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Abstract: Cytokine-targeted therapies have shown efficacy in treating patients with ulcerative colitis
(UC), but responses to these advanced therapies can vary. This variability may be due to differences
in cytokine profiles among patients with UC. While the etiology of UC is not fully understood,
abnormalities of the cytokine profiles are deeply involved in its pathophysiology. Therefore, an
approach focused on the cytokine profile of individual patients with UC is ideal. Recent studies
have demonstrated that molecular analysis of cytokine profiles in UC can predict response to each
advanced therapy. This narrative review summarizes the molecules involved in the efficacy of various
advanced therapies for UC. Understanding these associations may be helpful in selecting optimal
therapeutic agents.
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1. Introduction

Ulcerative colitis (UC) is a chronic, remitting/relapsing inflammatory disease of the
intestinal tract that requires lifelong monitoring and treatment [1]. Although the etiology
of UC is not fully understood, abnormalities in the cytokine network contribute to the
pathophysiology of UC. Several inflammatory bowel disease (IBD) risk loci are located in
regions encoding cytokines and their downstream signaling mediators [2–4]. Therefore,
advanced therapies such as cytokine-targeted therapies for UC have been developed and
clinically used [5,6].

These advanced therapies include (1) anti-tumor necrosis factor (TNF)-α antibod-
ies (infliximab, adalimumab, and golimumab), anti-interleukin (IL)-12/23p40 antibodies
(ustekinumab), and anti-IL-23p19 antibodies (mirikizumab and guselkumab) that neu-
tralize inflammatory cytokines; (2) Janus kinase (JAK) inhibitors (tofacitinib, filgotinib,
and upadacitinib) that block downstream signaling of cytokine receptors; and (3) anti-
integrins (vedolizumab and carotegrast) and sphingosine-1-phosphate (S1P) modulators
(ozanimod) that inhibit migration of effector immune cells [7–11]. These therapies can di-
rectly or indirectly alter key inflammation pathways, receptors, and some crucial adhesion
molecules [12]. They have shown efficacy in treating UC [13], but there are differences in
how patients respond to each treatment. For instance, up to 40% of patients with UC do
not respond to treatment with anti-TNF-α therapy [14]. This might reflect the fact that
individual patients with UC have different cytokine profiles [15]. Several reports have
explored the association between differences in cytokine profiles among individual patients
with UC and therapeutic efficacy [16,17]. Multiple factors, including genetic background,
environmental factors, luminal factors, and intestinal microbiota, are intricately involved
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in the etiology of UC, which could contribute to individual cytokine profile heterogene-
ity [18,19]. Therefore, it is reasonable that an approach focused on the cytokine profile of
individual patients with UC would enhance the likelihood of success, minimize off-target
effects, and produce sustained effects of cytokine-targeted therapy [20]. For instance, recent
studies have demonstrated that Oncostatin M (OSM) is not only correlated with the severity
of UC but can also predict the response to treatment with anti-TNF-α antibodies [21,22].
However, there is currently no evidence that individual cytokine profiles contribute to
optimal biologics selection.

This narrative review provides a summary from the perspective of cytokine profiles
related to intestinal homeostasis and the pathophysiology of UC, and previous reports on
cytokine profiles that predict therapeutic efficacy.

2. Role of Cytokines in the Pathophysiology of UC
2.1. Intestinal Homeostasis and Cytokinesis

Intestinal epithelial cells (IECs), immune cells, gut microbiota, and mesenchymal cells
orchestrate the maintenance of intestinal homeostasis, which is regulated by cytokines.

T helper (Th) 17 cells and type 3 innate lymphocytes (ILC3) maintain intestinal ep-
ithelial function by producing IL-6, IL-17, and IL-22. IL-6 and IL-22 promote IEC survival
and proliferation through activation of signal transducer and activator of transcription
(STAT) 3 signaling [23]. IL-17 promotes antimicrobial peptide secretion and IEC tight
junction formation [24,25]. Gut microbiota stimulation triggers mononuclear phagocytes to
produce IL-1β, IL-6, and IL-23, which in turn promotes IL-22 and IL-17 production by Th17
cells [26,27]. Dietary metabolites like retinoic acid (RA) and aryl hydrocarbon receptor
(AHR) ligands also stimulate IL-22 production by ILC3 [28,29].

Type 1 interferon (IFN) produced by mononuclear phagocytes enhances barrier in-
tegrity through STAT1 and STAT2 signaling and promotes anti-inflammatory cytokine
production by T regulatory (Treg) cells [30].

When IECs are damaged, macrophages are activated to promote the repair of the
injured tissue. Classically activated M1 macrophages differentiate into M2 macrophages
through STAT6 activation. M2 macrophages directly activate Wnt signaling pathway by
expressing Wnt ligands, facilitating tissue repair [31,32].

Treg cells are essential for regulating excessive immune responses. IL-10 is a cru-
cial anti-inflammatory cytokine secreted by Treg cells [33,34]. IL-10 inhibits both antigen
presentation and subsequent release of pro-inflammatory cytokines. IL-10 gene polymor-
phisms are associated with early-onset and severe intestinal inflammation [33]. Recently,
the transcription factor cellular musculoaponeurotic fibrosarcoma (c-Maf) was shown to
promote IL-10 production in forkhead box P3 (Foxp3)+ Treg and T regulatory type 1 (Tr1)
cells [35]. Foxp3+ Treg cells express numerous IL-2 receptors, and IL-2 promotes Treg cell
differentiation in the thymus and maintenance in the periphery [36]. IL-33 directly acts on
Foxp3+ Treg cells, promoting their accumulation [37].

