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Abstract: In this paper, a 100 kW radial inflow turbine is designed for an ocean thermal energy
conversion (OTEC) power plant based on the organic Rankine cycle (ORC) with ammonia as the
working fluid. Based on one-dimensional (1D) and three-dimensional computational fluid dynamics
(3D-CFD) modeling, the mechanical structure design, static and modal analyses of the turbine and its
components are carried out to investigate its mechanical performance. The results show the stress
and strain distribution in the volute, stator and rotor, and their maximum values appear, respectively,
at the inlet cutout, the tip of the stator outlet and the connection position between the rotor and the
shaft. After optimization, all the stresses in the above components are below the allowable values.
The frequencies from the first order to the sixth order of the rotor and whole turbine were obtained
through modal analysis without prestress and under prestress. The maximum frequency of the
rotor and whole turbine is 707.75 Hz and 40.22 Hz, both of which are far away from the resonance
frequency range that can avoid resonance. Therefore, the structure of the designed turbine is safe,
feasible and reliable so as to better guide actual production.

Keywords: ocean thermal energy conversion; radial turbine; static analysis; structural design;
modal analysis

1. Introduction

The ocean has a large number of untapped resources, such as ocean thermal energy
(OTE), wave energy, tidal energy and water resources [1]. Exploring ocean energy has
become an effective way to solve the energy crisis and achieve sustainable development [2].
The ocean is the largest solar energy utilization device on Earth, absorbing solar energy
that far exceeds human energy consumption. The Earth receives enough energy from the
sun every year to supply its needs [1]. Ocean thermal energy conversion (OTEC) utilizes
the temperature difference between warm surface seawater and deep cold seawater as the
heat source to realize the utilization of ocean thermal energy [3], possessing the advantages
of huge reserves [4], continuous stability, natural cleaning and other characteristics [5,6],
with a power generation potential of about 150 million kW [7]. Compared with other ocean
clean energy sources, OTE is considered to be the worthiest due to its advantages in terms
of high energy density and small power generation fluctuations.

The power generation equipment of an OTEC plant is a turbine, and they can be
mainly divided into two categories: axial turbines and radial turbines. Ammonia was the
earliest working fluid used and is still the most common in OTEC-ORC systems due to
its advantages in terms of its good economy, large unit refrigeration capacity and high
heat release coefficient [8–10]. In OTEC systems, the available temperature difference is
small [11], limiting the power output and efficiency. Therefore, a radial inflow turbine
is generally used in OTEC systems due to its simple structure, good economy, and high
efficiency. In order to improve the actual turbine performance under the conditions of low
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temperature and pressure, the structural design and optimization of an OTEC radial inflow
turbine should be studied.

Some researchers have conducted 1D design [12–15], 3D-CFD simulation [16–18] and
other analyses. Nithesh et al. [19] adopted a comprehensive 1D meanline design method
for a radial inflow turbine with a 2 kW output power and found that blade edge filleting
is very important to improve blade performance. Kim et al. [20] studied and proposed
a new method for the appropriate selection of the mass flow rate and loading coefficient
and carried out meanline analysis and three-dimensional viscosity simulations in order to
verify whether the proposed method can optimize the design of a radial inflow turbine.
Nithesh et al. [21] designed a 2 kW radial inflow turbine for OTEC closed-cycle using
R22 as the working fluid and conducted a three-dimensional simulation to analyze the
importance of blade number and fillet. Wu et al. [22] optimized the design of the dual-
pressure steam turbine in the OTEC system based on structural theory. Compared with
the initial design point, the total output of the turbine after primary, secondary and third
structural optimization increased by 0.69%, 1.82% and 2.02%, respectively. However, these
researchers only focused on the analysis and optimization through 3D-CFD simulation for
radial turbines, lacking structural design and analysis.

