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Abstract: Thermoelectric generator (TEG) has important applications in automotive exhaust waste
heat recovery. The Back propagation neural network (BP) can predict the electrical generating
performance of TEG efficiently and accurately due to its advantage of being good at handing nonlinear
data. However, BP algorithm is easy to fall into local optimum, and its training data usually have
deviation since the data are obtained through the simulation software. Both of the problems will
reduce the prediction accuracy. In order to further improve the prediction accuracy of BP algorithm,
we use the genetic algorithm (GA) to optimize BP neural network by selection, crossover, and
mutation operation. Meanwhile, we create a TEG for the heat waste recovery of automotive exhaust
and test 84 groups of experimental data set to train the GA−BP prediction model to avoid the
deviation caused by the simulation software. The results show that the prediction accuracy of
the GA−BP model is better than that of the BP model. For the predicted values of output power
and output voltage, the mean absolute percentage error (MAPE) increased to 2.83% and 2.28%,
respectively, and the mean square error (MSE) is much smaller than the value before optimization,
and the correlation coefficient (R2) of the network model is greater than 0.99.

Keywords: automotive exhaust waste heat recovery; thermoelectric generator; generating performance;
GA−BP

1. Introduction

Environmental pollution and energy shortage are the foremost questions in this era [1].
According to the forecast of the International Energy Agency, by 2050, the proportion of
fossil energy in the power generation will be reduced to 20% [2]. Technologies of clean
energy and energy recovery are urgently required. Automobile is the most widely used
transportation while about 35–40% of the engine energy is discharged into the atmosphere
as the exhaust waste heat [3]. The thermoelectric generator (TEG) can directly convert heat
into electrical energy [4–6]; therefore, it has attracted wide attention on the recovery for
automobile exhaust heat in the world [7–10].

The temperatures of the automobile exhaust pipe wall vary widely at different operat-
ing conditions and positions. The temperatures of the exhaust branch, sub-muffler, and
main muffler are about 480 ◦C, 220 ◦C, and 60 ◦C, respectively [11]. The position around
the sub-muffler is usually chosen as service condition to study TEG since its temperature
matches the working temperature (<300 ◦C) of the bismuth telluride thermoelectric module
(TEM) [12]. The bismuth telluride TEM has been the most widely used due to it having the
best thermoelectric properties (within 300 ◦C temperature aera) and mature technology [13].
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At present, there is more research on the waste heat recovery for the vehicle exhaust
gas using TEG, including the design and optimization of construction, as well as simulation
and numerical calculation of TEG. Ge et al. developed a three-dimensional numerical
simulation method using COMSOL and optimized the design of a segmented thermoelec-
tric generator through multi-objective geneti‘c algorithm [14]. Chen et al. developed a
piecewise thermoelectric generator system utilizing the numerical simulation method of
multi-objective genetic algorithm [15]. F Selimefendigil and H F Öztop have developed
a method that combines computational fluid dynamics (CFD) with neural networks to
predict the generation performance of thermoelectric generators in bifurcated channels.
By utilizing hybrid modes, the time required to obtain system output performance has
been reduced from 6 h using CFD simulation alone to just 3 min, effectively improving
the prediction efficiency of the model [16]. Based on the finite element data set, Wang et al.
utilized deep learning (DL) to predict and optimize the performance of a thermoelectric
generator. By optimizing 25 key features such as the geometry of the thermoelectric leg
and external load resistance, they achieved a remarkable 182% increase in output power
for the module [17]. Zhu et al. utilized a training set of 5000 3-D finite element simulation
data sets for neural network training, which was combined with genetic algorithm. The
resulting model demonstrated a prediction accuracy of 98% and achieved precise geometric
design and optimization of thermoelectric conversion devices in just 40 s. This is over
1000 times faster than the traditional finite element method [18]. Ang et al. employed an
artificial neural network to predict the output voltage of a thermoelectric module under
varying structural parameters and working conditions, achieving an error rate of only
0.3% between the ANN-generated output voltage and measured values [19]. Kim has
developed Python code that utilizes neural networks to accurately predict the performance
of thermoelectric generators in diesel engine thermoelectric generation systems, with a
margin of error of only 3% between predicted and actual values. These findings highlight
the potential for neural networks to be utilized in the field of thermoelectric generators [20].
In the numerical calculation, the backpropagation (BP) neural network prediction model
has significant application in the performance predication of TEG [21,22] because it is
suitable for nonlinear data processing [23,24] like the electrical generation performance
of TEG. However, research about BP algorithm of TEG have two problems that it needs
to optimize. Firstly, BP algorithm itself is prone to the drawbacks of low efficiency, local
optima and prolonged convergence time [25]. Secondly, the data set used for training
BP model is usually obtained through some finite element simulation software, such as
COMSOL and ANASYS; however, the data set is generally inaccurate compared with the
results of the experiment [26,27] because the simulation process requires the specification
of boundary conditions and simplification of physical property parameters for materials.

