vout = 0 for
the pilot valves (I) and (II), when the upper chamber of the main valve (XI) is full of water
with Pz(t) = 3 × 107 Pa, and when PL(t) = 0.6 × 107 Pa (see Figures 2 and 3(i)). (ii) Once
vin(t) > 0, then group (I) of the pilot valves let Qin > 0, and the spindle (IV) of the main
valve starts to move such that x(t) > 0; furthermore, PL(t) drops to 0.3 × 107 Pa in a few
seconds (see Figure 3d). (iii) If vin(t) = 0 and vout(t) > 0, then the water from the lower
chamber of the main valve (X) leaves the valve to the reservoir of group (II); hence, x(t)
decreases. This last step takes place when PL is approximately 0.1 × 107 Pa (see Figure 3d).
It is noted that the value of PZ = 2.9 × 107 Pa holds for most of the time but drops to
PZ = 2.7 × 107 Pa in the last third of the valve operation time; however, the spindle’s
position x is not affected by it due to the ratio between PZ and PL (see Figure 3a,c). As a
consequence of how the valve operates, x remains constant as long as vin(t) = vout(t) = 0.
However, this is not the case between t = 10 s and t = 20 s in (ii) due to the valve’s leakage
(see Figure 3a,b). This last observation was discussed with the maintenance engineers.

The experimental data collected for this study were of the valve operating as the
interface between a hydraulic pump and a single-rod linear actuator of one of the hydraulic
control systems of a hydraulic press machine from a steel manufacturing plant. The signals
from position x of the spindle (IV) and the voltages applied to the coils of the pilot valves
(I) and (II) were vin(t) and vout(t), respectively. These signals are recorded by the data
acquisition system IBA-DAQ with a sampling time of 0.03 s and an amplitude range of 0–1,
where 0 corresponded to the minimum value and 1 to the maximum one. vin(t) and vout(t)
are generated by a programmable logic computer with pulse-width-modulated signals
of 24 V. The position of spindle x(t) is controlled by a feedback control structure with a
proportional–integral–derivative digital controller.
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Figure 3. Signals vs. time during operation. (a) Position signal x for the spindle of the main valve
(IV). (b) Voltage V applied to the solenoid of the pilot valves (I) and (II), i.e., vin and vout, respectively.
(c) Pressure Pz at (VI) and (XI). (d) Pressure PL at (VIII) and (IX). The changes in operating conditions
((i), (ii), and (iii)) are indicated in the figure by vertical lines.

3. Modeling

This section is divided into three subsections: The first one describes the physical
model of the valve; in the second, we describe the parameter estimation of the models; and
in the last, the model validation is explained.

3.1. Physical Model

A physical model of the valve shown in Figures 1 and 2 is presented in this section.
It was based on the formulation detailed in Chapter 4 of [11], which uses conventional
equations from fluid mechanics, dynamics, and electrical principles applied to hydraulic
valves. In this work, the pressure in the upper chamber of the spindle (XI) Pc(t) and the
armature’s position of the pilot valves (I) and (II) were not measured; hence, we derived a
model that connects the position x and the control signals vin(t) and vout(t) (see Figure 3a
and b, respectively). These signals are given using a normalized scale. This section is
divided based on the analysis of the valve as a system composed of different subsystems,
as well as a system that is subject to different principles: the first part is the proportional
pilot valves of both groups, i.e., (I) and (II); for the second, we have the volumetric flow
rate of the pilot valves; next, a description of the the main valve’s control volume (X)
is written; in the fourth part, the equation of motion for the spindle (IV) of the main
valve is shown; then, an approximation of the Pc in the main valve’s (X) is described in
detail; and then lastly, in the sixth part, the input–output system model is shown. This
input–output model implicitly describes all subsystems of the valve. The different parts can
be classified according to its principles. The first part uses equations from dynamics and
electrical principles. The second, third, and fourth parts describe conventional equations
from fluid mechanics applied to the modeling of the valve shown in Figures 1 and 2.
The fourth part shows the second Newton’s law applied to the main valve’s spindle (IV)
in Figures 1 and 2. The last two parts give an approximation of Pc and the input–output
system model, respectively.

1. Pilot valve model (I and II): These pilot valves consist of a solenoid, its armature, and a
pre-loaded spring. Equations (3.6) and (3.7) in [11] describe a third-order coupled
system, which, in this case, is the dynamics of the armature and the electrical circuit
of the coil. We assume that the time constants of the armature’s motion are much
smaller than those of the spindle’s motion. Therefore, we neglect the inductance of
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the coil’s circuit, the linear momentum, the viscous force, the flow forces acting on the
armature, and the induced electromagnetic force from the armature’s motion. The last
one is allowed because the electromagnetic force on the armature was greater; as such,
we obtain

kyi =
αvmax

R
vi − F0 (1)

for valve i, where i = {1, . . . , m + l}. In this case, m = l = 3 (see Figure 1). By setting
vi = v0 for yi = 0 to derive F0, we obtain

yi(vi) =
αvmax

Rk
vi (2)

where vi = vi − v0. vi assumes v0 as the offset of vi, which is assumed to be the same
for all pilot valves (see Figure 3b). All pilot valves are of the same type.