Many scholars have verified the simulation results by conducting experiments. How-
ever, their research focused more on building experimental platforms and compared the
power output or isentropic efficiency. Structure design analysis and verification for tur-
bines are scarcely carried out. Uusitalo et al. [23] experimentally investigated a small-scale
high-temperature ORC, in which the turbine was discovered as having an identical value
between the system design value and the mechanical power output of about 6 kW. Weiß
et al. [24] designed two small-scale turbines, an axial impulse turbine and a radial cantilever
turbine, with a maximum power output of about 12 kW, which had isentropic efficiencies
of 73.45% and 76.8%, as experimented on in the ORC test bed. Although the structure
and modal analysis [25] of gas turbines can be of significance in terms of reference, the
operating conditions of high temperatures and pressures [26] are totally different from
those of OTEC-ORC turbines. In addition, the blades of gas turbines are usually made of
stainless steel from 12 Cr and Ti-6Al-4V [26], which is not compatible with the working
scenarios of OTEC-ORC turbines.

From the above literature investigation, it can be found that the research on turbines
mostly focuses on CFD simulation and optimization. There are few studies on the structural
design and analysis, especially for OTEC-ORC turbines, which operate at low temperature
and pressure and are necessary to meet the efficient, feasible and reliable requirements.
Therefore, based on the 1D design and 3D CFD optimization of a 100 kW radial inflow
turbine in the OTEC-ORC cycle using ammonia as the working fluid, the mechanical
structure and modal analysis as well as stress and strain analysis on the key components
and the whole turbine are carried out to ensure the safety, reliability and processability so
as to better match the actual production needs and provide guidance for the research of
OTEC radial inflow turbines.

2. Aerodynamic Parameter Calculation Based on 1D Design and 3D-CFD Simulation

The meridian plane diagram and the rotor velocity triangles are shown in Figure 1.
The 3D-CFD model of the turbine is shown in Figure 2. Mesh software is employed for
the volute and diffuser to create tetrahedral mesh, and TurboGrid 19.2 software with ATM
(Automatic Topology and Mesh) is used for the nozzle and rotor to create hexahedral mesh
with the schematic diagram shown in Figure 3. The number of grid nodes for this design is
selected as 1.6 × 106 after a mesh independence test. The calculated thermodynamic and
structural parameters are shown in Table 1.
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Figure 3. Mesh diagram.

Steady-state, viscous flow simulation is performed using software CFX. The cubic
equation of state by Peng–Robinson is used to calculate the thermodynamic parameters of
the expansion process of the working fluid ammonia inside the turbine. Since the Reynolds
number of the working fluid in the turbine is much greater than 105, the standard k-ε
equation is used to solve the three-dimensional flow problem inside the turbine. The
convection scheme of the momentum equation adopts high resolution, and the transport
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equation adopts the first order. Because there is no mass transfer or change in chemical
composition during the solution process, the energy equation is not considered. The
convergence criterion is set as 10−6 for the residual target.

Table 1. Main parameters of the designed radial turbine.

Parameters Units Value Parameters Units Value

Mwf kg/s 4.09 Dr,shroud m 0.208
P kW 100 ψ – 0.85

Tturb,in
◦C 24 ϕ – 0.95

pturb,in bar 7.3 Dn,in mm 476.4
Tturb,out

◦C 11.37 Dr,in mm 415.8
pturb,out bar 6.0 Dn,out mm 417.8

D – 0.366 Dr,shroud mm 209.5
α1

◦ 13◦ Dr,hub mm 48
β2

◦ 60◦ Ld mm 257.8
Ω – 0.437 Lr,x mm 145.8

c2ss m/s 148.01 n rpm 7000
c1 m/s 157.79 Nr – 15
u1 m/s 153.18 Nn – 32
w1 m/s 35.5 ηt,isen % 89.4
c2 m/s 32.37 ζf % 4.0%
u2 m/s 56.06 ζl % 2.0%
w2 m/s 64.74 ζf % 1.63%

3. Turbine Structural Design

The assembly of the turbine consists of four parts, namely the volute, stator, rotor
and diffuser. This section conducts structural design, strength verification, connection and
sealing design for these four parts.

3.1. Structural Design of Shaft

Torque is mainly transmitted through shafts when a rotor operates. Fatigue fracture is
one of the main failure modes of shafts and tends to occur in places with smaller diameters.
When the turbine operates, the main load is torque, and there is no external bending
moment. Therefore, only the effect of torque is considered during design and verification.

The torsional strength should meet the requirements of Equation (1) [27].