We use genetic algorithms (GA) to improve the accuracy of BP model by varying
weights because GA can obtain the optimal solution by adjusting the search direction
adaptively and do not need strict rules and constraints [28,29]. In addition, we design and
build a TEG for the recovery of the automotive exhaust waste heat using experimental
data to train the GA−BP model for circumventing the parameter deviation caused by
the simulation software. The GA−BP prediction model is established based on MATLAB
software platform. We compare the deviation between the prediction and experiment
values of BP and GA−BP to display the improvement effect of GA−BP algorithm on the
prediction accuracy.

2. TEG and Experiment Plat

A TEG is designed and produced for waste heat recovery of vehicle exhaust. The TEG
can be placed around the sub-muffler in the practical application. Figure 1a shows the
structure diagram of the TEG, including hot and cold ends, TEMs, and fasten structure.
Following the principle of not affecting the engine, the hot end is designed as a six square
steel tube to collect the heat (Figure 1b). Furthermore, the tube structure also has good space
compatibility with the exhaust pipe. Four preformed holes for the sensors are designed to
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monitor the exhaust parameters, such as temperature and velocity of exhaust gas, in real
time.
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Figure 1. Structure diagram of TEG (a) and the heat collection tube (b). (c) Image of TEG.

The size of every surface of the tube collector is 40 mm × 400 mm and the inner
diameter of the tube is 70 mm. The cold ends use the cooling water plates connected
to a constant temperature water tank. The size of the cooling water plates is consistent
with the hot end. The TEMs are bismuth-telluride-based devices with a Π shape (126 pair
thermoelectric legs) and the size is 25 mm × 25 mm × 3.5 mm. A total of sixty TEMs
are assembled on the six hot surfaces (ten TEMs per surface). All the TEMs have serial
connection to acquire the best generating performance [2]. The surface of the TEMs is
coated with silicone grease to reduce thermal contact resistance. A fasten structure is
designed to further improve the heat transfer efficiency by exerting pressure. The fasten
structure consists of fasten plates and screws. Pressure is exerted by tightening screws and
evened by the steel plates. Figure 1c presents the image of the assembled TEG.

To evaluate the generating performance of the fabricated TEG, an experimental plat-
form is set up, as shown in Figure 2. Tube collector wall temperature was maintained from
100 to 220 ◦C. temperature of the sub-muffler) by three heating rods in the middle. The
inlet temperature refers to the temperature of the automatic coolant, which is about 30 to
80 ◦C [10]. An HWS-26 electric thermostat water bath is utilized to offer cooling water
for the TEG with a range of 5~99 ◦C. A water pump is set to adjust the flow velocity; a
PE tube Hall liquid flow meter is used to measure the velocity of cooling water within
a range of 0.5–4.5 L/min. Some thermocouples are placed on the pipe wall and cooling
water plate, and a TP700 multi-channel data logger is used to monitor the temperature of
the hot and cold ends of the TEG at different experiment conditions. A DC electronic load
meter (IT8512B+, with a maximum range of 500 V/15 A/300 W) is used for testing the
open circuit voltage, electric current, and output power. The specific physical map shows
Supplementary Information.
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Figure 2. Schematic of Experimental system: 1. Constant temperature water tank; 2. Water pump;
3. Flowmeter; 4. Water valve; 5. Cooling water cooling plate; 6. TEM; 7. Tube Collector; 8. Thermocouple;
9. Heating rods; 10. Amperemeter. 11. Switch; 12. Voltmeter; 13. Electronic load tester.