2. Volumetric flow rate of the pilot valves (I and II): The standard Equation (4.1) in [11]
is used to describe the flow (which assumed the fluid was incompressible with a high
Reynolds number (i.e., laminar flow)). As such, we obtain

Qi = cd A(vj)

√
2
ρ
(Pi), (3)

where Ai
(
vj
)

= wyi(vj) is the discharge flow area when assuming a rectangu-
lar section, which depends on the voltage applied to the coil of the pilot valve
i. Pi = (Pz − Pc) for i = {1, 2, . . . , m}, and Pi = Pc for i = {m + 1, . . . , m + l}.
We substitute j by subindexing in for i = {1, 2, . . . , m}, as well as by subindexing
out for i = {m + 1, . . . , m + l}, i.e., vin and vout control yi for i = {1, . . . , m} and
i = {m + 1, . . . , m + l}, respectively.

3. The deformable volume (X) of the main valve is chosen as the control volume, as indi-
cated by the solid blue line in Figure 2. The change in the control volume is understood
as a function of the spindle’s position. For an incompressible fluid, the continuity
Equation (5.5) in [33] becomes

AB ẋ = Q1 + · · ·+ Qi + · · ·+ Qm − Qm+1 − · · · − Qm+l . (4)

The flow of the pilot valves of group (I), i.e., i = {1, 2, . . . , m}, increases the vol-
ume of the lower chamber (X), whereas the flow of those of group (II), i.e.,
i = {m + 1, m + 2, . . . , m + l}, decreases the same volume. The contribution of the
assumption of water being incompressible to the modeling errors is analyzed in detail
in Section 4.2.

4. The spindle (IV) equation of motion of the main valve determines the motion of the
main valve’s spindle, which is

Mẍ + Bẋ = ABPc(t)− AT Pz − Ff msgn(ẋ)− Ff low + ALPL − Mg, (5)

when vin > 0 or vin > 0. For a marginally stable valve, as with the one under study,
there is no spring; hence, no term was proportional to x. Ff low is the force exerted by
the flow going from (VIII) to (IX) in Figure 1. An analysis of the flow forces allows for
the term ALPL to appear in the equation. Mg is the force given by the main valve’s
spindle mass. We assume that the Coulomb friction term can be neglected relative
to ABPc(t) and AT Pz due to a difference of 3–5 orders of magnitude when assuming
friction between steel and rubber, i.e., the seal’s material. Furthermore, as we have
values of PL ≪ Pz (cf. scale of Figure 3c,d) and AL ≪ AT (cf. Figure 2), we thus
obtaine ALPL ≪ AT Pz, as well as Mg ≪ AT Pz. The flow forces can be described by

Ff low = ρLKq ẋ + ρLKcPL + K f q(x − xo) + K f c(PL − PLo ) (6)
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which can be obtained after deriving and linearizing with respect to x and PL (see
Equation (4.20) in [11]). The subscript “o” signifies the nominal operating conditions
of the valve. Considering the control volume, as illustrated in Figures 4–21 by dashed
lines and the dimension given in Equation (4.122), both in [11], as well as the operating
conditions of the hydraulic valve under study, we consider Ff low to be negligible
relative to ABPc(t) and AT Pz. This is because there is a difference of two orders of
magnitude. More information about how to derive the expression of the coefficients in
(6) can be found in Chapter 4, more specifically in Sections 4.3 and 4.6, in [11]. Finally,
we obtain the main valve’s spindle equation of motion, which is{

Mẍ + Bẋ = ABPc(t)− AT Pz if vinor vout > 0
ẋ = 0, if vin = vout = 0

. (7)

These equations are valid for x ∈ [0, xmax]. The case of vin(t) = vout(t) = 0 describes
the system when Pc(t) cannot be derived from Equations (3) and (4); see Equation (12).

5. Approximation of Pc in the main valve (X): Since Pc is not measured, it is derived
from Equations (3) and (4). Furthermore, knowing that the pilot valves are identical,
and that vin(t) is applied to all of the coils of pilot valves (I) and vout(t) to (II) (see
Figure 1 and Equation (4)), we obtain

AB ẋ = mQin − nQout, (8)

where Qin = Q1 = · · · = Qm and Qout = Qm+1 = . . . Qm+l . For Qin, we use the
auxiliary function

fin(Pc) =
√
(2/ρ)(PZ − Pc) (9)

and for Qout, we use

fout(Pc) =
√
(2/ρ)(Pc), (10)

which are derived from Equation (3). fin and fout are approximated by a Taylor series
in Pc around the operating point Pc = Pc,0 = AT

AB
Pz, which is the equilibrium point of

Equation (7). By performing this, keeping the linear terms, and substituting these in
Equation (8), we obtain

Pc(t) = Pc,0 + g(vin, vout)×
( fin(Pc,0R1vin(t)− fout(Pc,0)R2vout(t)− AB ẋ),

(11)

where
g(vin, vout) =

1
f ′out(Pc,0)R2vout(t)− f ′in(Pc,0)R1vin(t)

, (12)

In the above, f ′in(Pc,0) is the first derivative of fin(Pc), which is evaluated at Pc,0;
f ′out(Pc,0) is the first derivative of fout; R1 = mcdwin

αinvmax
kinRin

; and R2 = ncdwout
αoutvmax
koutRout

.
6. The input–output system model is obtained by substituting Equation (11) into (7),

where

Mẍ + Bẋ = ABg(vin, vout)×
( fin(Pc,0)R1vin(t)− fout(Pc,0)R2vout(t)− AB ẋ).

(13)

The auxiliary function g(vin, vout) is approximated by a Taylor series in vin(t) and
vout(t) around vin,0 and vout,0, respectively, where vin,0, vout,0 ∈ (0, 1]. We keep the
linear terms and Equation (13) is approximated by

γ1 ẍ + γ2 ẋ = ϕ1vin(t) + ϕ2vout(t) + ϕ3v2
in(t) + ϕ4v2

out(t) + . . .