τT =
T

WT
=

9.55 × 106P
0.2d3n

≤ [τT] (1)

Wherein, τT (MPa), T (N·mm), and WT (mm3) are the torsional shear stress, torque on
the shaft and torsional section coefficient, respectively. n (rpm), P (kW) and d (mm) are the
shaft rotational speed, shaft power and the diameter of the shaft section. [τT] (MPa) is the
allowable torsional shear stress.

The allowable torsional shear stress of AISI 1045 steel, the material of the shaft, is
35 MPa [28]. Therefore, the minimum diameter is calculated to be 26.91 mm and then
rounded to 30 mm. As shown in Figure 4, a stepped shaft is used in the rotor structure, con-
sisting of diameters of Φ30, Φ45, Φ50, Φ60, and Φ70, respectively, and their corresponding
lengths are 28 mm, 25 mm, 123 mm, 34 mm, and 60 mm. The ends of the shaft also need to
be chamfered to facilitate assembly and deburring.
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The torsional stiffness of the shaft is checked according to Equation (2) [27].

ϕT = 5.73 × 104 1
LG

z

∑
i=1

Tili
Ipi

≤ [ϕT] (2)

Ip =
πd4

32
(3)

where ϕT (◦/mm), G (MPa) and Ip (mm4) are the torsion angle, the shear elastic modulus of
the shaft material and the polar moment of inertia of the shaft section, respectively. L(mm)
is the length of the stepped shaft subjected to torque. Ti, li and Ipi are the torque, length
and polar moment of inertia on the i-th segment of the stepped shaft, respectively. z is the
number of shaft segments on which the stepped shaft is subjected to torque. [ϕT] (◦/mm)
is the allowable torsion angle of the circular shaft.

The calculated value of ϕT is 0.0014◦/mm, less than 0.5◦/mm, which is the allowable
circular shaft torsion angle of the precision transmission shaft. In addition to ensuring the
torsional strength and rigidity, the shaft adopts mechanical sealing to effectively ensure the
air tightness and achieve long reliable operation.

3.2. Calculation and Selection of the Bearing

As shown in Figure 5, it is a 3D assembly model of the turbine placed vertically. The
bearing is required to not only bear radial load but also a certain axial load. Therefore,
angular contact ball bearings S7312AC and S7309AC are employed according to the size of
the shaft diameter. The contact angles of S7312AC and S7309AC are all 25◦, the inner and
outer diameters are 60 mm, 45 mm, and 130 mm, 100 mm, respectively, and their widths
are 31 mm and 25 mm. The basic dynamic and static load ratings for each are 92.5 kN,
55.1 kN, and 62.6 kN, 37.1 kN. The maximum speeds are 7700 rpm and 10,000 rpm with
oil lubrication.

Pitting corrosion damage is a common failure mode of rolling bearings. In order to
ensure the effectiveness of the design, the fatigue life of the bearing must be verified. Using
high-speed bearings makes the product of the average diameter of the bearing and the
rotational speed greater than 0.6 × 106, which will generate a large amount of heat and
can easily cause excessive wear and burns when bearings rotate. Therefore, in addition to
ensuring that the bearing has sufficient fatigue life, its limit speed must also be checked to
avoid the generation of excessive heat.

The axial force Fae and radial force Fre on the shaft can be obtained from Formulas (3)
and (4) [28].

Fre = mg (4)

Fae = 2T/d (5)
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T = 9.55 × 106P/n (6)

The radial force Fr and the derived axial force Fd on the bearing can be obtained by
Formula (7).

Fr1 =
4
7

Fre, Fr2 =
3
7

Fre (7)

Fd1= 0.68Fr1 (8)

The axial forces Fa1 and Fa2 can be given by Formula (9) and Formula (10), respectively.

Fa2 = Fd2 (9)

Fa1 = Fae − Fd2 (10)

The fatigue life of the bearing can be obtained from Formulas (11) and (12) [29]:

Lh = 106 × (C/P)ε/60n (11)

P = fp(XFr + YFa) (12)

Here, P and C are the equivalent dynamic load and basic dynamic load, respectively. X
and Y are the radial and axial dynamic load coefficient, respectively. When Fa/Fr ≤ 0.68, X
and Y take 1 and 0, respectively; otherwise, they take 0.41 and 0.87. f p is the load coefficient.
ε is the life index, and ε = 3 for ball bearings. The life of the bearings selected in this article
is much longer than expected and meets the design requirements. Table 2 gives the specific
calculation results.
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Table 2. Bearing force analysis results.