3. Experiment Results and Discussion

The temperatures of the pipe wall (Th) and the inlet water (Tc) are the key parameters
for TEG, determining the temperature difference (∆T) established on the two ends of TEM.
Figure 3 presents the open circuit voltage (OV) and output power (OP) of the fabricated
TEG at different Th and Tc in the form of 3D-surface diagram. The results are obtained
based on the experiment condition of a matrix of Th (100 ◦C, 120 ◦C, 140 ◦C, 160 ◦C, 180 ◦C,
200 ◦C, 220 ◦C) and Tc (35 ◦C, 50 ◦C, 65 ◦C, 80 ◦C). The water velocity (vw) is 1.2 L/min.
The results are shown in Figure 3a, OV increases with rising Th and decreasing Tc due to
the increasing ∆T on both ends of TEM. When Th and Tc are 220 ◦C and 35 ◦C, OV reaches
331.56 V. OP is calculated according to the formula of maximum output power, as shown
in Formula (1).
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Figure 3. The open circuit voltage (a) and output power (b) of the TEG at different pipe wall and
cooling water temperature.

When the internal resistance (Rin) of the TEG is equal to the load resistance (RL), OP of
the power supply will be up to the maximum. Rin can be obtained by the Formula (2).

OP =
OV2

4Rin
(1)
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Rin =
OV

I
− RL (2)

where I is the electric current corresponding to RL and it can be tested by an amperemeter.
OP is also increasing with ∆T rising, and it reaches a maximum of 79.6 W when Th and Tc
are 220 ◦C and 35 ◦C, respectively.

Besides ∆T, the water velocity (vw) is also an influence factor for the TEG generating
performance. Figure 4 presents OV and OP of TEG at different Th (100 ◦C, 120 ◦C, 140 ◦C,
160 ◦C, 180 ◦C, 200 ◦C, 220 ◦C) and vw (1.2 L/min, 2.1 L/min, 3.0 L/min); Tc is set as a fixed
value of 35 ◦C. With the increase of Th, the temperature difference between the ends of TEM
ends becomes bigger, leading to a corresponding rise in OV and OP, and the corresponding
OV and OP also increase. When the flow rate of cooling water is increased, more heat is
dissipated from the cold end, resulting in a greater temperature difference and an increase
in both OV and OP. OV and OP both show a rising trend with the increase in Th and vw
since the faster water velocity can take away more heat and establish a lager temperature
difference. OV and OP reach the maximum value of 346.8 V and 87.3 W when Th is 220 ◦C,
Tc is 35 ◦C and vw is 3.0 L/min.
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Figure 4. The open circuit voltage (a) and output power (b) of TEG at different pipe-wall temperature
and water velocity.

We collect 84 groups of experiment data of TEG at different work conditions. 60 groups
of data are used to train the BP and GA−BP models, and the other 24 groups of data are
used to verify the prediction results of the two algorithms. The experiment data is shown
in Table 1.

Table 1. Experimental data for training the GA−BP model.

Tc Th vw OV OP Tc Th vw OV OP

35 100 1.2 143.52 23.48 65 100 1.2 88.80 12.50

35 100 2.1 149.82 25.20 65 100 2.1 91.80 13.38

35 100 3.0 152.34 26.21 65 100 3.0 92.82 14.16

35 120 1.2 181.50 32.18 65 120 1.2 125.34 18.08

35 120 2.1 186.24 33.70 65 120 2.1 130.02 19.50

35 120 3.0 190.02 34.98 65 120 3.0 131.82 20.46

35 140 1.2 209.52 38.78 65 140 1.2 162.42 25.64

35 140 2.1 211.02 40.04 65 140 2.1 168.84 28.02

35 140 3.0 217.68 42.00 65 140 3.0 171.54 29.28
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Table 1. Cont.