· · ·+ ϕ5vin(t)vout(t) + ϕ6vin(t)ẋ + ϕ7vout(t)ẋ,
(14)
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where 

γ1 = M
AB

≥ 0

γ2 = B
AB

+ gAB ≥ 0

ϕ1 = g fin(Pc,0)R1 ≥ 0
ϕ2 = −g fout(Pc,0)R2 ≤ 0
ϕ3 = g′vin

(v0, v0) fin(Pc,0)R1 ≤ 0

ϕ4 = −g′vout
(v0, v0) fout(Pc,0)R2 ≥ 0

ϕ5 = g′vout
(v0, v0) fin(Pc,0)R1 − g′vin

(v0, v0) fout(Pc,0)R2 ∈ R
ϕ6 = −g′vin

(v0, v0)AB ≥ 0

ϕ7 = −g′vout
(v0, v0)AB ≥ 0

, (15)

where g = g(v0, v0)− g′vin
(v0, v0)v0 − g′vout

(v0, v0)v0, g′vin
(v0, v0) is the derivative of

g(vin, vout) with respect to vin, and g′vout
(v0, v0) is the derivative of g(vin, vout) with

respect to vout. Indeed, both are evaluated at vin = vout = v0. The sign of each
of the parameters is specified explicitly in Equation (15), and this is performed in
accordance with the physics of the device described in Equations (1)–(13). ϕ5 is
positive or negative depending on AT/AB. Notice that Equation (14) is a non-linear
input–output model and linear in terms of the parameters. The non-linearities are
related to v2

in, v2
out, vin ẋ, and vout ẋ. These terms are obtained from the square root in√

2
ρ (Pi) and the product A(vj)×

√
2
ρ (Pi) in Equation (3).

3.2. Parameter Estimation

The parameters are estimated based on Equation (14). Equation (14) represents a
non-linear system that relates the inputs vin and vout to the output x, and it is also linear in
terms of the parameters. The data acquired by the DAQ were saved in a time-discrete form.
Therefore, Equation (14) needs to be transformed to an equivalent time-discrete version.
When the forward Euler method is used to discretize Equation (14), we obtain

γ1
ẋ[n + 1]− ẋ[n]

T
+ γ2

x[n + 1]− x[n]
T

= ϕ1vin[n] + ϕ2vout[n] + ϕ3v2
in[n] + . . .

· · ·+ ϕ4v2
out[n] + ϕ5vin[n]vout[n] + ϕ6vin[n]

x[n + 1]− x[n]
T

+ ϕ7vout[n]
x[n + 1]− x[n]

T
.

(16)

When ẋ[n] = (x[n + 1]− x[n])/T is applied and similarly for ẋ[n + 1] in Equation (16),
we obtain

x̂[n] = 2x[n − 1]− x[n − 2] + θ⊺u[n] (17)

where x and x̂ are the experimental and model positions of the main valve’s spindle (IV),
respectively [34].

θ =
[
− γ2Ts

γ1

ϕ1T2

γ1xmax

ϕ2T2

γ1xmax

ϕ3T2

γ1xmax

ϕ4T2

γ1xmax

ϕ5T2

γ1xmax

ϕ6Ts
γ1

ϕ7Ts
γ1

]⊺
(18)

and

u[n] =



x[n − 1]− x[n − 2]
vin[n − 2]
vout[n − 2]
v2

in[n − 2]
v2

out[n − 2]
vin[n − 2]vout[n − 2]

vin[n − 2](x[n − 1]− x[n − 2])
vout[n − 2](x[n − 1]− x[n − 2])


. (19)
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We formulate the parameter estimation problem as

θ̂LS = arg minθ
1
N

N

∑
n=1

ε[n; θ]2, (20)

where ε[n; θ] = x[n]− x̂[n; θ], which gives an estimation of θ in Equation (17) by solving(
N

∑
n=1

u[n]u[n]⊺
)

θ̂LS =
N

∑
n=1

u[n]x̄[n] (21)

as a system of linear equations, where x̄[n] = x[n]− 2x[n − 1] + x[n − 2].
Alternatively, the problem of estimating the parameters in Equation (17) can be formu-

lated by accordingly referring to Equation (4.1) in [35] as

min
θ∈R8

1
N

N

∑
n=1

ε[n; θ]2

subject to

θ ≤ 0

(22)

where

θ =
[
θ(1) −θ(1)− 1 −θ(2) θ(3) θ(4) −θ(5) −θ(7) −θ(8)

]⊺, (23)

cf. Equation (18).
The parameter vector in Equation (23) is built from θ in Equation (18) and used in

the mathematical optimization problem defined in Equation (22) to satisfy the standard
form specified by Equation (4.1) in [35] and the physical constraints of the valve defined in
Equation (15). θ̄(1) = θ(1) ≤ 0 and θ̄(2) = −θ(1)− 1 ≤ 0 are defined to obtain two poles
in the discrete pole-zero map related to Equation (17), which is equivalent to a pole in the
origin and a pole in the real left axis of the pole-zero map related to Equation (14). This
is because γ1 ≥ 0 and γ2 ≥ 0 are such in Equation (15), and because there is no x term in
Equation (14). Mathematical optimization problems with a quadratic objective function
and affine constraints are known as quadratic programs (QPs), which comprise a convex
optimization problem class. Therefore, the mathematical optimization problem defined
in Equation (22) is a quadratic program (QP) and can be efficiently solved by iterative
methods, like the interior point method [35]. To solve the optimization problem defined in
Equation (22), we used CVX. CVX, which implements algorithms such as the interior point
method to solve convex optimization problems, is a package for specifying and solving
convex programs [36,37].