S7312AC S7309AC

Radial force (N) 200.73 150.54
Derived axial force (N) 136.49 102.37

Axial force (N) 553.85 102.37
Equivalent dynamic load (N) 620.56 165.59

Bearing life (h) 7.89 × 106 8.77 × 107

In addition to checking the life of the bearing, we should also check the limit speed
of the bearing to determine whether the bearing can operate stably. Equation (13) gives
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the check condition, which means the maximum speed should be less than or equal to the
limit speed:

nmax ≤ nlim (13)

The bearings adopt oil lubrication in this article. The corresponding limit speeds of
the two bearings are 7700 rpm and 10,000 rpm, respectively. The design speed is 7000 rpm,
which is smaller than the limit speed of the bearing and meets the requirements.

3.3. Structural Design of Volute and Diffuser

Figure 6 shows the structural model of volute, which makes the working fluid flow
axially and symmetrically at the outlet. The connection with the outside is a flange con-
nection. The material of the volute is stainless steel ZG10Cr13. According to GB 150-2011
Pressure Vessels, the wall thickness of volute can be calculated by Formula (14).

δ =
PtDv

2[σ]φ − Pt
(14)

where Pt (MPa) and Dv (mm) are the theoretical design pressure and the minimum inner
diameter of the volute. φ means the welding coefficient, and [σ] (MPa) is the allowable
stress of the material.
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The equipment is prone to corrosion because of the environment where OTEC is
utilized in high humidity and salt. Therefore, the wall thickness of the volute is designed
to be 3 mm in this design in order to ensure the normal operation of the equipment.

In addition, the flange is also designed to be welded together with volute, which can
facilitate the connection of volute with other components of the turbine. The specific design
steps are as follows:

(1) The maximum working pressure of the designed turbine in this article is 7.3 bar, and
the working temperature is 24 ◦C. Therefore, the nominal pressure is determined to
be 1 MPa for safety.

(2) The type of flange is preliminarily determined to be Type A flat welding based on the
above-mentioned parameters. The inner diameter of the volute is 596.4 mm, which is
rounded and taken as 600 mm. The corresponding outer diameter of the flange and
thickness is 780 mm and 42 mm. The hole diameter and number of the M27 bolt are
30 mm and 20. The outer diameter of the flange and the center diameter of the bolt
hole adjust to 900 mm and 845 mm, respectively, in order to avoid the installation.

(3) The sealing structure is selected as a flat sealing surface, because the working fluid is
gaseous ammonia that is not corrosive.

(4) According to the working temperature, the material of the flange is made of stainless
steel ZG10Cr13, which is consistent with the volute material to ensure the uniformity
of material, structure, performance and stress during the welding process. The gasket
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is made of asbestos rubber, and the material of the stud and nut are AISI 1035 steel
and AISI 1025 steel, respectively.

The diffuser discharges the exhaust steam and should have good ability to divert flow.
The conical diffuser is utilized in this article. In order to reduce the installation process
and reduce the risk of leakage, the diffuser and the volute are integrated into one body,
so its thickness and the material are the same as the volute. The outlet of the diffuser is
connected with flanges and pipes.

3.4. Structural Design of Stator and Rotor

In the design of the stator, the blades and base are processed separately. The stator
blades can be processed by milling and positioned using positioning pins to prevent the
stator from rotating. A boss is used to achieve circumferential positioning, and its structure
is shown in Figure 7.

Processes 2023, 11, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 6. Volute structure diagram. 

In addition, the flange is also designed to be welded together with volute, which can 
facilitate the connection of volute with other components of the turbine. The specific de-
sign steps are as follows: 
(1) The maximum working pressure of the designed turbine in this article is 7.3 bar, and 

the working temperature is 24 °C. Therefore, the nominal pressure is determined to 
be 1 MPa for safety. 