Tc Th vw OV OP Tc Th vw OV OP

35 160 1.2 240.30 48.56 65 160 1.2 202.26 35.86

35 160 2.1 250.56 51.78 65 160 2.1 208.20 37.50

35 160 3.0 253.02 53.42 65 160 3.0 211.74 39.54

35 180 1.2 273.12 58.76 65 180 1.2 239.04 44.42

35 180 2.1 281.16 62.22 65 180 2.1 245.28 47.04

35 180 3.0 287.58 65.22 65 180 3.0 249.96 49.20

35 200 1.2 306.84 70.58 65 200 1.2 275.70 56.12

35 200 2.1 311.70 72.96 65 200 2.1 287.46 60.18

35 200 3.0 317.22 75.66 65 200 3.0 293.28 65.78

35 220 1.2 331.56 79.60 65 220 1.2 314.88 70.76

35 220 2.1 337.32 82.56 65 220 2.1 323.40 73.56

35 220 3.0 346.80 87.36 65 220 3.0 328.62 76.44

50 100 1.2 112.50 15.75 80 100 1.2 66.06 9.20

50 100 2.1 113.94 17.05 80 100 2.1 67.32 10.30

50 100 3.0 114.84 18.47 80 100 3.0 69.18 11.28

50 120 1.2 143.88 21.56 80 120 1.2 107.40 14.42

50 120 2.1 144.60 22.92 80 120 2.1 111.42 15.60

50 120 3.0 145.38 24.36 80 120 3.0 112.38 16.74

50 140 1.2 175.62 28.33 80 140 1.2 134.52 18.98

50 140 2.1 177.96 29.70 80 140 2.1 138.00 20.10

50 140 3.0 179.22 31.08 80 140 3.0 140.64 21.42

50 160 1.2 213.66 38.12 80 160 1.2 185.40 30.08

50 160 2.1 216.54 39.17 80 160 2.1 190.14 31.68

50 160 3.0 218.88 40.58 80 160 3.0 193.68 33.30

50 180 1.2 252.00 47.24 80 180 1.2 222.06 39.86

50 180 2.1 261.06 49.82 80 180 2.1 231.30 43.44

50 180 3.0 267.60 53.76 80 180 3.0 233.82 44.94

50 200 1.2 291.60 61.52 80 200 1.2 258.90 52.32

50 200 2.1 295.32 64.02 80 200 2.1 265.92 55.02

50 200 3.0 303.06 67.92 80 200 3.0 271.68 56.58

50 220 1.2 326.88 74.00 80 220 1.2 309.12 62.84

50 220 2.1 334.08 77.58 80 220 2.1 317.64 65.98

50 220 3.0 341.28 81.42 80 220 3.0 325.26 67.87

4. BP Network Model Build and Optimize

A BP neural network is built to predict the electrical generation performance of the
fabricated TEG under different work conditions. BP neural network has a clear learning
mechanism: signal forward propagation, error reverse transmission, memory training, and
learning convergence process.

The network consists of three layers: input layer (I), implicit layer (H), and output
layer (O). The layers are connected by several nodes whose states are represented by means
of weights. The input layers are Th, Tc, vw, and the output layers are OV and OP. Figure 5
shows the training process of BP neural networks. First, information enters the hidden
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layer after being processed by the activation function from the input layer and then reaches
the output layer after being processed by the same operation. Each neural node in the
network is only affected by the node state of the upper layer. Usually, the output value
obtained will produce an error from the actual value. Second, information enters the error
reverse transmission stage. The error signals which do not meet the accuracy requirements,
or reach the set number of iterations, will be transmitted from the output end to the input
end. Meanwhile, the error value is distributed to each unit, the weight and the threshold
between nodes of each layer are adjusted. After many forward and reverse transmission
and learning processes, the expectant network output value is obtained though constantly
adjusting and updating the weight and threshold of BP neural network. Thus, the learning
process is ended.
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Specific process of BP neural network modeling.
Step 1: Sample data acquisition and normalization processing. Due to different

evaluation indicators, there are different dimensional units and dimensions, which will
seriously affect the results of data analysis [30]. Therefore, it is necessary to standardize the
data before using machine learning to analyze. Then the data analysis process is carried
out with the standardized data. Commonly used bounds are [0, 1] or [−1, 1].

Step 2: The number of hidden layers and its nodes. The number of hidden layers and
its nodes have great influence on the prediction accuracy of BP neural network. The excess
layers will increase the computational amount and lead to a fall into the local optimum.
In this work, we choose a single hidden layer considering synthetically. A small number
of nodes would lead to insufficient network learning and weak training accuracy. On the
other hand, a large number of nodes may cause over-fit. Thus, we use empirical formula
(Equation (3)) to confirm the number of hidden layer nodes [31].

h =
√

m + n + a (3)

where h is the number of the nodes in the hidden layer. m is the number of the input
eigenvalues. n is the number of the output kind. The constant a is between 1 and 10. h
is determined through comparing the testing error under different nodes numbers in the
network training. The nodes number is confirmed as 6 at last (calculating results as shown
in Figure 6), and the network structure is 3-6-2.
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Step 3: The selection of the initial weight value, threshold value, and activation
function. The input, hidden, and output layers have nodes i, k, and j (constants), respectively.
The weights between the hidden, input, and output layers are defined as wik and wkj. wik,
wkj and the threshold value b all use acquiescent values. Activation function adopts a
Sigmoid function with good differentiability and monotonicity (S function, as shown
below).

f (x) =
1

1 + e−x x ∈ (−∞,+∞) (4)

Activation function f is designed to add nonlinear factors for better treating the
nonlinear TEG parameters. In addition, the learning rate and momentum factor are both
0.01, the minimum error of training target is 10−5, the training number is 1000 times.