We used convex optimization to overcome problems caused by the closed-loop opera-
tion and the signals used in one production cycle. Thus, the excitation signals have a narrow
band at low frequencies and a limited number of amplitudes. A system operating under
feedback control is identifiable under specific conditions. For linear systems, if the feedback
transfer function is persistently excited, then the system is identifiable (see Chapter 10
in [38]). The order of the controller and reference signal should be larger than that of the
system, which was easily met in our case; furthermore, if the PID controller is of order two,
then the system is of order five and the discrete time signal is of order ≥ 30.

3.3. Model Validation

The cross-validation was carried out with the data corresponding to a one-hour pro-
duction after the production from which the data were used to estimate θ in Equation (17).
We checked that the estimated values were in agreement with the physics of the valve de-
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scribed in Equation (15); in addition, we analyzed the residuals, i.e., ε[n; θ̂] = x[n]− x̂[n; θ̂].
The mean squared error (MSE) indicator

MSE =
1
N

N

∑
n=1

(x[n]− x̂[n; θ̂])2 (24)

was computed, where N is the number of samples for the training or validation data sets.
A dimensional analysis of the parameters of Equation (14), as described in Equation (15),
was carried out, and the size of the estimated parameter values were checked to determine
whether they were reasonable for the physical parameters described in Equation (15). We
ended the model validation by computing the relative errors of the estimated parameters
for different error sources [24].

4. Results and Discussion

This section is divided into three subsections: the first reports and analyzes the
estimated parameters of the physical model; in the second, the relative errors of the
estimated parameters for different error sources are computed and analyzed; and in the
last section, the aging of the valve is analyzed over different production cycles.

4.1. Physical Model

Table 1 presents the results of the parameter estimation problem that were defined
in Equations (20) and (22) in order to obtain the input–output system model described in
Equation (17). We carried out three different parameter estimations. The first one was given
by solving the standard least squares problem defined in Equation (20) with Equation (21).
This provides

θ̂1 =
(
θ̂(1) θ̂(2) θ̂(3)

)⊺, (25)

which estimated θ(1), θ(2), and θ(3) in Equation (18). Then, Equation (17) becomes

x̂1[n; θ̂1] = 2x[n − 1]− x[n − 2] + θ̂⊺1 u1[n] (26)

with

u1[n] =
(
u(1) u(2) u(3)

)⊺, (27)

where u(1), u(2), and u(3) are found in Equation (19). In the second case, θ̂2 is obtained by
solving Equation (20) with Equation (21), as in the first case. The difference between the
first and second cases is that, for the second case, we considered certain non-linear terms
as having

x̂2[n; θ̂2] = 2x[n − 1]− x[n − 2] + θ̂⊺2 u2[n], (28)

where

θ̂2 =
(
θ̂(1) θ̂(2) θ̂(3) θ̂(4) θ̂(5)

)⊺, (29)

and

u2[n] =
(
u(1) u(2) u(3) u(4) u(5)

)⊺. (30)

The third and last case correspond to solving Equation (22), which gave θ̂3. Then,
Equation (17) becomes

x̂3[n; θ̂3] = 2x[n − 1]− x[n − 2] + θ̂⊺3 u3[n], (31)
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where

θ̂3 =
(
θ̂(1) θ̂(2) θ̂(3) θ̂(5)

)⊺, (32)

and

u3[n] =
(
u(1) u(2) u(3) u(5)

)⊺. (33)

θ̂(4) and θ̂(8) are not considered in Equation (32) since their absolute values were ≤ 1× 10−6

when solving Equations (22) and (23). θ̂(6), which is the parameter for the cross-term in
v̄in and v̄out, are ignored because during operation, v̄in = 0 when v̄out > 0 and v̄out = 0
when v̄in > 0; see Figure 3b. θ̂(7) is ignored because u(7) is highly correlated with u(1) and
u(2), and the MSE for the training and test data shown in Table 1 do not change when it is
considered. We did not consider higher-order terms in Equations (14) and (15) because their
absolute values were found to be ≤ 1 × 10−6 when solving the mathematical optimization
problem defined in Equations (22) and (23).

Table 1. Estimated parameter values for the input–output system model in (17) and (18). θ̂1 and θ̂2

are least squares estimates, and θ̂3 was obtained by solving the mathematical optimization problem
defined in Equation (22). −1 ≤ θ(1) ≤ 0, θ(2) ≥ 0, θ(3) ≤ 0, θ(4) ≤ 0, and θ(5) ≥ 0 are based on the
physical constraints of the device.