(2) The type of flange is preliminarily determined to be Type A flat welding based on the 
above-mentioned parameters. The inner diameter of the volute is 596.4 mm, which is 
rounded and taken as 600 mm. The corresponding outer diameter of the flange and 
thickness is 780 mm and 42 mm. The hole diameter and number of the M27 bolt are 
30 mm and 20. The outer diameter of the flange and the center diameter of the bolt 
hole adjust to 900 mm and 845 mm, respectively, in order to avoid the installation. 

(3) The sealing structure is selected as a flat sealing surface, because the working fluid is 
gaseous ammonia that is not corrosive. 

(4) According to the working temperature, the material of the flange is made of stainless 
steel ZG10Cr13, which is consistent with the volute material to ensure the uniformity 
of material, structure, performance and stress during the welding process. The gasket 
is made of asbestos rubber, and the material of the stud and nut are AISI 1035 steel 
and AISI 1025 steel, respectively. 
The diffuser discharges the exhaust steam and should have good ability to divert 

flow. The conical diffuser is utilized in this article. In order to reduce the installation pro-
cess and reduce the risk of leakage, the diffuser and the volute are integrated into one 
body, so its thickness and the material are the same as the volute. The outlet of the diffuser 
is connected with flanges and pipes. 

3.4. Structural Design of Stator and Rotor 
In the design of the stator, the blades and base are processed separately. The stator 

blades can be processed by milling and positioned using positioning pins to prevent the 
stator from rotating. A boss is used to achieve circumferential positioning, and its struc-
ture is shown in Figure 7. 

 
 

Figure 7. Stator structure.

In order to ensure the air tightness of the device, a gasket is utilized for sealing where
the blades and the volute base contact. Because the OTEC turbine is operated under
low temperature and pressure condition, comparing with the gas turbines operated at
high temperature and pressure [25,26], the requirements for the material of an OTEC
turbine stator and rotor is less strict, and aluminum alloy 6A04 is selected due to its good
processing performance, light weight and high compressive strength. Thus, there is no
need for stainless steel from 12Cr and Ti-6Al-4V [26], saving investment cost.

The installation accuracy of the rotor must be guaranteed because it is the key working
component. Therefore, a 5 mm deep welding groove is left at the bottom of the rotor to
ensure the concentricity between the shaft and rotor. Figure 8 shows a schematic diagram
of the connection between the rotor and shaft. The blade thickness of the rotor is 2 mm,
and the blade number is 15.
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4. Structural Strength and Modal Analysis of Turbine

According to the calculation results of CFX, the corresponding constraints and loads
are applied. ANSYS 19.2 software is used to analyze the strength of the volute, stator,
rotor and shaft. The fluid pressure in the diffuser is low and the velocity is small, so no
calibration is required.



Processes 2023, 11, 3341 9 of 16

4.1. Structural Strength Analysis

First, meshing and independence analysis are performed. Table 3 shows the results of
independence analysis; the parameters with italic type are the final grid sizes. The meshing
results of the main components are shown in Figure 9.

Table 3. Grid independence analysis.

Grid Size (mm) Deformation (mm)
Volute Stator Rotor Shaft Volute Stator Rotor Shaft

5 4 8 1 1.373 0.00691 0.0977 0.00296
6 5 10 2 1.238 0.00678 0.0976 0.00295
8 10 11 3 0.886 0.00667 0.0971 0.00295
10 15 15 5 0.607 0.00638 0.0968 0.00293
20 20 20 10 0.197 0.00532 0.0945 0.00296
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Figure 9. Meshing results of main components.

The stress and strain distribution of the volute are shown in Figure 10a,b. There
is a stress concentration at the inlet cut of the volute. The maximum stress of 583 MPa
exceeds the maximum allowable stress of the material of 350 MPa, and the maximum
strain is 0.00303 mm/mm. Therefore, the volute structure is optimized by adding bosses to
make the tip surface more rounded to reduce stress concentration. Figure 10c,d show the
optimized stress and strain distribution of the volute. The maximum stress is 124.74 MPa,
which meets the design standards. The optimized volute stress is reduced by 78.60%. The
strain of the volute is 6.6 × 10−4 mm/mm, which is reduced by 78.22%.

