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Abstract: The coal gasifier is the core unit of the coal gasification system. Due to its exposure to high
temperatures, high pressures, and aggressive media, it is highly susceptible to serious accidents in
the event of failure. Therefore, it is important for the gasifier to perform failure-risk assessment to
understand its safety status and provide safety measures. Bayesian networks (BNs) for risk analysis
of process systems has received a lot of attention due to its powerful inference capability and its ability
to reflect complex relationships between risk factors. However, the acquisition of basic probability
data in a Bayesian network is always a great challenge. In this study, an improved Bayesian network
integrated with a trapezoidal intuitionistic fuzzy number-based similarity aggregation method
(TpIFN-SAM) is proposed for the failure-risk assessment of process systems. This approach used the
TpIFN-SAM to collect and aggregate experts’ opinions for obtaining the prior probabilities of the
root events in the BN. In the TpIFN-SAM, the intuitionistic fuzzy analytic-hierarchy-process method
(IF-AHP) was adopted to assign the expert weights for reducing subjectivity or the bias caused by
individual differences. To clarify the suitability of the proposed method, a case study of a coal gasifier
was demonstrated, and both prediction and diagnosis analyses of the BN were performed; finally, the
weak links of the gasifier were identified.

Keywords: coal gasifier; trapezoidal intuitionistic fuzzy number; Bayesian network; failure
probability; risk analysis

1. Introduction

The coal-gasification process is an essential part of the “clean coal” technology that can
improve overall energy-conversion and -utilization efficiency [1]. This process is carried
out in a gasifier (also known as a gasification furnace), in which the combustible parts
of coal or coal coke are converted into gases like CO and H2 by chemical reactions at
high temperatures and high pressures. In this condition, the gasifier needs to ensure safe
operation. Fire and explosion are unimaginable consequences that may easily occur when
equipment fails.

Equipment-failure-risk assessment is a necessary means to clarify the safety status
of the equipment and ensure the normal operation of the chemical systems. There are
numerous risk-assessment methods available in process systems, one group of which
is based on a combination of logical/probabilistic diagrams and deductive reasoning,
such as fault-tree analysis (FTA), event-tree analysis (ETA), the bow-tie model (BT), and
Bayesian networks (BNs), and are very widely used for risk and reliability analysis due
to their intuitiveness, expressiveness, ease of analysis, and reasoning [2–5]. Of these, BN
is suitable for modelling and analyzing complex systems and has gained much attention
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compared to others, since it can handle the occurrence of multi-state variables, express
conditional dependencies among events, and allow for bidirectional reasoning to identify
the most failure-prone links of the system better [6–8]. As with other approaches, the
limitation is that a BN cannot succeed without complete and accurate data (i.e., base-event
probabilities and conditional-probability tables), and unfortunately in practice the required
data are difficult to obtain. For this reason, a BN is often integrated with data-extraction
technologies, particularly expert elicitation.

Currently, the common approaches to data acquisition for a BN include fuzzy set
theory [9], rough set theory [10], evidence theory [11], the cloud model [12], and hybrid
models [13]. Among them, the combination of fuzzy sets and a BN has been most exten-
sively studied in process-safety engineering since fuzzy set theory is well recognized as a
very effective mathematical tool for dealing with uncertain and incomplete information [14].
Kabir et al. [15] developed an O & G pipeline-failure model by assimilating a fuzzy set
into a BN. In this model, the prior probability and conditional probability values in the
BN can be interpreted according to the linguistic terms corresponding to the trapezoidal
fuzzy numbers. Yazdi and Kabir [16] presented a comprehensive framework for risk eval-
uation of complex process systems through integrating fuzzy set theory with a BN. In
this framework, the uncertainty problem of failure data was solved by expert knowledge
with improved fuzzy AHP. Zhao et al. [17] also employed fuzzy AHP and BN to assess
the domino effects in the coal-gasification process. Yan et al. [18] applied a BN with a
fuzzy set to analyze biomass gasification when a gas leakage happens, and they confirmed
the missing reliability failure probabilities by using expert judgments obtained based on
linguistic terms corresponding to triangular and trapezoidal fuzzy numbers. Subsequently,
Mostafa Pouyakian et al. [19] proposed a similar approach to analyze the possible risk
factors of storage tanks with a floating roof. Akbar Rostamabadi et al. [20] integrated
the fuzzy best–worst method (Fuzzy–BWM) with a BN for safety and reliability analysis
of a process system that used Fuzzy–BWM for expert judgment to obtain the required
fuzzy probabilities.

These research endeavors have contributed significantly to the successful utilization of
BNs in the reliability and risk evaluation of process industries. However, the limitations are
that the fuzzy set theory may cause deprivation and deformation of evaluation information
because it uses only one membership function to represent the extent to which a particular
target pertains to a set [21,22]. In reality, there are often situations where a person may
suppose that a target pertains to a set to an extent, but they may not be quite sure about
it, which means there may be indecision about the membership extent of the target in the
set. For the purpose of resolving the challenge, Atanassov [23] proposed a intuitionistic
fuzzy set (IFS) in 1986. In IFS theory there are two different functions, i.e., the membership
and non-membership functions, to describe uncertain information. The difference between
the two functions is called the degree of hesitation. The IFS theory extends the traditional
fuzzy set theory, and it has a stronger ability to express and dispose of uncertainty than
fuzzy set theory. In this light, Yu et al. [24] introduced triangular intuitionistic fuzzy
numbers (a special case of IFS) to BNs for analysis of the fire damage and blast accident of
a crude-oil-storage tank. This attempt showed the potential power of combining IFS with
BNs. As far as intuitionistic fuzzy numbers (IFNs) are concerned, trapezoidal IFNs, as an
extension of triangular IFNs, better accommodate for the description of non-deterministic
information. This inspired us to try to integrate trapezoidal IFNs with BNs to analyze
the failure risk of process systems so as to improve the feasibility and flexibility of BNs in
engineering applications. Similarly, this is also the motivation for the new approach that is
presented next.

When acquiring data using fuzzy set theory or intuitionistic fuzzy set theory, experts
often need to be involved. Given the limitations of experts’ own knowledge and experience,
certain means are required to deal with experts’ opinions to reduce subjective bias, usually
through assigning different weights to the experts and then aggregating the different
opinions [25]. Recently, the similarity aggregation method (SAM) [26] as an aggregation
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strategy for experts’ opinions has been of increasing interest in the safety analysis of process
systems like storage tanks for hazardous chemicals [27–29] and oil and gas pipelines [30];
this is because it not only conforms to the custom of expert evaluation, but also enables the
aggregation result to be more exact and workable [29,31].

The main contributions of this paper are as follows: (1) This study attempts to propose
an improved framework integrating intuitionistic fuzzy AHP, trapezoidal intuitionistic
fuzzy number-based SAM, and a Bayesian network for failure-risk assessment of a coal
gasifier. (2) This framework uses intuitionistic fuzzy AHP to assign the expert weights for
reducing subjectivity or the bias caused by individual differences and obtains the likelihood
of occurrence of root events in the BN through trapezoidal intuitionistic fuzzy number-
based SAM with experts’ judgment. (3) This strategy can more convincingly translate the
judgments of all experts into a clear probability value by an intuitionistic fuzzy reasoning
approach, thus overcoming the difficulty of obtaining the basic probability data in the BN.

For the remainder, the organization is arranged as follows: Section 2 introduces basic
concepts of intuitionistic fuzzy sets, trapezoidal intuitionistic fuzzy numbers, and Bayesian
networks. Section 3 presents the improved framework and provides the detailed implemen-
tation processes. In Section 4, an example of clarification is provided to demonstrate the
specific analysis process and verify the feasibility of the method. Finally, the conclusions
are described in Section 5.

2. Preliminaries
2.1. Intuitionistic Fuzzy Set

Definition 1 [23,32]: Let X be a general set, and the intuitionistic fuzzy set (IFS) Ã is a set in

Ã =
{

x, µÃ(x), νÃ(x)
∣∣x ∈ X

}
(1)

where µÃ(x) : X → [0, 1] and νÃ(x) : X → [0, 1] are membership and non-membership, respec-
tively. Furthermore, the following requirements are fulfilled 0 ≤ µÃ(x) + νÃ(x) ≤ 1 for all x ∈ X
in the Ã. An ordered interval pair consisting of µÃ(x) and νÃ(x) is an intuitionistic fuzzy set,
written as

〈
µÃ(x), νÃ(x)

〉
.

For each intuitionistic fuzzy set in X, πÃ(x) = 1− µÃ(x)− νÃ(x) is the intuitionistic index
of x in Ã. This is a measure of the hesitancy of x to Ã. Distinctly, for each x ∈ X, 0 ≤ πÃ(x) ≤ 1.