θ Description θ̂1 θ̂2 θ̂3

θ(1) − γ2Ts
γ1

−1.16 −1.24 −0.99

θ(2) ϕ1T2

γ1xmax
1.01 × 10−2 7.04 × 10−3 1.01 × 10−2

θ(3) ϕ2T2

γ1xmax
−4.34 × 10−2 −6.03 × 10−2 −5.61 × 10−2

θ(4) ϕ3T2

γ1xmax
- 6.33 × 10−2 -

θ(5) ϕ4T2

γ1xmax
- 3.37 × 10−2 2.78 × 10−2

MSE training 3.5 × 10−5 3.2 × 10−5 3.6 × 10−5

MSE test 3.8 × 10−5 3.8 × 10−5 4.5 × 10−5

In Table 1, the estimated parameter values obtained for the parameters defined in
Equations (26), (28), and (31) are found. For θ̂1, we have no agreement between θ̂(1) and
the physics of the system defined in Equation (15). From a systems theory perspective, this
parameter value implies that the poles of (17) were z = 1 and z = −0.16, where the last
one relates to a pole with f = 16.67 Hz, which is not possible when looking at Figure 3a,b.
The θ̂(2) and θ̂(3) signs are in agreement with the physics; however, when assuming
that both pilot valves (I) and (II) are equal to each other, there seems to be an anomaly
in the valve. After a discussion with maintenance engineers at the manufacturing plant,
a manual calibration of the springs in the pilot valves was performed after the maintenance
of the valve. In θ̂2, the values of θ̂(1) and θ̂(4) are different in sign than the signs defined
in Equation (15). Considering that the non-linear terms of the input–output model in
Equation (28) increased the conditioning number of

(
∑N

n=1 u1[n]u1[n]⊺
)

by two orders of
magnitude, this could be the reason we obtained these parameter values because of the
poor excitation of the signals (see Figure 3a,b). θ̂3 gives values in agreement with the signs
defined in (15) regarding the physics of the valve. As for θ̂2, there are differences between
the second and third elements of the estimated parameter vector.

Figure 4a shows a comparison between x[n] and x̂3[n], and this is achieved using
validation data, i.e., signals from a different production time than the ones used for esti-
mating θ̂3. x̂3[n] was computed by using Equation (31), where θ̂3, which is described in
Equation (32), had the parameter values shown in the last column of Table 1. This case
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corresponds to a non-linear input-output model with parameters estimated by solving
the convex optimization problem defined in Equations (22) and (23). The signals vin, vout,
and x in Figure 4 show that the valve operated under the same conditions as for the signals
that were used for estimating the parameters (see Figure 3a,b). We can see that x[n] and
x̂3[n] overlapped, and that these results are seen in the error signal (see Figure 4c). There is
a small offset between both signals when the main valve’s spindle was at rest, i.e., between
n = 250 and n = 60 and between n = 650 and n = 850 (Ts = 0.03 s). In addition, the error
signal shows a process that is close to white noise, with a small offset when ẋ ̸= 0. The error
signal seems to have a component with a 0.09 s period, i.e., three samples. The error signal
agrees with the MSE values shown in Table 1. The difference between the error signal when
ẋ > 0 and ẋ < 0 agrees with the difference in the parameter values θ̂(2) and θ̂(3), as for the
difference between θ̂(4), which is negligible, and θ̂(5).

Figure 4. Modeling results with the validation data: (a) the measured output xexp (position of (IV))
and the modeled output x̂3 described in Equation (31) and computed with θ̂3 defined in Equation (32)
with parameter values shown in Table 1; (b) the normalized input signals vin and vout; (c) the error
signal obtained by subtracting x̂3 from xexp.

In addition to analyzing the modeling results with cross-validation and inspecting the
poles, we performed a dimensional analysis and checked the size of the parameter values.
Table 2 shows the units of some of the parameters in Equation (14). These parameter units
can be derived by using Equation (15), and by knowing that fin(Pc) and fout(Pc) have the
units [m · s−1], f

′
in(Pc) and f

′
out(Pc) have the units [m2 · s · kg−1]; g(vin, vout), g

′
vin
(vin, vout),

and g
′
vout

(vin, vout) have the units [m−4 · s−1 · kg]; and R1 and R2 have the units [m2]. The pa-
rameter elements of θ in Equation (18) are dimensionless. The parameter elements of θ̂1, θ̂2,
and θ̂3 in Equation (26), Equation (28), and Equation (31), respectively, are also dimension-
less. This finding agrees with the normalized units of the output x, as well as the inputs
vin and vout. Table 3 shows the values of the valve related to its mechanical, hydraulic,
electronic, and physical dimension characteristics. These values were used to compute
the intervals for the estimated parameter vector θ3 defined in Equation (31). The interval
for the mass of the spindle M was given by maintenance engineers. The damping coef-
ficient B was obtained from the knowledge of the poles of the system, as discussed in
Section 4.1. The physical AB and AT dimensions were obtained from the manufacturer
drawings of similar valves. cd

αvmax
KR w is related to the flow through the pilot valves, and it

was obtained from the manufacturer’s flow graphs. v0 and Pz were selected based on
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the measured signals (see Figure 3). Table 4 shows the computed intervals from the val-
ues and intervals in Table 3, as well as in Equation (4) to Equation (18). We can see that
the obtained parameter values for θ̂3 are within the intervals. In Table 3, the intervals
correspond up to an order of magnitude; furthermore, the interval in Table 3 is up to
three orders of magnitude, which is due the products used to compute the elements of θ3
(see Equations (9), (10), (12), and (15)). The Reynolds number could be calculated as in
Equation (16) in [21] for the device under study, which depends on the volumetric flow,
the orifice area, the spool diameter, and the kinematic viscosity. The spindle diameter is
known from measurements, while the volumetric flow rate and the orifice area of the valve
are known from the manufacturer spreadsheet. Different values of the kinematic viscosity
of water for different temperatures are considered. The Reynolds number was calculated
considering x = 0.28 (see Figure 3a). The computed interval for the Reynolds number of
the main valve, where the flow goes from (VIII) to (IX) (see Figure 1), is from 9 × 105 to
2 × 106. This Reynolds number range indicates that the flow through the valve is likely to
be turbulent since it is greater than 4000. The presence of bends and valves, among others,
promotes turbulent flow in the the hydraulic circuit of the hydraulic systems [11].