The stator is a stationary component, and the bottom surface is fixedly constrained.
Thus, it is mainly affected by gravity, aerodynamic and temperature load. Figure 11 shows
the stress and strain distribution of the stator. The maximum stress point appears at the
tip of the stationary blade cascade outlet. The maximum stress is 144.72 MPa, half of the
material’s allowable stress of 280 MPa, which is within the material’s bearing capacity. It
can be found that part of the blade outlet is more easily deformed than part of the inlet.
The deformation is largest at the upper part of the stator blade outlet with a value of
0.0068 mm.

The rotor is the most critical component of the turbine. In this paper, the design speed
of the rotor is 7000 rpm. Therefore, in addition to gravity, aerodynamic and temperature
load, the inertial force caused by rotation must also be considered. The constraints are the
axial constraints on the top end surface and the tangential and normal constraints on the
outer diameter cylindrical surface. Figure 12 shows the stress and strain distribution of
the rotor, in which we can find that the maximum stress point appears at the connection
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between the rotor and shaft. The maximum stress is 100.22 MPa, which is in line with the
material’s bearing capacity. In addition, there is also stress concentration at the root of
the blade, which can easily cause the blade to break. The maximum strain of the rotor is
0.098 mm, which will occur at the entrance of the rotor because the pressure and inertial
force are the largest there.
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Figure 12. Stress and strain distribution of the rotor.

The shaft is an important component for the turbine to transmit torque, and its strength
needs to be checked. The material of the shaft is AISI 1045 steel. Figure 13 shows the strain
and stress distribution on the shaft. The maximum stress and strain are 2.946 MPa and
0.0029 mm, respectively, which meet the design requirements.
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4.2. Modal Analysis of the Turbine

The movement of rotating parts will inevitably produce vibrations. Through modal
analysis, the vibration shape and natural frequency of the rotor can be determined, and
the modal parameters in each order of states can be obtained. In addition, the vibra-
tion frequency in the assembled state will also be different, so the modal analysis of the
complete machine will also be discussed in this section. Modal analysis can be divided
into prestressed and non-prestressed states, which will be analyzed and discussed to
avoid resonance.

The rotor must bear the effects of loads and constraints during operation, and its
vibration frequency will be different from that without prestress. Therefore, the modal
analysis under prestress is required. The rotational vibration frequency of the rotor can be
obtained through the rotation speed by Formula (15) [30].

f = nN/60 (15)

Here, n and N are the rotor speed and number of rotor blades, respectively.
If the vibration frequency differs within 15% of the rotational vibration frequency, the

object will resonate. The rotational vibration frequency of the rotor in this article is 1750 Hz,
and its resonance frequency range is 1487.5–2012.5 Hz

4.2.1. Modal Analysis without Prestress

Modal analysis of the rotor without prestress is performed because the proportion
of low-order modal energy in structural vibration is much greater than that of high-order
modal energy. The vibration shape diagrams of each order are shown in Figure 14. The
vibration frequency of the rotor is 691.25–707.75 Hz. The maximum amplitude appears at
the exit of the rotor blade.

When the rotor is running, it will also cause vibration of the turbine; thus, the non-
prestressed modal analysis of the whole machine should be performed to ensure that the
turbine does not resonate. Figure 15 shows the vibration shape of the radial turbine at each
order. The maximum vibration frequency appears at the entrance and exit. Table 4 shows
the free mode vibration frequencies of the rotor and turbine. The overall natural vibration
frequencies are much smaller than the resonance frequency of the rotor. Therefore, there
will be no resonance phenomenon in the rotor and assembly.
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Table 4. Each order frequency of rotor and turbine in free mode.

Orders
Vibration Frequency (Hz)

Rotor Turbine

First order 691.25 0
Second order 691.38 5.00 × 10−4

Third order 701.55 1.00 × 10−3

Fourth order 703.98 19.55
Fifth order 704.33 39.68
Sixth order 707.75 40.22
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4.2.2. Modal Analysis under Prestress

Each order frequency of the rotor and turbine with prestress is shown in Table 5.
Figure 16 presents the vibration shapes. The maximum vibration frequency of the rotor is
721.52 Hz, and its maximum amplitude still appears at the exit of the rotor blade. Compared
with the state without prestress, the vibration frequency of the rotor increases slightly, and
the rotor does not show obvious stress stiffening. Therefore, it can be considered that the
prestress has a small impact on the vibration frequency of the rotor.