Definition 2 [33]: Let Ã be an intuitionistic fuzzy number on a real number set R, and its
membership and non-membership functions fulfill the following equations:

µÃ(x) =


f Ã(x), a < x < b
1, b ≤ x ≤ c
gÃ(x), c < x < d
0, otherwise

, νÃ(x) =


hÃ(x), a′ < x < b
0, b ≤ x ≤ c
kÃ(x), c < x < d′

1, otherwise

(2)

respectively, where 0 ≤ µÃ(x) ≤ 1, 0 ≤ νÃ(x) ≤ 1, and 0 ≤ µÃ(x) + νÃ(x) ≤ 1. a′, a, b, c,
d, d′ ∈ R, such that a′ ≤ a ≤ b ≤ c ≤ d ≤ d′ and four functions f Ã, gÃ, hÃ, kÃ : R→ [0, 1]
are known as the sides of intuitionistic fuzzy numbers. In addition, f Ã, kÃ, are non-decreasing
continuous functions, and gÃ, hÃ are non-increasing continuous functions. A set of intuitionistic
fuzzy numbers can be defined when the four functions are linear functions, as shown in Definition 3.

Definition 3 [34]: Let Ã1 and Ã2 be two intuitionistic fuzzy numbers Ã1 =
(

µÃ1
, νÃ1

)
,

Ã2 =
(

µÃ2
, νÃ2

)
on a real number set R, then

Ã1 + Ã2 =
(

µÃ1
+ µÃ2

− µÃ1
µÃ2

, νÃ1
νÃ2

)
(3)

Ã1 × Ã2 =
(

µÃ1
µÃ2

, νÃ1
+ νÃ2

− νÃ1
νÃ2

)
(4)
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λÃ1 =

(
1−

(
1− µÃ1

)λ
, νλ

Ã1

)
, λ > 0 (5)

Ã1
λ =

(
µλ

Ã1
, 1−

(
1− νÃ1

)λ
)

, λ > 0 (6)

2.2. Trapezoidal Intuitionistic Fuzzy Number

Definition 4 [33]: Let Ã be a trapezoidal intuitionistic fuzzy number (TpIFN) with parameters
a′ ≤ a ≤ b ≤ c ≤ d ≤ d′ and indicated as Ã = (a, b, c, d; a′, b, c, d′) on a real number set R, then
its membership and non-membership functions satisfy the following equations:

µÃ(x) =


x−a
b−a , a < x < b
1, b ≤ x ≤ c
d−x
d−c , c < x < d
0, otherwise

, νÃ(x) =


b−x
b−a′ , a′ < x < b
0, b ≤ x ≤ c
x−c
d′−c , c < x < d′

1, otherwise

(7)

respectively, where 0 ≤ µÃ(x) ≤ 1, 0 ≤ νÃ(x) ≤ 1, 0 ≤ µÃ(x) + νÃ(x) ≤ 1. Figure 1 shows a
general trapezoidal intuitionistic fuzzy number.
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Definition 5 [34]: Let Ã1 =
(
a1, b1, c1, d1; a′1, b1, c1, d′1

)
and Ã2 = (a2, b2, c2, d2; a′2, b2, c2, d′2)

be two trapezoidal intuitionistic fuzzy numbers, then

Ã1 + Ã2 =
(
a1 + a2, b1 + b2, c1 + c2, d1 + d2; a1′+ a′2, b1 + b2, c1 + c2, d′1 + d′2

)
(8)

Ã1 × Ã2 =
(
a1a2, b1b2, c1c2, d1d2; a′1a′2, b1b2, c1c2, d′1d′2

)
(9)

λÃ1 =
(
λa1, λb1, λc1, λd1; λa′1, λb1, λc1, λd′1

)
(10)

Ã1
λ =

(
a1

λ, b1
λ, c1

λ, d1
λ; a′λ1 , b1

λ, c1
λ, d′λ1

)
(11)

2.3. The Expectation of a TpIFN

Heilpern [35] defined the expected interval and expected value of a fuzzy number.
The expected interval and expected value can be applied to fuzzy-number ranking or
comparison problems. The expected value as the center of the expected interval can be
regarded as the expected payoff connected to a linguistic term. This can also be generalized
for TpIFNs. It is assumed that that Ã = (a, b, c, d; a′, b, c, d′) is a TpIFN, and EIµ and EIν

denote the expected interval matching with membership and non-membership functions,
respectively. The center of the expected interval of an intuitionistic fuzzy number is called
the expected value of this number, denoted by EV

(
Ã
)

, and EVµ and EVν denote the
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expected value corresponding to membership and non-membership functions, respectively.
Its parametric form are µ(α) =

(
µ(α), µ(α)

)
and ν(α) =

(
ν(α), ν(α)

)
, where µ(α) and ν(α)

are the parametric form of a TpIFN corresponding to membership and non-membership
functions, respectively, and µ(α) = d − α(d− c); µ(α) = a + α(b− a) and ν(α) = b −
(1− α)(b− a′); ν(α) = c + (1− α)(d′ − c) [36].

EVµ
(

Ã
)
=

1∫
0

µ(α)dα +
1∫

0
µ(α)dα

2
=

a + b + c + d
4

(12)

EVν
(

Ã
)
=

1∫
0

ν(α)dα +
1∫

0
ν(α)dα

2
=

a′ + b + c + d′

4
(13)

EV
(

Ã
)
= λEVµ

(
Ã
)
+ (1− λ)EVν

(
Ã
)

(14)

Let λ = 0.5, then

EV
(

Ã
)
=

1
2

EVµ
(

Ã
)
+

1
2

EVν
(

Ã
)
=

a + a′ + 2b + 2c + d + d′

8
(15)

See Appendix A for the proof process.

2.4. Bayesian Network

A Bayesian network (BN), known as a probabilistic graphical model, is a directed
acyclic graph (DAG) that binds graph theory with probability theory. A BN consists of
nodes representing events (i.e., random variables) and oriented lines (from parent nodes
to child nodes) connecting these nodes and representing their causal relationships. Each
node and its set of parent nodes corresponds to a conditional probability distribution
P(Xi|Parent(Xi)) that indicates how much influence there is among the parent nodes and
the child node. Given that a BN consists of n random variables X1, X2, . . . , Xn, according to
the conditional independency and chain laws, the complete united probability distribution
can be recorded as [37]

P(X1, X2, . . . , Xn−1, Xn) =
n

∏
i=1

P(Xi|Parent(Xi)) (16)

Figure 2 shows an illustration of a BN including six nodes. Node X1 is called the
parent node of X2 and X3, whereas X2 and X3 are called the child nodes of X1. It is worth
mentioning that X1 is also called the root node because it has no parent node. The complete
united probability distribution of this can be expressed by Equation (16):

P(X1, X2, X3, X4, X5, X6) = P(X6|X5)P(X5|X3, X2)P(X4|X2, X1)P(X3|X1)P(X2|X1)P(X1) (17)

In the BN model, it has a forward (predictive) and backward (diagnostic) ability of
inference. The forward inference is the inference from the causes (root nodes) to their
effects (leaf nodes). Under the circumstances, new beliefs about this effect are obtained by
using information about causes. In contrast, the backward inference is the inference on
the contrary side (i.e., from the effect back to the cause). In this inference, the process of
obtaining a new belief about causes based on known effects is continuously estimated and
upgraded. Bayes’ theorem can be used to advance the diagnosis analysis of the BN model
(see Equation (18)) [37].

P(A|B) = P(B|A)P(A)

P(B)
(18)
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where A and B are two random events; P(A) and P(B) are the prior probability of event A
and B, respectively; and P(A|B) is the posterior probability of event A occurring given after
the occurrence of B.
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2.5. Mapping to Bayesian Network from Fault Tree

The determination of a BN structure is the first step in using it for prediction and
diagnosis. There are several ways of constructing BNs: (1) expert knowledge-based [38],
(2) data-driven [39], and (3) mapped from other models like the fault-tree, event-tree, or
bow-tie models [40–42]. The third approach is adopted in this study, where the potential
accident scenarios of a system are first determined by a fault tree, which is then mapped
into a BN according to the method shown in Figure 3.
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The conditional probability table (CPT) is another key component of BNs for im-
plementing inference. During this process, the logical gate of the fault tree (FT) is used
to confirm the CPT of each node in the BN. The logic gate rules of the FT describe the
fault–logic relationship between parent and child events. Tables 1 and 2 show the rules of
how to obtain a CPT according to the two most critical logic gates of FT: the “AND” gate
and the “OR” gate [40].
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Table 1. CPT corresponding to the AND gate in FT (Occ: occurred; Non: non-occurred).