Table 2. Units of the parameters in Equation (14).

Parameter Units

γ1 kg · m−2

γ2 kg · m−2 · s−1

ϕ1, ϕ2, ϕ3, ϕ4 kg · m−1 · s−2

Table 3. Ranges for the values of the mechanic, hydraulic, and electronic design parameters of the
studied valve.

M 65–100 kg
B 1000–4500 N · s · m−1

AB 5 × 10−4–5 × 10−3 m2

AT/AB 0.95–0.97
ρ 1000 kg · m−3

xmax 0.8–1 m
cd

αvmax
KR w 0.8 × 10−6–1 × 10−5 m
v0 0.5–0.7
Pz 3 × 107 Pa

Table 4. Estimated parameter values of the elements in θ̂3 (as described in Equation (18)). The pa-
rameter values of the input–output system model in Equation (31) are given in the second column.
The intervals for each element are given in the third column, and they were computed using the
intervals in Table 3.

θ̂3 θ̂3 Interval

θ̂(1) −0.99 (−300)–(−1)

θ̂(2) 1.01 × 10−2 (1 × 10−3)–(1)

θ̂(3) −5.61 × 10−2 (−4)–(−8 × 10−3)

θ̂(5) 2.78 × 10−2 0.01–0.6

4.2. Modeling Errors

The relative errors in the elements of θ̂3 were estimated from the known error sources.
The different sources are listed in the second column of Table 5. First, we explain how the
relative errors were estimated for each error source. Then, we describe the relative errors
obtained from each error source.
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Table 5. Relative errors for each of the elements of the estimated parameter vector θ̂3. The first
column indicates the index of the relative error source. The second column describes the error sources.
The next few columns indicate the elements of ∆θ̂3

θ̂3
. Rows (a) to (c) include the relative errors due to

the presence of offsets in vin, vout, and x, respectively. Rows (d) to (e) include the relative errors due
to the additive white noise in vin, vout, and x, respectively. Row (g) indicates the relative errors due
to the discretization of Equation (13) with the Euler forward method. Row (h) contains the relative
errors due to the approximation of Equations (9) and (10). Row (i) indicates the relative error due to
the approximation of Equation (12). Row (k) gives the relative error due to the assumption that water
was incompressible in Equation (4). The last row indicates the relative errors due to cross-terms from
the previous two approximations.

Description |∆θ̂(1)
θ̂(1)

| |∆θ̂(2)
θ̂(2)

| |∆θ̂(3)
θ̂(3)

| |∆θ̂(5)
θ̂(5)

|

(a) vin + ∆vin 1.0 × 10−6 5.5 × 10−3 1.3 × 10−3 2.7 × 10−2

(b) vout + ∆vout 1.0 × 10−6 1.7 × 10−2 1.6 × 10−2 9.4 × 10−2

(c) x + ∆x 1.0 × 10−6 1.0 × 10−6 1.0 × 10−6 1.0 × 10−6

(d) vin + evin 1.0 × 10−6 1.0 × 10−3 1.2 × 10−3 3.1 × 10−3

(e) vout + evout 1.0 × 10−6 1.7 × 10−4 1.4 × 10−2 3.6 × 10−2

(f) x + ex 1.0 × 10−6 1.7 × 10−3 3.9 × 10−3 1.6 × 10−2

(g) Euler forward method 1.0 × 10−6 1.0 × 10−2 9.0 × 10−2 2.2 × 10−1

(h) Approx. (9) and (10) - 3.0 × 10−2 4.0 × 10−5 4.0 × 10−5

(i) Approx. (12) 1.1 × 10−3 3.0 × 10−6 7.0 × 10−6 2.0 × 10−5

(j) Approx. (9), (10), and (12) - 3.0 × 10−5 1.0 × 10−6 1.0 × 10−6

(k) Compressibility 1.0 × 10−6 1.0 × 10−3 5.7 × 10−2 1.5 × 10−1

Total 1.1 × 10−2 6.5 × 10−2 1.8 × 10−1 5.4 × 10−1

The rows (a), (b), and (c) give the relative errors from the offset in the measured
data in vin, vout, and x. The offset changes between the cycles. The errors in vin were
calculated for a cycle with a negligible offset. Positive and negative offset values of
∆vin ∈ [−0.001, 0.001] were added to vin, and we determined the parameter values θ̂(i)
for i = {1, 2, 3, 5}. A straight line was fitted for each θ̂(i) versus ∆vin. The estimated errors
∆θ(i) were calculated with ∆vin = 0.001, which was the highest offset in the measured
signal vin. The errors due to the offset ∆vout and ∆x were calculated in the same way.

The relative errors from the noise in the measured data in vin, vout, and x are given in
rows (d), (e), and (f). A noise signal with a variance of σ2 ∈ (0, 1 × 10−7] was added to vin,
and we estimated the parameter values θ̂(i) for i = {1, 2, 3, 5}. A straight line was fitted
for each θ̂(i) versus σ2. A σ2 = 1 × 10−10 was used to calculate ∆θ̂(i), which was also the
highest observed σ2 in the measured signals. The errors due to noise in vout and x were
calculated in the same way.