Step 4: Signal transmission course from input layer to hidden layer. netk is the weight
summation of the input variate at k node in hidden layer. The hidden layer output Yk is
calculated according to the input training sample xi, wik, and bk (Equation (6)).

netk =
m

∑
i=1

wik·xi + bk (5)

Yk = f (netk) k = 1, 2, 3, · · · (6)

Step 5: Signal transmission course from hidden layer to output layer. netj is the weight
summation of the input variate at j node in output layer. The prediction output Yj is
obtained according to Yk, wkj, and bj.

netj =
h

∑
k=1

wkj·Yk + bj (7)

Yj = f
(
netj

)
j = 1, 2, 3, · · · (8)

Step 6: Calculation error. The error ej of j node in the output layer is obtained according
to the prediction output value Yj and the actual value Sj in the backward propagation
process. ej = Sj −Yj, and E is the error function.

E(w, b) =
1
2

n

∑
j=1

e2
j (9)
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Step 7: The errors of the weight wkj and threshold value bj are updated as4wkj and
4bj, as shown in follows: [

4wkj
4bj

]
= −α

[ ∂E
∂wkj
∂E
∂bj

]
(10)

α is the learning rate. The weights and threshold values of every layer can be calculated by
the following method. [ ∂E

∂wkj
∂E
∂bj

]
=

∂E
∂ej
·

∂ej

∂Yj
·

∂Yj

∂netj
·

 ∂netj
∂wkj
∂netj
∂bj

 (11)

After the abovementioned steps, we use the sample data to iterative learning, training,
and testing.

5. GA Optimizing BP

In engineering applications, BP neural network has difficulty finding the global opti-
mal solution because of random initial weights and thresholds while genetic algorithm (GA)
has high efficiency and excellent stability, so it is regarded as an effective solution. GA is a
computer simulation based on the law of “natural selection, survival of the fittest” in nature
and its global random search and optimization method is obtained through the simulation
of biological evolution. The four basic elements of GA algorithm are chromosome coding
mode, genetic operation mode, fitness function selection, and operation parameter setting.

We use genetic algorithm to optimize BP algorithm (GA−BP). This mainly consists of
three parts: first, determine the BP network; second, optimize the weight and threshold
of the network by using genetic algorithm; third, network model training and prediction.
In other words, the model structure is determined and remained based on the BP neural
network. That is to say, the stability and efficiency of the process for searching the global
optimal solution is enhanced through selection, crossover, and mutation operations, and
then the optimization of the weight coefficient and threshold value is achieved [32]. The
basic flow chart of GA optimization BP algorithm is shown in Figure 7.
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Step 1: Population initialization. The weights and threshold value of BP neural
network are coded based on the real coding. The chromosome length of the weight part
and threshold part are m × h + n × h and m + n, respectively. m, h, n are the numbers of the
input nodes, hidden layer nodes, and output nodes, respectively.

Step 2: Establishment of the fitness function. The fitness function (Equation (9))
represents the sum of the absolute errors between the value of the network output and
actual experiment. It can distinguish the quality of the individuals in the group.

F = k

(
n

∑
i=1
|Yi − Si|

)
(12)

where n is the number of output nodes, Yi and Si are the predicted value and the actual
value of the i node, and k is the coefficient.

Step 3: Selection operation. The high-fitness individuals will be selected and form a
new population through the gambling method.

pi =
k fi

Fi∑N
j=1 f j

(13)

where Fi is the individual fitness, N is the number of population individuals, and pi is the
probability that an individual can be selected.

Step 4: Crossover operation. The real number crossover method is selected because
the individuals are encoded by real numbers. Two individuals are randomly selected from
the population to perform chromosome crossover for approximating optimal solutions.
The crossover operation method of j position for k chromosome Ak and l chromosome Al is
as shown in Equation (14). b is a random number between 0 and 1.[

Akj
Al j

]
=

[
Akj Al j
Al j Akj

][
1− b

b

]
(14)

Step 5: Mutation operation. A better individual will be produced in this process by
variation on a point of a selected individual. The operation of j gene Aij of i individual is as
follows:

Aij =

{
Aij +

(
Aij − Amax

)
·f(g)r ≥ 0.5

Aij +
(

Amin − Aij
)
·f(g)r < 0.5

(15)

where Amax is the upper bound of gene Aij, Amin is the lower bound of the gene Aij,
f (g) = r2 × (1 − g/Gmax)2, r2 is a random number, g is the current iteration number, Gmax is
the maximum evolution algebra, r is a random number between [0, 1]. In this paper, the
initial population size is set as 30, the maximum evolutionary algebra as 100, the crossover
probability Pc as 0.8, and the mutation probability Pm as 0.2.