X1 Occ Non

X2 Occ Non Occ Non

X3 Occ Non Occ Non Occ Non Occ Non

T
Occ 1 0 0 0 0 0 0 0
Non 0 1 1 1 1 1 1 1

Table 2. CPT corresponding to the OR gate in FT (Occ: occurred; Non: non-occurred).

X1 Occ Non

X2 Occ Non Occ Non

X3 Occ Non Occ Non Occ Non Occ Non

T
Occ 1 1 1 1 1 1 1 0
Non 0 1 1 1 1 1 1 1

3. Proposed Model for Failure-Risk Assessment Based on BN with TpIFN-SAM
3.1. General Framework

The proposed framework is mainly used to analyze the failure probability of process
systems, which consists of five core parts—construction of the BN through FT, expert
elicitation, aggregation of experts’ opinions by the TpIFN-SAM, the defuzzification process,
and BN analysis—and is shown in Figure 4. The specific analysis process is described from
Sections 3.2–3.7.
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3.2. Construction of the BN through FT

The construction of a BN describing system-failure scenarios and paths is the first
step in analyzing the probability of possible failures in a process system. Here, the FT is
first drawn according to the system’s structural characteristics and associated risk factors,
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where the top event is generally set as the most undesired event. Then, the FT is mapped
into a BN with CPTs using the mapping rules mentioned in Section 2.5.

3.3. Expert Elicitation

In this framework, expert elicitation is put to use for computing the probabilities of
root events in the BN when the accurate probabilities of the events are lacking. In generally,
the experts cannot give accurate probability values. This study therefore uses a method
combining the TpIFNs and expert elicitation to elaborate the failure probabilities of each
root node. Experts express their opinions on risk events in linguistic terms based on the
practice or standards in the actual situation in this industry. In addition, the natural estimate
of human memory capacity is 7 ± 2 grades [28,43]. Thus, 5–9 language terms scored by
experts is most appropriate. Furthermore, heterogeneous expert judgment is adopted to
reduce the prejudice of expert evaluation.

3.4. Aggregation of Experts’ Opinions by TpIFN-SAM
3.4.1. Determination of Experts’ Weights by Intuitionistic Fuzzy AHP (IF-AHP)

For the purpose of resolving the subjective preferences of experts and the incom-
pleteness of individual knowledge and experience that may lead to biased results, the
preference is usually to create an expert group of professionals and the relative importance
of each expert’s opinion is represented by assigning weights to each expert. There are
several expert-weighting methods, like the method of arithmetic average [22], the Delphi
method [44], and AHP [45]. However, these methods are often criticized for failing to
sufficiently solve the intrinsic ambiguity and subjectivity. As an extension of AHP, in-
tuitionistic fuzzy AHP (IF-AHP) [46] can enhance the inconsistent intuitive-preference
relationship without the involvement of decision-makers, thereby fundamentally solving
the above-mentioned problems. As a result, this work employs the IF-AHP method to
acquire the expert-weight coefficients. The specific calculation of the expert weights are as
follows.

Step 1. Establish the evaluation indices of expert weights.
There are some general deviations in the experts’ judgements on the same event.

This situation is affected by their professional position, educational background, and
work experience. Therefore, a three-level hierarchical structure diagram of judging expert
weights is established, as shown in Figure 5. Professional position, education level, and
service time are accommodated as the evaluation indices of expert weights.
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Step 2. Construct the IF-judgment matrix.
The intuitionistic fuzzy judgment matrices for the three-level indices are then estab-

lished. Factors belonging to the same level of each factor of the previous level are matched
and compared to build an intuitionistic fuzzy judgment matrix: R =

(
rij
)

n×n, with i, j
representing the rows and columns of the matrix, respectively, where rij = (µij, νij); µij
denotes the degree to which an expert prefers i when comparing the importance of factor
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i and factor j; νij denotes the degree to which an expert prefers j; and πij = 1 − µij − νij
denotes the hesitation degree. To better identify the intuitionistic preference relationship,
an evaluation scale table is constructed, as shown in Table 3.

Table 3. IF-AHP preference scale.

Level IFNs

i is significantly important than j. µ = 0.9, ν = 0–0.1
i is much more important than j. µ = 0.8, ν = 0–0.2

I is more important than j. µ = 0.7, ν = 0–0.3
i is slightly more important than j. µ = 0.6, ν = 0–0.4

i is as important as j. µ = ν

Note: Reciprocal IFNs can be obtained by exchanging µ and ν.

Step 3. Check consistency.
The consistency-test formula shown below is given for distance measurement based

on the intuitionistic fuzzy information [46]:

d
(

R, R
)
=

1
2(n− 1)(n− 2)

n

∑
i=1

n

∑
j=1

(∣∣∣µij − µij

∣∣∣+ ∣∣νij − νij
∣∣+ ∣∣πij − πij

∣∣) (19)

where R =
(
rij
)

n×n is the intuitionistic fuzzy judgment matrix obtained by pairwise
comparison of indices at each layer R =

(
rij
)

n×n, R =
(
rij
)

n×n is the intuitionistic fuzzy
consistency-judgment matrix calculated from the intuitionistic fuzzy judgment matrix, and
n represents the number of experts.

Let R =
(

µij, νij

)
when j > i + 1, where

µij =

j−i−1

√
j−1
∏

t=i+1
µitµtj

j−i−1

√
j−1
∏

t=i+1
µitµtj +

j−i−1

√
j−1
∏

t=i+1
(1− µit)

(
1− µtj

) (20)

νij =

j−i−1

√
j−1
∏

t=i+1
νitνtj

j−i−1

√
j−1
∏

t=i+1
νitνtj +

j−i−1

√
j−1
∏

t=i+1
(1− νit)

(
1− νtj

) (21)

Let rij = rij when j = i + 1; let rij =
(

νij, µij

)
when j < i + 1.

Substitute µij, νij into d
(

R, R
)
, if d

(
R, R

)
< 0.1, then pass the consistency check; if

d
(

R, R
)
≥ 0.1, the parameters σ will be set to iterate—that is, to transform the matrix by

regulating the iterative parameters σ until it passes. Given parameters σ (σ ∈ [0, 1]), let

µ̃ij =

(
µij
)1−σ(

µij
)σ(

µij
)1−σ

(
µij

)σ
+
(
1− µij

)1−σ
(

1− µij

)σ , i, j = 1, 2, . . . , n (22)

ν̃ij =

(
νij
)1−σ(

νij
)σ(

νij
)1−σ(

νij
)σ

+
(
1− νij

)1−σ(1− νij
)σ

, i, j = 1, 2, . . . , n (23)
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Substitute the adjusted matrix into d
(

R̃, R
)

, and then we can get

d
(

R̃, R
)
=

1
2(n− 1)(n− 2)

n

∑
i=1

n

∑
j=1

(∣∣µ̃ij − µij
∣∣+ ∣∣ν̃ij − νij

∣∣+ ∣∣π̃ij − πij
∣∣) (24)

Step 4. Calculate the priority.
After obtaining the intuitionistic fuzzy consistency-judgment matrix, the priority of

the indices of the previous layer is calculated by

εi =


n
∑

j=1
µij

n
∑

i=1

n
∑

j=1

(
1− νij

) , 1−

n
∑

j=1

(
1− νij

)
n
∑

i=1

n
∑

j=1

(
1− µij

)
, i = 1, 2, . . . , n (25)

where i denotes the number of experts.
Step 5. Aggregate the IFNs.
According to the priority εi, the aggregated priority value of each expert Wi can be

calculated by

Wi =
n

∑
j=1

(
ε j × εij

)
, i = 1, 2, · · ·, n (26)

Step 6. Sort experts’ priority and calculate their weights.
The crisp value of the priority of each expert is obtained by

ρ(Wi) = 0.5
(
1 + πWi

)(
1− µWi

)
(27)

where a smaller ρ(Wi) represents stronger priority from the expert. The relative weight of
each expert can be calculated by

wi =
S(Wi)

n
∑

i=1
S(Wi)

(28)

where
S(Wi) = 1− ρ(Wi) (29)

3.4.2. Calculation of the Experts’ Opinion Similarity and Construction of the Opinion
Similarity Matrix

When the weights of all experts in the expert group are determined, the experts will
be consulted to give the probability of occurrence of the root events in the BN as regards
linguistic terms. These opinions are converted into the corresponding TpIFNs. The experts’
opinion similarity can then be given by Equation (30).