In order to estimate the relative errors from the Euler forward method, as shown in
row (g) in Table 5, a continuous and discrete time model of the system were compared.
The continuous time model uses Equations (14) and (15) with input signals uin and uout as
a combination of ramp and step functions similar to the measured vin and vout, respectively
(see Figure 4b). An analytical output signal was derived by solving the differential Equa-
tion (14) with the conventional Laplace transform method. A discrete-time output signal
was calculated after the discretization of the differential equation by the Euler forward
method (see (14)–(17)). When comparing the discrete-time to the analytical output, an error
signal was obtained. The variance of that signal was determined and used to generate
different realizations of the error signal. These realizations were added to the measured
output signal x, and the parameters θ(i) for i = {1, 2, 3, 5} were identified. ∆θ̂(i) was
determined as the difference from the case with no added error signals.
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The rows (h), (i), and (j) provide the relative errors caused by the approximations
of Equations (9), (10), and (12). The remainder term of a Taylor polynomial of or-
der 2 was estimated for each approximation and included in Equation (14). We used
Pc ∈ [2.8 × 107, 2.9 × 107] Pa based on the ratio of the areas AB and AT , as shown in
Figure 2, to estimate the remainder term of Equations (9) and (10), as well as to calculate
∆θ̂(i) for i = {1, 2, 3, 5} (which is given in row (h)). vin, vout ∈ [0.01, 0.8] were used to
estimate the remainder term of Equation (12), and this was based on the signals in Figure 4b
and the obtained relative errors that are given in row (i). The relative errors from the
product of the remainder term of each approximation included in Equation (14) are given
in row (j).

Row (k) gives the relative errors from the approximation that the fluid was incompress-
ible in Equation (4). The model output obtained from Equation (1) to Equation (19) with
that of a Matlab/Simulink model were compared, which modeled water as compressible
(details are given in Supplementary Materials). An error signal was calculated as the
difference in the model outputs. The mean and variance of that signal were estimated
and used to generate different realizations that were added to the measured output signal
x. The parameters θ(i) for i = {1, 2, 3, 5} were estimated. ∆θ̂(i) were determined as the
difference from the case with no added error signal.

Table 5 provides the relative errors. The relative errors in θ̂(2), θ̂(3), and θ̂(5) are
bigger than that of θ̂(1) from offsets in vin, vout, and x (see rows (a), (b), and (c) in Table 5).
These relative errors could be reduced by decreasing the offset levels in the calibration
process. In rows (d), (e), and (f), the relative errors of θ̂(3) and θ̂(5) are bigger than those of
θ̂(1) and θ̂(2). The sensitivity of the non-linear term and the poor data of vout caused these
relative errors. Sensors with lower additive noise could be used to reduce these relative
errors. Regarding the discretization of Equation (14) (see row (g)), large relative errors
for θ̂(2), θ̂(3), and θ̂(5) were obtained when compared with θ̂(1). These relative errors
came from the fast changes in x relative to the sampling time (0.03 s) at the initial and final
times of the steps in the input signals. One could reduce the sampling time or use more
advanced discretization methods to minimize these relative errors. The relative errors of
θ̂(1) and θ̂(2) are found to be bigger than those of the other elements in θ̂3 for the approxi-
mations of Equations (9), (10), and (12) (see rows (h), (i), and (j)). The approximations of
Equations (9) and (10) could be avoided by having a sensor for Pc(t), as well as by estimat-
ing ẋ (see Equations (8)–(10)). One cannot avoid the approximation of Equation (12) by
using more sensors, but one could collect further informative data to estimate more of the
parameters of the Taylor polynomial that was used in the approximation (see vin and vout in
Figure 4b). The largest relative errors of the elements in θ̂ are due to the incompressibility
approximation. The assumption of water being incompressible could be avoided by having
a sensor for Pc(t) and estimating Ṗc and ẋ. The final row provides the total relative error
of the parameters θ̂(i) for i = {1, 2, 3, 5}. They were calculated as the sum of the relative
errors of θ̂(i) from rows (a) to (k). The largest relative error is θ̂(5), which is the parameter
that described the nonlinear effect of v̄2

out.

4.3. Aging

This section evaluates a potential use of the system model described in Equation (31).
The elements of θ3 in Equation (31) were estimated for different production cycles (see

Equation (22)). The elements of the estimated parameter vectors are denoted as θ̂
(c)
(i),

where c = {1, , 2, . . . , nc} and nc is the total number of cycles.
A linear trend in θ̂(c)(2) for the cycles c ∈ [429, 533] is observed (see Figure 5). We

fitted the linear regression model

θ̂
(c)
R (2) = β̂0 + β̂1c, (34)

where β̂0 and β̂1 are the least square estimators, and θ̂
(c)
R (2) is the estimated θ̂(c)(2) at

cycle c. The confidence intervals of θ̂
(c)
R (2) were calculated using Equation (13.17) in [39],
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and this was achieved by assuming the residuals of Equation (34) were white Gaussian noise.
In addition, we considered a confidence level of 95% by estimating ξ̂c using Equation (13.16)
in [39]. The estimated relative error of 6.5% in θ̂(2) was similar to but slightly smaller
than the 95% intervals shown in Figure 5. Thus, the scattering around the trend line was
explained by the different error sources summarized in Table 5. The trend line reveals the
aging of the valve; see θ̂

(c)
R (2) in Figure 5.

Figure 5. The parameter θ̂(2) vs. cycle. Note the red fitted line plotting Equation (34) and the 95%
confidence interval.