6. Result and Discussion

In the modeling process, the mean square error (MSE) and mean absolute percentage
error (MAPE) are usually used to evaluate the accuracy of the prediction model [33]. MSE
can express the degree of deviation of the prediction value and experiment value. MAPE
can express the percentage error of prediction results. R2 can express the correlation
coefficient of the network model

MSE =
1
n

N

∑
i=1

(
yi − y′i)

2 (16)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − y′i
y′i

∣∣∣∣× 100% (17)



Processes 2023, 11, 1498 11 of 15

R2 = 1− ∑N
i=1
(
yi − y′i)

2

∑N
i=1

(
yi −

−
y i)

2
(18)

In the formulas above, N is the number of the test samples, yi is the actual measured

value, y′i is the predicted value of the network model, and
−
y i is the average of the actual

measured values.
Figure 8 shows the iterative process of the GA−BP network. Results display that the

fitness value of the optimal individual is the smallest when the iteration is about 58 times.
After this process, the optimal weight and threshold are obtained and assigned to BP neural
network. Figure 9 shows the convergence process of the GA−BP network. After 25 times
of training, the minimum value of MSE is 0.00076, the model does not appear overfitting,
and the network reaches the convergence condition.
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Figure 9. Convergence process of the GA−BP network.

The trained and optimized results are shown in Figure 10 through a multivariate
regression analysis. The correlation coefficients R2 values of the training, validation, test,
and all data all exceed 0.99469, and the training R2 value is up to 0.99915. These indicate
that the results predicted by GA−BP model are very close to the sample data, and we
obtain a reliable model.
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The results of MSE and MAPE for the GA−BP prediction model are shown in Table 2.
The prediction accuracy of GA−BP is much higher than that of BP algorithm. The MAPE
can reach 2.28% (for OV) and 2.83% (for OP). The MSE are 21.36 and 1.27 for OV and OP.
The assessment results further prove that the built GA−BP prediction model is reliable.

Table 2. Results of the evaluation of prediction.

Category MSE MAPE

OV
BP 187.85 8.50%

GA−BP 21.36 2.28%

OP
BP 84.19 25.79%

GA−BP 1.27 2.83%

For understanding the prediction accuracy of the prediction model directly, the results
of BP, GA−BP, and 24 groups of experiment data are shown in Figure 11. GA−BP model
has better prediction performance compared with the BP model. Furthermore, the GA−BP
model can accurately fit the OV and OP of the experiment data for the prepared TEG. The
generating performance of the TEG can be accurately predicted by the GA−BP estimated
in one second.
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7. Conclusions

In this paper, a BP network prediction model is optimized by GA to improve the accu-
racy of predicting the electrical generating performance of the constructed thermoelectric
generator. An experiment training dataset consisting of 84 groups is obtained to optimize
the BP and GA−BP models. Of these, 60 groups are used for training the prediction model
while the remaining 24 groups are utilized to verify the accuracy of GA−BP predictions.
Based on the experimental results, the maximum open-circuit voltage and output power are
achieved at 346.8 V and 87.3 W, respectively, when the hot end temperature is maintained at
220 ◦C, cold end temperature at 35 ◦C, and cooling water velocity at 3.0 L/min. The GA−BP
model achieves a correlation coefficient R2 exceeding 0.995 after training and optimization,
resulting in a significantly improved prediction accuracy compared to the BP algorithm.
The MAPE values for the OV and OP output parameters have significantly decreased to
2.28% and 2.83%, respectively, compared to the pre-optimization values of 8.5% and 25.79%,
respectively. The MSE values for OV and OP are initially at 187.85 and 84.19 but have
been reduced to only 21.36 and 1.27 after optimization, resulting in a significant decrease
in error. The results collectively demonstrate that the GA−BP prediction model is highly
accurate and possesses significant potential for application in TEG systems designed for
vehicle exhaust waste heat recovery. Looking forward, the demand for fast and reliable
TEG prediction models with exceptional performance is increasing as TEG technology
continues to spread. This study can provide an experimental and theoretical basis for TEG
design and numerical simulation.
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