S
(

Ẽi, Ẽj

)
=


EV(Ẽi)
EV(Ẽj)

, EV
(

Ẽi

)
≤ EV

(
Ẽj

)
EV(Ẽj)
EV(Ẽi)

, EV
(

Ẽj

)
≤ EV

(
Ẽi

) (30)

where EV
(

Ẽi

)
is the expectation of the TpIFN converted from the ith expert’s linguistic

opinion on the probability of a certain root event’s occurrence, and it can be calculated by
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Equation (10) in Section 2.3. S
(

Ẽi, Ẽj

)
is the opinion similarity between the ith expert and

the jth expert. If there are m experts in the group, the similarity matrix Sm is

Sm =


1 S21 · · · S1m

S21 1 · · · S2m
...

...
. . .

...
Sm1 Sm2 · · · 1

 (31)

where Sij = S
(

Ẽi, Ẽj

)
when i 6= j, and Sij = 1 when i = j.

3.4.3. Calculation of the Weighted Agreement and Relative Agreement of Each Expert

The weighted agreement degree of each expert’s opinion can be calculated by

WA(Ei) =

m
∑

j = 1
j 6= i

w(Ej) · S
(

Ẽi, Ẽj

)

m
∑

j = 1
j 6= i

w(Ej)
, i = 1, 2, . . . , m (32)

where Ei (i = 1,2, . . . , m) is the ith expert, and then the relative agreement degree of each
expert can be obtained by

RAD(Ei) =
WA(Ei)

m
∑

i=1
WA(Ei)

, i = 1, 2, . . . , m (33)

3.4.4. Calculation of the Consensus Degree Coefficient of Experts and Aggregation of
the Opinions

Since the relative importance of experts is variable, each expert has their own weight
coefficient wi. The consensus degree coefficient (CDCi) of the ith expert can be considered
as

CDCi = β · wi + (1− β) · RADi (34)

where β (0 < β < 1) is defined as the relaxation factor, which represents the importance of
the average agreement of experts compared to the relative agreement. After that, the R̃,
which means the result of aggregation, can be confirmed as

R̃ =
n

∑
i=1

(
CDCi(·)Ẽi

)
(35)

where (·) is the multiplication operator of the TpIFNs.

3.5. Defuzzification of TpIFNs

After the occurrence possibility of each root event expressed as a TpIFN is obtained
through TpIFN-SAM, the defuzzification process is required in order to gain the clear
value of the possibility, which is called the possibility score (PS). In this work, the cen-
troid method (see Equation (36)) is adopted to perform the defuzzification of a TpIFN
Ã = (a, b, c, d; a′, b, c, d′).

PS =
(d′ − a′)(b + c− 4d′ − 4a′) + (d− a)(2a + b + c + 2d) + 4

(
d′2 − a′2

)
4(d′ − a′ + d− a)

(36)
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3.6. Calculation of Failure Probability of the System through BN

For the purpose of launching the analysis of the failure probability of the system
using the BN, it is essential here to convert the PSs of the root nodes into conventional
failure-probability values (FPs). In general, the formula proposed by Onisawa [47] can be
adopted to translate PS into FP. However, this approach is not widely applicable due to the
distinction in failure-probability classification standards in different industries, as well as
the difference in the definition of linguistic scale for the failure probability [48]. Therefore, a
corresponding further calculation method is adopted to convert PS into FP, and the formula
is as follows [24]:

FP =

{
1

10K , PS 6= 0

0, PS = 0
(37)

where

K =


−0.72 ln PS + 2.839, 0 ≤ PS < 0.2

− 1
3 × (10PS− 14), 0.2 ≤ PS ≤ 0.8[
(1−PS)

PS

]0.445
× 3.705, 0.8 < PS ≤ 1

(38)

3.7. Sensitivity Analysis (SA) and Critical Importance Analysis (CIA)

Besides calculating the failure probability of a system using BNs, the identification
and analysis of critical events affecting the system failure is also an important task in
failure assessment. However, the results may be inaccurate if merely relying on prior or
posterior probabilities to identify the most critical events. Therefore, this work presents
several analysis methods, such as the ratio of variation (RoV), sensitivity analysis (SA),
and criticality-importance analysis. RoV is used to measure the degree of the effect of root
events in terms of system failure, and it can be calculated by [24]

RoV(Xi) =
ϕ(Xi)− φ(Xi)

φ(Xi)
(39)

where ϕ(Xi) and φ(Xi) indicate the posterior and prior probability of the ith event, respectively.
SA can provide a great degree of help in verifying the probabilistic parameters of BN.

This is achieved by researching the influence of tiny changes in numerical parameters on
the posterior probability. Highly sensitive parameters have a more significant effect on
reasoning results. The sensitivity value is the partial derivative of the posterior output
result of the hypothesis relative to the likelihood of a particular state of the evidence.
From a mathematical perspective, for a hypothesis θ given evidence e as a function of a
probabilistic likelihood x, the posterior probability P(θ|e )(x) is the sensitivity function f (x)
of x. The sensitivity function is as follows [49]:

f (x) = P(θ|e )(x) =
P(θ ˆe)(x)

P(e)(e)
=

J · x + K
M · x + N

(40)

where the coefficients J, K, M, and N originate from the original (unvaried) parameters of
the BN.

The absolute value of the first derivative of the sensitivity function at the original-
likelihood value can be used to express the sensitivity of the likelihood value, which can be
represented by the SV (sensitivity value),

SV =

∣∣∣∣∣ J · N − K ·M
(M · x + N)2

∣∣∣∣∣ (41)
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The influence of the root events can also calculate the criticality importance of the
roots in a fault-tree framework [29].

ICR(i|t) =
IP(i

∣∣t)Pi(t)
Q0(t)

(42)

IP(i|t) = ∂Q0(t)
∂Pi(t)

= Q0(1i, t)−Q0(0i, t) (43)

where ICR(i|t) is the criticality importance of the ith root event when time t is reached. Pi(t)
and Q0(t) are the probabilities when the ith event and the top event occur, respectively.
Q0(0i,t) is the probability of the top event when the non-occurrence of the ith root event is
known, and Q0(1i,t) is the probability of top event when the occurrence of ith root event
is known.

4. Application for Failure Assessment of a Coal Gasifier

This section demonstrates the specific analysis process of the proposed method by
taking a coal gasifier as an example. Figure 6 shows the process of the coal-gasification
system. Firstly, the coal–water slurry is broken up, atomized, and sprayed into the gasifier
under the action of a high-speed oxygen stream passing through the nozzle. The oxygen
and the atomized water–coal slurry are subjected to high temperatures in the gasifier and
then rapidly undergo a series of complex processes such as preheating, water evaporation,
coal dry distillation, volatile pyrolysis combustion, and carbon gasification to produce wet
gas with CO, H2, CO2, and water vapor as the main components. Finally, the wet gas, slag,
and unreacted carbon leave the reaction zone together and enter the cooling chamber. The
molten slag is trapped in the water, falls into the slag tank, and is discharged periodically
via the slag-discharge system, whereas the gas and saturated steam go to the next treatment
system. In this system the gasifier is the central piece of equipment for the realization of
the gasification process.
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4.1. Construction of the BN for Analyzing the Failure Risk of the Gasifier

Based on the experts’ suggestions and relevant literature, the FT of the gasifier was
instituted. The failure of the gasifier was set as the top event, and it was primarily leaded
by the abnormality of gasifier, equipment-corrosion, and human organization factors.
Further analysis was executed due to the above sub-top events till all possible root events
were considered. The FT of the gasifier and the corresponding event symbols in the FT
are shown in Figure 7 and Table 4. The FT of the gasifier was then converted into the
corresponding BN through the method presented in Section 2.5. The CPTs were determined
for all the intermediate nodes according to the logic-gate rules and the BN model illustrated
in Figure 8.
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Table 4. Description of the events in the fault tree of the coal gasifier.

T/IEs Description REs Description REs Description

T Gasifier failure X1 Slag opening blocked by large pieces of slag X14 Low oxygen-flow rate
T1 Gasifier abnormality X2 Slag opening blocked by molten furnace bricks X15 High flow rate of coal slurry
T2 Corrosion failure X3 Low liquid level in quench chamber X16 High concentration of coal slurry
T3 Human organization factors X4 Cracking in the quench ring or vertical pipe X17 Temperature sensor damaged
I1 Pressure fluctuation X5 Abnormal flow rate of quench water X18 High H2S content
I2 Abnormal liquid level X6 Abnormal flow rate of coal water X19 High CO2 content
I3 Abnormal temperature X7 Leakage of drain valve of quench water X20 High H2O content
I4 Too-high temperature X8 Liquid-level gauge damaged by blockage X21 High flow rate
I5 Too-low temperature X9 High oxygen-flow rate X22 Anti-corrosion layer damaged
I6 Internal corrosion X10 Low flow rate of coal slurry X23 Insulation layer damaged
I7 Medium content X11 Low concentration of coal slurry X24 Pre-job training is not up to standard
I8 External corrosion X12 Burner damaged X25 Improper operation
I9 Unintentional destruction X13 Temperature sensor damaged X26 Unattended (unsafe supervision)

X27 Deliberate destruction
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In linguistic terms, intuitionistic fuzzy membership functions come in many forms to 
address the uncertainty and inaccuracy of expert judgments. Triangular and trapezoidal 
intuitionistic fuzzy membership functions are more efficient for risk analysis. Still, a tri-
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4.2. Collection of Experts’ Opinions on the Failure of the Coal Gasifier
4.2.1. Definition of the TpIFN–Probabilistic Linguistic Scales

Based on experts’ opinions and relevant literature, this study classified the failure
probability of gasifiers into seven levels. Each level corresponds to a range of values for the
failure probability of the gasifier, as Table 5 shows.
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Table 5. Failure-probability rating of the coal gasifier.