Figure 6 shows the values of the other elements of θ̂
(c) for c ∈ [429, 533]. We can see

that θ̂(c)(1) was constant over the cycles, and that it stays at the limits of the constraints
defined in Section 4.1. The scattering in θ̂(c)(3) and θ̂

(c)
3 (5) shows an increasing trend with

the number of cycles. The estimated parameter values of θ̂(c)(3) are bigger in magnitude
than θ̂(c)(5) for c ∈ [430, 500]. The total estimated errors of θ̂(3) and θ̂(5), as given in Table 5,
describe most of the scattering of the estimated parameters θ̂(c)(3) and θ̂(c)(5), respectively.

Figure 6. The elements of θ̂ vs. cycle. (a) θ̂(1) vs. cycle, (b) θ̂(3) vs. cycle, and (c) θ̂(5) vs. cycle.



Processes 2024, 12, 693 18 of 21

5. Conclusions

An input–output model of a novel two-stage two/two proportional cartridge valve
was derived from a physical model that was based on fluid mechanics, dynamics, and elec-
trical principles. This was possible because of the relative simplicity of the device when
compared with more complex systems, such as machines with multiple components [9].
Therefore, each of the model parameters could be related to the design parameters of the
valve. The main difference from other two-stage cartridge valves was that the valve under
study was marginally stable (cf. [23]). To our knowledge, this was the first time that a
model was derived for a water two-stage proportional cartridge valve with a marginally
stable main valve. Moreover, parameter estimation was performed with data that were
collected in industrial conditions, with the valve operating as a subsystem of a press mill,
and with the valve as the plant as a closed-loop system. Parameter estimation of a pro-
portional cartridge valve model with data collected when the valve was operating as part
of a machine in a manufacturing plant and as part of a closed-loop system has not been
done before.

In this work, we did not use a sensor for Pc(t), which is usually the case in other studies
of similar valves [12,21,23]. This limitation was addressed successfully in the derivation of
the input–output model, which was achieved by using Taylor polynomials. The closed-loop
operation resulted in poor system excitation, which delivered numerical problems when
applying the least squares method. This problem was solved by estimating the parameters
by a convex optimization problem. The constraints of the convex optimization problem
were defined based on the physics of the valve and system knowledge regarding the
poles of the device. An in-depth study of the contributions to the errors of the estimated
parameters from different error sources were carried out.

The identified model of the valve showed that the non-linear terms were not negligible
compared with the linear ones. Thus, a non-linear controller of the valve position could
improve the performance of the closed-loop system compared with a linear controller.
The estimated parameters of the model showed several trends vs. the production cycles.
In particular, the parameter θ(2) of the input–output model in Equation (32) shows a linear
trend in Figure 5 vs. the production cycles. The trend was significant compared with the
estimated model errors and the scattering in the data. Analyses of more data should be
carried out to check whether a prognosis of the valve’s health status could be identified.
In future studies, the developed method could be used to investigate and identify different
failure models of the valve, such as for leakages.
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Nomenclature
The following nomenclatures are used in this manuscript:

(AT) Cross-sectional area of spindle (IV) in contact with fluid in (XI) (m2)
(AB) Cross-sectional area of spindle (IV) in contact with fluid in (X) (m2)
(AL) Cross-sectional area of the spindle (IV) in contact with fluid that goes from (VIII) to (IX) (m2)
(M) Mass of the spindle (IV) (kg)
(Pz) Pressure of the fluid in (VI) and the upper chamber (XI) (Pa)
(PR) Pressure of the fluid in the reservoir (VII) (Pa)
(Pc) Pressure of the fluid in the lower chamber (X) (Pa)
(PL) Pressure of the fluid in (IX) (Pa)
(Qi) Volumetric flow rate of the pilot valves (i = {1, 2, . . . , m + l}) (m3/s)
(vi) Voltage applied to the pilot valve coil (i = {1, 2, . . . , m + l} (normalized)
(vin) Voltage applied to the pilot valve coils in group (I) (normalized)
(vout) Voltage applied to the pilot valve coils in group (II) (normalized)
(x) Position of the main spindle (IV) (normalized)
(g) Gravity g = 9.82 (m/s2)
(t) Time (s)
(m) Number of pilot valves in Group (I)
(l) Number of pilot valves in group (II)
(k) Spring rate of pilot valves in group (I) and (II) (N/m)
(yi) Armature position of valve i (i = {1, 2, . . . , m + l}) (m)
(α) Magnetic coupling coefficient of pilot valves in group (I) and (II) (N/A)
(vmax) Maximum supplied voltage to the pilot valve coil (V)
(R) Resistance of the pilot valve coil (Ω)
(F0) Pre-load force of the spring (N)
(v0) Offset of vi (i = {1, 2, . . . , m + n} (normalized))
(cd) Discharge coefficient
(ρ) Fluid density (kg/m3)
(Pi) Pressure drop of the pilot valves in group (I) and (II) (i = {1, 2, . . . , m + n}) (Pa)
(ẋ) Speed of the spindle (IV) (m/s)
(ẍ) Acceleration of the spindle (IV) (m/s2)
(B) Viscous drag coefficient (N · s/m)
(Ff m) Coulomb friction (N)
(Ff low) Flow force (N)
(Kq) Flow gain coefficient (m2/s)
(Kc) Pressure flow coefficient (m3/(Pa · s))
(K f q) Flow force gain (N/m)
(K f c) Pressure flow force gain (m2)
(xmax) Maximum position of the spindle (IV) (m)
(T) Sampling time (s)
(n) Time (integer)
(N) Number of samples
( f ) Frequency (Hz)
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