Table 5. Each order frequency of rotor and turbine with prestress.

Orders
Vibration Frequency (Hz)

Rotor Turbine

First order 704.22 208.57
Second order 704.35 268.69
Third order 715.14 294.44

Fourth order 717.63 334.01
Fifth order 717.98 348.07
Sixth order 721.52 371.44
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Similarly, the entire turbine should also undergo prestressed modal analysis. The
vibration frequency of the six orders with prestress of the overall structure are shown in
Table 5. Although the overall vibration frequency is higher than the vibration frequency of
the non-prestressed state, it is much smaller than the rotor rotation frequency. Therefore, the
resonance of the turbine will not occur. Figure 17 shows the vibration shape of each order
of the turbine. Compared with the free mode, in the 2nd, 3rd and 4th orders, the maximum
amplitude of the whole machine appears at the exit of the diffuser. In the first and sixth
order, the maximum amplitude of the turbine appears at the entrance of the volute.
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5. Conclusions

A radial inflow turbine is designed for a 100 kW OTEC-ORC plant with ammonia as
the working fluid. One-dimensional design and three-dimensional modeling are carried
out to obtain thermodynamic and structural parameters of the turbine and key components.
To ensure the safety, reliability and processability, structural and modal analysis on the key
components, the rotor and the whole turbine are carried out. The results show that the
designed structure can meet the requirements.

Through static analysis, the stress and strain distribution on the shaft, volute, stator
and rotor are obtained. After optimization, the stress concentration occurs in the volute at
the inlet and has the maximum stress with 292.37 MPa, which is lower than the allowable
material strength and meets the design requirements. The maximum stress of the stator is
144.72 MPa, which appears at the outlet tip of the blade. The maximum stress of the rotor
is 100.22 MPa, which occurs at the connection between the rotor and the shaft. Therefore,
from the stress and strain viewpoint, the structural design performed in this paper meets
the requirements well.

The frequencies of the rotor and the whole turbine are analyzed by modal analysis
without prestress and under prestress, respectively. The maximum frequency of the rotor
and whole turbine are 707.75 Hz and 40.23 Hz, which are all far away from the resonance
frequency range. Therefore, resonance can be avoided in operation.

The radial turbine designed for OTEC under ambient conditions is efficient with an
isentropic efficiency of 89.4%. After conducting mechanical structure and modal analysis,
as well as stress and strain analysis on the key components and the equipment as a whole,
the safety, reliability and processability of the designed turbine in the OTEC application
have been proved, and the results are instructive for researchers and engineers to build an
OTEC-ORC turbine prototype and experimental platform.

Although the designed turbine has been proven to be efficient and feasible for the
OTEC-ORC by numerical simulation, the prototype may differ with the designed results
due to the limitations of manufacturing level, which will influence the performance of
the turbine. Furthermore, the turbine is possibly installed on a floating offshore platform;
thus, its vibration characteristics will be affected by the movement of the platform, and the
coupling effects should be monitored and then considered into the model simulation to
optimize the mechanical structure.
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Nomenclature

c Absolute speed, m/s D Ration of wheel diameter
u Tangential velocity, m/s Ω Reaction degree
w Relative velocity, m/s ξ Loss
P Power, kW η Efficiency
m Mass flow rate, kg/s τ Shear stress
n Rotational speed, rpm ε Life index of bearing
Re Reynolds number Subscripts
T Temperature turb Turbine
N Number in Inlet
L Length, mm out Outlet
d Diameter, mm 1 Rotor inlet
G Elastic modulus, Mpa 2 Rotor outlet
ϕT Twist angle, ◦/mm r Rotor
Ip Polar inertia moment, mm4 n Nozzle
F Force, N r Radial
X Radial dynamic load factor a Axial
Y Axial dynamic load factor u peripheral
Lh Bearing life, h isen Isentropic
Greek letter Acronyms
α Absolute airflow angle ORC Organic Rankine Cycle
β Relative airflow angle OTEC Ocean Thermal Energy Conversion
χ Characteristic ratio CFD Computational fluid dynamics
φ Nozzle velocity coefficient 1-D One-dimensional
ψ Rotor velocity coefficient 3-D Three-dimensional
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