Level Description Failure Probability

Quite Low No expected failures over the entire
operating life of the equipment. <10−5

Low ≥1 accident may occur during the
entire operating life of the equipment. 10−5–10−4

Ordinary Low ≥1 accident may occur within 10 years
of equipment operation. 10−4–5 × 10−4

Moderate ≥1 accident may occur within 5 years
of equipment operation. 5 × 10−4–2 × 10−3

Odinary High ≥1 accident may occur per year of
equipment operation. 2 × 10−3–10−2

High ≥1 accident may occur per quarter of
equipment operation. 10−2–10−1

Quite High ≥1 accident may occur per month of
equipment operation. >10−1

In linguistic terms, intuitionistic fuzzy membership functions come in many forms
to address the uncertainty and inaccuracy of expert judgments. Triangular and trape-
zoidal intuitionistic fuzzy membership functions are more efficient for risk analysis. Still,
a triangle is a particular case of a trapezoid. Therefore, in this study, the membership
and non-membership functions of TpIFNs were used to quantitate the probability of
gasifier-failure-accident risk. Seven sets of TpIFNs were determined according to the given
probability interval in the gasifier-failure-accident risk. Transformation of linguistic vari-
ables into corresponding TpIFNs was carried out by mapping relationship of trapezoidal
intuitionistic fuzzy sets. The trapezoidal intuitionistic fuzzy sets produced the qualitive
failure probabilities of risk events to quantify, as Table 6 shows. The membership and
non-membership function curves of TpIFNs matching with seven linguistic variables are
illustrated in Figure 9.

Table 6. Trapezoidal intuitionistic fuzzy number corresponding to failure possibility.

Failure Possibility Trapezoidal Intuitionistic Fuzzy Number

Quite Low (0, 0, 0.075, 0.1; 0, 0, 0.075, 0.1)
Low (0.005, 0.12, 0.13, 0.245; 0, 0.12, 0.13, 0.25)

Ordinary Low (0.15, 0.275, 0.325, 0.45; 0.125, 0.275, 0.325, 0.475)
Moderate (0.35, 0.45, 0.55, 0.65; 0.3, 0.45, 0.55, 0.7)

Ordinary High (0.55, 0.675, 0.725, 0.85; 0.525, 0.675, 0.725, 0.875)
High (0.755, 0.87, 0.88, 0.995; 0.75, 0.87, 0.88, 1)

Quite High (0.9, 0.925, 1, 1; 0.9, 0.925, 1, 1)
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4.2.2. Expert’s Opinions on Root Events of the BN

Four experts with different professional backgrounds were selected to establish an
expert group. To match up to the failure-probability ratings mentioned in Table 5, a seven-
level linguistic-term set (QL, LO, OL, MO, OH, HI, QH) was used to express the experts’
opinions on the occurrence possibility of each root event in the BN. Table 7 shows the
experts’ judgments of all root nodes.

Table 7. Experts’ opinions on root events of the BN for the gasifier failure.

Event
Linguistic Judgment of Experts

Event
Linguistic Judgment of Experts

E1 E2 E3 E4 E1 E2 E3 E4

X1 OL MO OL MO X15 OL MO MO MO
X2 MO OL OL MO X16 MO MO OL OL
X3 OL LO OL OL X17 MO OH MO MO
X4 OL OL OL MO X18 MO OH MO OH
X5 MO MO OL OL X19 OH MO OH MO
X6 MO MO OL OL X20 HI HI HI HI
X7 MO MO OL OL X21 MO MO OL MO
X8 MO MO MO MO X22 OH OH MO OH
X9 MO OL MO MO X23 OH MO OH OH
X10 OL MO MO MO X24 OL OL MO MO
X11 MO MO OL OL X25 MO MO OL MO
X12 OL MO MO OL X26 OL MO MO MO
X13 MO MO MO OH X27 LO LO QL LO
X14 OL MO MO MO

4.3. Aggregation of the TpIFNs for Describing the Failure Probabilities of the Root Nodes
4.3.1. Calculation of the Experts’ Weights

The IF-AHP method mentioned above was used for the computation of the experts’
weights. The personal information of the experts is shown in Table 8.

Table 8. Basic information of the experts.

Professional Position Education Level Service Time

E1 Professor Doctorate 30
E2 Engineer Master’s 24
E3 Associate professor Doctorate 23
E4 Engineer Bachelor’s 32

The judgment matrix for the three indices of professional position (C1), education level
(C2), and service time (C3) is shown in Table 9. The expert group’s intuitionistic-preference
relationships for C1–C3 are shown in Tables 10–12.

Table 9. The intuitionistic-preference relationship for the three indices (C1–C3).

R C1 C2 C3

C1 (0.5, 0.5) (0.7, 0.2) (0.6, 0.2)
C2 (0.2, 0.7) (0.5, 0.5) (0.2, 0.6)
C3 (0.2, 0.6) (0.6, 0.2) (0.5, 0.5)
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Table 10. The expert group’s intuitionistic-preference relationship for professional position (C1).

R1 E1 E2 E3 E4

E1 (0.5, 0.5) (0.7, 0.2) (0.6, 0.3) (0.7, 0.2)
E2 (0.3, 0.6) (0.5, 0.5) (0.3, 0.6) (0.4, 0.4)
E3 (0.3, 0.6) (0.6, 0.3) (0.5, 0.5) (0.6, 0.3)
E4 (0.2, 0.7) (0.4, 0.4) (0.3, 0.6) (0.5, 0.5)

Table 11. The expert group’s intuitionistic-preference relationship for education level (C2).

R2 E1 E2 E3 E4

E1 (0.5, 0.5) (0.7, 0.2) (0.4, 0.4) (0.7, 0.1)
E2 (0.2, 0.7) (0.5, 0.5) (0.7, 0.2) (0.6, 0.2)
E3 (0.4, 0.4) (0.2, 0.7) (0.5, 0.5) (0.7, 0.1)
E4 (0.1, 0.7) (0.2, 0.6) (0.1, 0.7) (0.5, 0.5)

Table 12. The expert group’s intuitionistic-preference relationship for service time (C3).

R3 E1 E2 E3 E4

E1 (0.5, 0.5) (0.6, 0.2) (0.6, 0.2) (0.4, 0.4)
E2 (0.2, 0.6) (0.5, 0.5) (0.3, 0.3) (0.2, 0.6)
E3 (0.2, 0.6) (0.3, 0.3) (0.5, 0.5) (0.2, 0.6)
E4 (0.4, 0.4) (0.6, 0.2) (0.6, 0.2) (0.5, 0.5)

A consistency check of the preference relationships was then performed according
to Equations (22) and (23). An example illustrated the consistency-test process of the
intuitionistic preference relation R.

Through Equations (20) and (21), the intuitionistic fuzzy consistency judgment matrix
R =

(
rij
)

n×n was calculated according to R.

R =

 (0.5, 0.5) (0.7, 0.2) (0.368, 0.273)
(0.2, 0.7) (0.5, 0.5) (0.2, 0.6)

(0.273, 0.368) (0.6, 0.2) (0.5, 0.5)

 (44)

Take r13 as an example:

µ13 =
µ12 · µ23

µ12 · µ23 + (1− µ12)(1− µ23)
=

0.7× 0.2
0.7× 0.2 + 0.3× 0.8

= 0.368 (45)

ν13 =
ν12 · ν23

ν12 · ν23 + (1− ν12)(1− ν23)
=

0.2× 0.6
0.2× 0.6 + 0.8× 0.4

= 0.273 (46)

The distance between R and R calculated by Equation (19) was d
(

R, R
)
= 0.232 >

0.1, indicating that the consistency check failed. We had to adjust the parameters with
Equations (22) and (23) until the consistency test was passed. The fused intuitionistic
preference relation R̃ was obtained.

R̃ =

 (0.5, 0.5) (0.7, 0.2) (0.413, 0.258)
(0.2, 0.7) (0.5, 0.5) (0.2, 0.6)

(0.258, 0.413) (0.6, 0.2) (0.5, 0.5)

 (47)

where σ = 0.8. According to Equation (24), the distance between R̃ and R d
(

R̃, R
)
= 0.0935 < 0.1,

and the consistency check was passed. The consistency checks for the intuitionistic-preference
relationships Ri (i = 1, 2, 3) were also conducted according to the same process.
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Next, the priority of each consistent intuitionistic-preference relationship was derived.
For example, the priority vector of the R̃ was calculated as ε1 = (0.315, 0.602), ε2 = (0.176,
0.602), and ε3 = (0.265, 0.632) with Equation (25). Subsequently, all prioritization vectors
were aggregated. Take W1 as an example:

W1 =
4
∑

j=1

(
ε j × ε1j

)
= (0.315, 0.602) × (0.284, 0.622) + (0.176, 0.602) × (0.256, 0.6) + (0.265, 0.632) × (0.223,

0.591)
= (0.182, 0.607)

(48)

Table 13 shows the aggregated intuitionistic fuzzy priority of Ci.

Table 13. The aggregated intuitionistic fuzzy priority of Ci.

εi
C1 C2 C3 Wj

(0.315, 0.602) (0.176, 0.602) (0.265, 0.632)

E1 (0.284, 0.622) (0.256, 0.6) (0.223, 0.591) (0.182, 0.607)
E2 (0.171, 0.742) (0.222, 0.657) (0.128, 0.697) (0.122, 0.688)
E3 (0.227, 0.689) (0.2, 0.671) (0.128, 0.697) (0.135, 0.677)
E4 (0.159, 0.757) (0.1, 0.786) (0.223, 0.591) (0.122, 0.702)

Per Equations (28) and (29), S(W1) = 1− (1+πW1)(1−µW1)
2 = 0.502. Similarly, S(W2) = 0.478,

and S(W3) = 0.486, S(W4) = 0.484. After normalization, the experts’ weights were finally obtained:
w = (w1, w2, w3, w4) = (0.257, 0.245, 0.250, 0.248).

4.3.2. Aggregation of the Experts’ Opinions

After obtaining the experts’ weights and the TpIFNs were converted from the experts’
opinions on the occurrence possibilities of the events, the proposed TpIFN-SAM was used
to aggregate the opinions. To elaborate the specific process of the TpIFN-SAM, the root
node X18 was treated as an example, and the calculation process is shown in Table 14.

Table 14. Detailed aggregation and FP calculation process of the node X18.

Subject Data Subject Data Process

Ẽ1
(0.38, 0.46, 0.57, 0.63;
0.32, 0.46, 0.56, 0.68) EV

(
Ẽ1

)
0.509 EV

(
Ẽ
)
=

a1+b1+2a2+2a3+a4+b4
8

Ẽ2
(0.56, 0.68, 0.74, 0.83;
0.53, 0.68, 0.74, 0.85) EV

(
Ẽ2

)
0.701 EV

(
Ẽ1

)
=

0.38+0.32+2×0.46+2×0.57+0.63+0.68
8Ẽ3

(0.39, 0.47, 0.58, 0.64;
0.33, 0.47, 0.58, 0.69) EV

(
Ẽ3

)
0.519

Ẽ4
(0.57, 0.69, 0.75, 0.84;
0.54, 0.69, 0.75, 0.86) EV

(
Ẽ4

)
0.711

S
(

Ẽ1, Ẽ2

)
0.726 S

(
Ẽ2, Ẽ3

)
0.740

S
(

Ẽi , Ẽj

)
=


EV(Ẽi)
EV
(

Ẽj
) , i f : EV

(
Ẽi

)
≤ EV

(
Ẽj

)
EV
(

Ẽj
)

EV(Ẽi)
, i f : EV

(
Ẽj

)
≤ EV

(
Ẽi

)
S
(

Ẽ1, Ẽ3

)
0.981 S

(
Ẽ2, Ẽ4

)
0.986

S
(

Ẽ1, Ẽ4

)
0.715 S

(
Ẽ3, Ẽ4

)
0.729

S
(

Ẽ1, Ẽ2

)
=

EV(Ẽ1)
EV(Ẽ2)

= 0.509
0.701 = 0.726

WA (E1) 0.821
WA (E2) 0.825
WA (E3) 0.832
WA (E4) 0.817

RAD (E1) 0.249

WA(Ei) =

m
∑

j = 1
j 6= i

ω(Ei )·S
(

Ẽi ,Ẽj
)

m
∑

j = 1
j 6= i

ω(Ej )
, i = 1, 2, . . . , mRAD (E2) 0.334
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Table 14. Cont.

Subject Data Subject Data Process

RAD (E3) 0.253 WA(E1) =
0.257×(0.726+0.981+0.715)

0.245+0.25+0.248

= 0.821RAD (E4) 0.248

CDC1 0.252
RAD(Ei) =

WA(Ei)
m
∑

i=1
WA(Ei)

, i = 1, 2, . . . , mCDC2 0.298

CDC3 0.252
RAD(E1) =

0.821
0.821+0.825+0.832+0.817

= 0.249CDC4 0.248

Aggregation TpIFN (0.502, 0.608, 0.697, 0.776;
0.456, 0.608, 0.697, 0.812) CDCi = β·ω + (1 − β)·RADi

PS 0.534
FP 1.30 × 10−3 CDC1 = 0.4 × 0.257 + 0.6 × 0.249 = 0.252

4.4. TpIFN-Defuzzification
4.4.1. Conversion of the TpIFNs into PSs

The aggregated results obtained by the TpIFN-SAM were still TpIFNs, so TpIFN
Defuzzification was performed by Equation (36) to further convert the TpIFNs into PSs
with crisp values.

4.4.2. Determination of the FPs of All Root Nodes

The PSs of the root nodes were not probability values. In order to implement probabilis-
tic inference with the BN, the PSs were further converted into FPs according to Equations
(37) and (38). Table 15 shows all root nodes of the FPs.

Table 15. The aggregated expert opinions and the corresponding failure probabilities of the root
events in the BN.

Events Aggregated TpIFNs PS FP

X1
(0.278, 0.361, 0.451, 0.547;
0.235, 0.361, 0.451, 0.599) 0.312 2.36 × 10−4

X2
(0.278, 0, 0.361, 0.451, 0.547;

0.235, 0.361, 0.451, 0.599) 0.312 2.36 × 10−4

X3
(0.111, 0.231, 0.273, 0.389;
0.082; 0.231, 0.273; 0.421) 0.169 7.60 × 10−5

X4
(0.221, 0.323, 0.394, 0.506;
0.184, 0.323, 0.394, 0.556) 0.267 1.67 × 10−4

X5
(0.281, 0.368, 0.437, 0.546;
0.234, 0.368, 0.437, 0.585) 0.312 2.36 × 10−4

X6
(0.257, 0.349, 0.427, 0.530;
0.226, 0.349, 0.427, 0.569) 0.301 2.17 × 10−4

X7
(0.251, 0.343, 0.421, 0.510;
0.240, 0.343, 0.421, 0.559) 0.301 2.16 × 10−4

X8
(0.394, 0.447, 0.551, 0.668;
0.352, 0.447, 0.551, 0.726) 0.407 4.91 × 10−4

X9
(0.415, 0.454, 0.561, 0.676;
0.343, 0.454, 0.561, 0.721) 0.409 4.96 × 10−4

X10
(0.422, 0.459, 0.567, 0.679;
0.349, 0.459, 0.567, 0.712) 0.416 5.26 × 10−4

X11
(0.248, 0.340, 0.417, 0.505;
0.236, 0.340, 0.417, 0.552) 0.298 2.12 × 10−4

X12
(0.401, 0.438, 0.543, 0.661;
0.330, 0.438, 0.543, 0.689) 0.399 4.61 × 10−4

X13
(0.487, 0.542, 0.657, 0.728;
0.399, 0.542, 0.657, 0.760) 0.477 8.39 × 10−4

X14
(0.415, 0.454, 0.561, 0.676;
0.343, 0.454, 0.561, 0.721) 0.409 4.96 × 10−4



Processes 2022, 10, 1863 20 of 30

Table 15. Cont.

Events Aggregated TpIFNs PS FP

X15
(0.422, 0.459, 0.567, 0.679;
0.349, 0.459, 0.567, 0.712) 0.416 5.26 × 10−4

X16
(0.248, 0.340, 0.417, 0.505;
0.236, 0.340, 0.417, 0552) 0.298 2.12 × 10−4

X17
(0.487, 0.542, 0.657, 0.728;
0.399, 0.542, 0.657, 0.760) 0.477 8.39 × 10−4

X18
(0.502, 0.608, 0.697, 0.776;
0.456, 0.608, 0.697, 0.812) 0.534 1.30 × 10−3

X19
(0.484, 0.587, 0.675, 0.755;
0.440, 0.587, 0.675, 0.791) 0.517 1.14 × 10−3

X20
(0.814, 0.867, 0.909, 0.977;
0.768, 0.867, 0.909, 0.992) 0.777 8.35 × 10−3

X21
(0.393, 0.504, 0.603, 0.666;
0.332, 0.504, 0.603, 0.716) 0.428 5.74 × 10−4

X22
(0.561, 0.663, 0.743, 0.828;
0.532, 0.663, 0.743, 0.861) 0.596 2.10 × 10−3

X23
(0.561, 0.663, 0.743, 0.828;
0.532, 0.663, 0.743, 0.861) 0.596 2.10 × 10−3

X24
(0.297, 0.401, 0.488, 0.553;
0.245, 0.401, 0.488, 0.593) 0.337 2.86 × 10−4

X25
(0.401, 0.467, 0.597, 0.669;
0.368, 0.467, 0.597, 0.705) 0.436 6.12 × 10−4

X26
(0.396, 0.461, 0.579, 0.659;
0.357, 0.461, 0.579, 0.697) 0.424 5.59 × 10−4

X27
(0.007, 0.113, 0.123, 0.224;
0.002, 0.113, 0.123, 0.241) 0.061 1.40 × 10−5

4.5. BN Analysis
4.5.1. Prediction of the Failure Probability of the Gasifier

Before the BN performs forward prediction, it is necessary to obtain the CPT of each
relevant node. Each CPT in this case was obtained by expert evaluation. Table 16 shows
the CPT of the intermediate node I1. The rest of the CPTs can be found in Appendix B.

Table 16. The CPT of event I1 in the BN model (Occ: occurred; Non: non-occurred).

X1 X2 X3 X4
I1

Occ Non

Occ Occ Occ Occ 1.00 0.00
Occ Occ Occ Non 0.67 0.33
Occ Occ Non Occ 0.69 0.31
Occ Non Occ Occ 0.72 0.28
Occ Non Occ Non 0.62 0.38
Occ Non Non Occ 0.58 0.42
Occ Occ Non Non 0.57 0.43
Occ Non Non Non 0.21 0.79
Non Occ Occ Occ 0.85 0.15
Non Occ Occ Non 0.67 0.33
Non Occ Non Occ 0.68 0.32
Non Occ Non Non 0.31 0.69
Non Non Occ Occ 0.42 0.58
Non Non Occ Non 0.18 0.82
Non Non Non Occ 0.21 0.79
Non Non Non Non 0.00 1.00

The GeNIe software was used to analyze the established BN model of the coal gasifier.
Figure 10 shows the prior probability of the failure of the gasifier through the forward
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inference of the BN. The failure probability of the gasifier (FPT) was 0.036. To contrast the
variations between the FT and the BN, the FPT was also calculated through FT analysis,
and the results show that the FPT in the FT was 0.013, which is nearly three times higher
than that in the BN. This is because the BN takes into account the conditional dependencies
between events and can more objectively report the features of the system.
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4.5.2. Diagnosis of the Key Nodes for the Failure of the Coal Gasifier

The backward inference of the BN was executed to update the occurrence probabilities
of the root nodes to assess the extent to which the root nodes affect the failure of the gasifier.
Figure 11 shows the posterior probability of each root node P (Xi = Occur | T = Occur)
obtained by backward inference of the BN. In the case that the leaf node must occur, the
posterior probability of the root nodes X20 (High H2O content), X22 (Anti-corrosion layer
damaged), and X23 (Insulation layer damaged) are the most worrying ones. Therefore, the
key nodes can be preliminarily determined.
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By comparing the prior and the posterior probability regarding each root node, as
shown in Figure 12, the root nodes with large changes in occurrence probability can be
obtained as X22 (Anti-corrosion layer damaged), X23 (Insulation layer damaged) and X25
(Improper operation), indicating that these three root events have a large contribution to the
failure probability of the gasifier. The acquisition of the prior and the posterior probability
shows the forward-inference (prediction) ability and backward-inference (diagnosis) ability
of the BN, respectively, which completely reflects the superiority of the BN’s bidirectional-
inference ability. Meanwhile, this ability can be used to provide preliminary judgments
and lay the foundation for subsequent analysis and determination of key nodes.
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4.5.3. SA and CIA

The RoV of each root node was calculated with Equation (39). Figure 13 displays the
calculation results of the importance of all basic events. The top six key root nodes were X25
(Improper operation), X24 (Pre-job training is not up to standard), X26 (Unattended/unsafe
supervision), X27 (Deliberately damaged), X23 (Insulation layer damaged), and X21 (High
flow rate).
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For the purpose of further elucidating the devotion of all root nodes to the occurrence
of accidents and identify the critical factors, SA and CIA were performed. Figure 14
shows the sensitivity value and the critical importance of each root node. For the BN, X25
(Improper operation), X24 (Pre-job training is not up to standard), X26 (Unattended/unsafe
supervision), X27 (Deliberately damaged), X23 (Insulation layer damaged), and X22 (Anti-
corrosion layer damaged) were the top six key events for the gasifier failure. For the FT,
the top six key factors included X22 (Anti-corrosion layer damaged), X23 (Insulation layer
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damaged), X13, X17 (Temperature sensor damaged), X25 (Improper operation), and X21
(High flow rate). The results obtained by the two methods are discrepant. The reason for
this is that the BN still considered conditional dependencies between events, whereas the
FT did not capture them.
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Figure 14. Comparison of sensitivity value and critical importance of the root nodes of the BN model
for the coal gasifier.

From the results of the SA and CIA, it can be found that X25 (Improper operation) was
considered the most critical factor on the failure of the coal gasifier. In addition, damage
to anti-corrosion measures (X22 and X23) was also a very important influencing factor.
Therefore, more attention should be allocated to the management and training of operators,
and special attention should be paid to regular inspection of the integrity of insulation and
anti-corrosion layers to minimize the failure of the gasifier.

5. Conclusions

In this study, a new integration framework was proposed to assess the failure risk of
the process system. The improvements of this method compared with the previous method
are as follows:

1. This framework combined the Bayesian network with the TpIFN-SAM to provide an
alternative strategy for obtaining the prior probabilities of the root events in BNs.

2. A set of TpIFNs was defined to quantify the linguistic terms for describing the failure
possibilities of the events in BNs, which are more general and expressive than TpIFNs.

3. The TpIFN-SAM can effectively aggregate the expert opinions on the prior proba-
bilities of the root events in BNs and reduce the uncertain cumulative effect of the
aggregation process by taking the effect of individual discrepancies into account
for the consistency. The bidirectional reasoning of the BN coupled with sensitivity
analysis can accurately calculate the system-failure probability and identify the key
influencing factors that may lead to accidents.

Limitations also exist in this work. The basic probabilities of the root events in the BN
were assumed to be constant in the proposed framework, but in many cases they are time
dependent. Therefore, developing a BN approach for dynamic systems will be covered in
future research work.
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Appendix A

If EV
(

Ã
)

satisfies the following five fundamental theorems, then prove that EV
(

Ã
)

is workable.
EV
(

kÃ
)
= kEV

(
Ã
)

(A1)

EV
(

Ã + C̃
)
= EV

(
Ã
)
+ EV

(
C̃
)

(A2)

If b1 = a1, b4 = a4, then

EV
(

Ã
)
=

a1 + a2 + a3 + a4

4
(A3)

If a2 − a1 = a4 − a3, a2 − b1 = b4 − a3, then

EV
(

Ã
)
=

a2 + a3

2
(A4)

EV(λ) = λ (A5)

Proof

A. When k = 0, empty.
B. When k > 0, let Ã = (a1, a2, a3, a4; b1, a2, a3, b4) be a trapezoidal intuitionistic fuzzy

number, and k is a real number, which we can know by Definition 2:

kÃ = k(a1, a2, a3, a4; b1, a2, a3, b4) = (ka1, ka2, ka3, ka4; kb1, ka2, ka3, kb4) (A6)

The expected value of kÃ is

EV
(

kÃ
)
=

ka1 + kb1 + 2ka2 + 2ka3 + ka4 + kb4

8
= k · a1 + b1 + 2a2 + 2a3 + a4 + b4

8
= k · EV

(
Ã
)

(A7)

C. When k < 0, same result as B. �

Proof: Let Ã = (a1, a2, a3, a4; b1, a2, a3, b4), C̃ = (c1, c2, c3, c4; d1, c2, c3, d4) be two trapezoidal
intuitionistic fuzzy numbers, which can be known by Definition 5:

Ã + C̃ = (a1 + c1, a2 + c2, a3 + c3, a4 + c4; b1 + d1, a2 + c2, a3 + c3, b4 + d4) (A8)

The expected value of Ã + C̃ is

EV
(

Ã + C̃
)
=
(
(a1+c1)+(b1+d1)+2(a2+c2)+2(a3+c3)+(a4+c4)+(b4+d4)

8

)
= (a1+b1+2a2+2a3+a4+b4)+(c1+d1+2c2+2c3+c4+d4)

8

= a1+b1+2a2+2a3+a4+b4
8 + c1+d1+2c2+2c3+c4+d4

8

= EV
(

Ã
)
+ EV

(
C̃
) (A9)

�
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Proof: Let Ã = (a1, a2, a3, a4; b1, a2, a3, b4) be a set of trapezoidal intuitionistic fuzzy num-
bers; if b1 = a1 and b4 = a4, then

EV
(

Ã
)
=

a1 + b1 + 2a2 + 2a3 + a4 + b4

8
=

a1 + a2 + a3 + a4

4
(A10)

�

Proof: By EV
(

Ã
)
= a1+b1+2a2+2a3+a4+b4

8 , if (a2 − a1 = a4 − a3)→ (a2 + a3 = a1 + a4) and
(a2 − b1 = b4 − a3)→ (a2 + a3 = b1 + b4),

EV
(

Ã
)
=

a2 + a3

2
(A11)

�

Proof: Let λ be a real number, then λ = (λ, λ, λ, λ; λ, λ, λ, λ), and

EV(λ) =

(
λ + λ + 2λ + 2λ + λ + λ

8

)
= λ (A12)

Specially, if λ = 0, then EV(λ) = EV(0) = 0. �

The above five theorems are proven, so EV
(

Ã
)

is workable.

Appendix B

Table A1. The CPT of event I2 (Abnormal liquid level; Occ: occurred; Non: non-occurred).

X5 X6 X7 X8
I2

Occ Non

Occ Occ Occ Occ 1.00 0.00
Occ Occ Occ Non 0.83 0.17
Occ Occ Non Occ 0.86 0.14
Occ Non Occ Occ 0.81 0.19
Occ Non Occ Non 0.73 0.27
Occ Non Non Occ 0.71 0.29
Occ Occ Non Non 0.68 0.32
Occ Non Non Non 0.35 0.65
Non Occ Occ Occ 0.76 0.24
Non Occ Occ Non 0.69 0.31
Non Occ Non Occ 0.70 0.30
Non Occ Non Non 0.36 0.64
Non Non Occ Occ 0.69 0.31
Non Non Occ Non 0.40 0.60
Non Non Non Occ 0.38 0.62
Non Non Non Non 0.00 1.00

Table A2. The CPT of event I3 (Abnormal temperature; Occ: occurred; Non: non-occurred).

E4 E5
I3

Occ Non

Occ Occ 1.00 0.00
Occ Non 0.13 0.87
Non Occ 0.17 0.83
Non Non 0.00 1.00
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Table A3. The CPT of event I4 (Too-high temperature; Occ: occurred; Non: non-occurred).

X9 X10 X11 X12 X13
I4

Occ Non

Occ Occ Occ Occ Occ 1.00 0.00
Occ Occ Occ Occ Non 0.75 0.25
Occ Occ Occ Non Occ 0.66 0.34
Occ Occ Non Occ Occ 0.60 0.40
Occ Non Occ Occ Occ 0.47 0.53
Non Occ Occ Occ Occ 0.45 0.55
Occ Occ Occ Non Non 0.53 0.47
Occ Occ Non Occ Non 0.49 0.51
Occ Non Occ Occ Non 0.43 0.57
Non Occ Occ Occ Non 0.39 0.61
Occ Occ Non Non Occ 0.51 0.49
Occ Non Occ Non Occ 0.43 0.57
Non Occ Occ Non Occ 0.40 0.60
Occ Non Non Occ Occ 0.38 0.62
Non Occ Non Occ Occ 0.34 0.66
Non Non Occ Occ Occ 0.30 0.70
Oc Occ Non Non Non 0.49 0.51
Occ Non Occ Non Non 0.42 0.58
Non Occ Occ Non Non 0.38 0.62
Occ Non Non Occ Non 0.37 0.63
Non Occ Non Occ Non 0.34 0.66
Non Non Occ Occ Non 0.29 0.71
Occ Non Non Non Occ 0.35 0.65
Non Occ Non Non Occ 0.33 0.67
Non Non Occ Non Occ 0.27 0.73
Non Non Non Occ Occ 0.25 0.75
Occ Non Non Non Non 0.19 0.81
Non Occ Non Non Non 0.21 0.79
Non Non Occ Non Non 0.24 0.76
Non Non Non Occ Non 0.20 0.80
Non Non Non Non Occ 0.25 0.75
Non Non Non Non Non 0.00 1.00

Table A4. The CPT of event I5 (Too-low temperature; Occ: occurred; Non: non-occurred).

X14 X15 X16 X17
I5

Occ Non

Occ Occ Occ Occ 1.00 0.00
Occ Occ Occ Non 0.89 0.11
Occ Occ Non Occ 0.83 0.17
Occ Non Occ Occ 0.85 0.15
Occ Non Occ Non 0.79 0.21
Occ Non Non Occ 0.76 0.24
Occ Occ Non Non 0.68 0.32
Occ Non Non Non 0.32 0.68
Non Occ Occ Occ 0.86 0.14
Non Occ Occ Non 0.71 0.29
Non Occ Non Occ 0.69 0.31
Non Occ Non Non 0.37 0.63
Non Non Occ Occ 0.42 0.58
Non Non Occ Non 0.28 0.72
Non Non Non Occ 0.26 0.74
Non Non Non Non 0.00 1.00
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Table A5. The CPT of event I6 (Internal corrosion; Occ: occurred; Non: non-occurred).

E7 X21
I6

Occ Non

Occ Occ 1.00 0.00
Occ Non 0.65 0.35
Non Occ 0.33 0.67
Non Non 0.00 1.00

Table A6. The CPT of event I7 (Medium content; Occ: occurred; Non: non-occurred).

X18 X19 X20
I7

Occ Non

Occ Occ Occ 1.00 0.00
Occ Occ Non 0.35 0.65
Occ Non Occ 0.36 0.64
Occ Non Non 0.15 0.85
Non Occ Occ 0.37 0.63
Non Occ Non 0.17 0.83
Non Non Occ 0.19 0.81
Non Non Non 0.00 1.00

Table A7. The CPT of event I8 (External corrosion; Occ: occurred; Non: non-occurred).

X22 X23
I8

Occ Non

Occ Occ 1.00 0.00
Occ Non 0.45 0.55
Non Occ 0.36 0.64
Non Non 0.00 1.00

Table A8. The CPT of event I2 (Unintentional destruction; Occ: occurred; Non: non-occurred).

X24 X25 X26
I9

Occ Non

Occ Occ Occ 1.00 0.00
Occ Occ Non 0.67 0.33
Occ Non Occ 0.71 0.29
Occ Non Non 0.35 0.65
Non Oc Occ 0.69 0.31
Non Occ Non 0.41 0.59
Non Non Occ 0.38 0.62
Non Non Non 0.00 1.00

Table A9. The CPT of event T1 (Gasifier abnormality; Occ: occurred; Non: non-occurred).

E1 E2 E3
T1

Occ Non

Occ Occ Occ 1.00 0.00
Occ Occ Non 0.22 0.78
Occ Non Occ 0.33 0.67
Occ Non Non 0.18 0.82
Non Occ Occ 0.32 0.68
Non Occ Non 0.19 0.81
Non Non Occ 0.13 0.87
Non Non Non 0.00 1.00
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Table A10. The CPT of event T2 (Corrosion failure; Occ: occurred; Non: non-occurred).

E6 E8
T2

Occ Non

Occ Occ 1.00 0.00
Occ Non 0.17 0.83
Non Occ 0.15 0.85
Non Non 0.00 1.00

Table A11. The CPT of event T3 (Human-organization factors; Occ: occurred; Non: non-occurred).

E9 X27
T3

Occ Non

Occ Occ 1.00 0.00
Occ Non 0.66 0.34
Non Occ 0.21 0.79
Non Non 0.00 1.00

Table A12. The CPT of event T (Gasifier failure; Occ: occurred; Non: non-occurred).

T1 T2 T3
T

Occ N

Occ Occ Occ 1.00 0.00
Occ Occ Non 0.28 0.72
Occ Non Occ 0.37 0.63
Occ Non Non 0.33 0.67
Non Occ Occ 0.38 0.62
Non Occ Non 0.34 0.66
Non Non Occ 0.23 0.77
Non Non Non 0.00 1.00
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