The intestinal epithelium is coated by secreted immunoglobulin (Ig) A to prevent
pathogenic bacteria from interacting directly with the intestinal epithelium [38]. B cell
activating factor (BAFF), IL-10, IL-6, and transforming growth factor (TGF)-β promote IgA
secretion from plasma cells [39,40].

The interaction between mononuclear phagocytes, ILCs, T cells, and B cells is an
important host adaptation to microbial stimuli, and its deficiency could be linked to the
onset of IBD (Figure 1).
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Figure 1. The role of cytokines that contribute to intestinal homeostasis. Intestinal homeostasis is 
maintained via interactions between IECs, immune cells, gut microbiota, and mesenchymal cells, 
and is tightly regulated by cytokines. Th17 cells and ILC3 promote IEC proliferation and survival, 
as well as antimicrobial substances and mucus secretion through the production of IL-22, IL-17, and 
IL-6. Mononuclear phagocytes enhance barrier integrity through the production of type I IFN. IL-
10 produced by Tregs and Tr1 regulates excessive immune responses and maintains intestinal ho-
meostasis. In addition, IgA secreted by B cells promotes effective defense by coating pathogenic 
bacteria from interacting directly with the epithelium. Abbreviations: AHR, aryl hydrocarbon re-
ceptor; BAFF, B cell activating factor; DC, dendric cell; IEC, intestinal epithelial cell; IFN, interferon; 
Ig, immunoglobulin; IL, interleukin; ILC, innate lymphoid cell; MAIT, mucosal-associated invariant 
T cells; RA, retinoic acid; SAA, serum amyloid A; TGF-β, transforming growth factor-β; Th, T helper; 
Tr1, Type 1 regulatory; Treg, T regulatory. 

2.2. Pathophysiology of UC 
The immune system is divided into two main systems: innate and adaptive immun-

ity. Innate immune cells respond rapidly and non-specifically to pathogens or other for-
eign entities. Once activated, they cause inflammation by releasing cytokines and chemo-
kines and phagocytizing pathogens and cellular debris. Adaptive immunity takes longer 
to activate than innate immunity due to its dependence on antigen presentation and the 
cytokines produced by the innate immune response, but its response is specific. Both in-
nate and adaptive immune cells have been shown to be significantly involved in the path-
ophysiology of UC [41]. 

2.2.1. Innate Immunity 
Disruption of the epithelial barrier function and microbial dysbiosis are important 

triggers in the pathophysiology of UC. This process involves the activation of the innate 
immune system by damage-associated molecular patterns (DAMPs) and pathogen-asso-
ciated molecular patterns (PAMPs), which interact with pattern recognition receptors 
(PRRs) on IECs and immune cells. Immune cells such as neutrophils and mononuclear 
phagocytes and inflammatory cytokines like IL-1β, TNF-α, and IL-6 play crucial roles in 
the downstream of these responses. 

Neutrophils are recruited from circulating blood to inflamed tissues by cytokines 
such as IL-1β, IL-6, and TNF-α and chemokines like C-X-C motif ligand (CXCL) 5 and IL-
8 [42–44]. Abnormal activation of neutrophils has been observed in patients with UC [45]. 

Figure 1. The role of cytokines that contribute to intestinal homeostasis. Intestinal homeostasis is
maintained via interactions between IECs, immune cells, gut microbiota, and mesenchymal cells,
and is tightly regulated by cytokines. Th17 cells and ILC3 promote IEC proliferation and survival,
as well as antimicrobial substances and mucus secretion through the production of IL-22, IL-17,
and IL-6. Mononuclear phagocytes enhance barrier integrity through the production of type I IFN.
IL-10 produced by Tregs and Tr1 regulates excessive immune responses and maintains intestinal
homeostasis. In addition, IgA secreted by B cells promotes effective defense by coating pathogenic
bacteria from interacting directly with the epithelium. Abbreviations: AHR, aryl hydrocarbon
receptor; BAFF, B cell activating factor; DC, dendric cell; IEC, intestinal epithelial cell; IFN, interferon;
Ig, immunoglobulin; IL, interleukin; ILC, innate lymphoid cell; MAIT, mucosal-associated invariant
T cells; RA, retinoic acid; SAA, serum amyloid A; TGF-β, transforming growth factor-β; Th, T helper;
Tr1, Type 1 regulatory; Treg, T regulatory.

2.2. Pathophysiology of UC

The immune system is divided into two main systems: innate and adaptive immunity.
Innate immune cells respond rapidly and non-specifically to pathogens or other foreign
entities. Once activated, they cause inflammation by releasing cytokines and chemokines
and phagocytizing pathogens and cellular debris. Adaptive immunity takes longer to
activate than innate immunity due to its dependence on antigen presentation and the
cytokines produced by the innate immune response, but its response is specific. Both
innate and adaptive immune cells have been shown to be significantly involved in the
pathophysiology of UC [41].

2.2.1. Innate Immunity

Disruption of the epithelial barrier function and microbial dysbiosis are important
triggers in the pathophysiology of UC. This process involves the activation of the innate im-
mune system by damage-associated molecular patterns (DAMPs) and pathogen-associated
molecular patterns (PAMPs), which interact with pattern recognition receptors (PRRs)
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on IECs and immune cells. Immune cells such as neutrophils and mononuclear phago-
cytes and inflammatory cytokines like IL-1β, TNF-α, and IL-6 play crucial roles in the
downstream of these responses.

Neutrophils are recruited from circulating blood to inflamed tissues by cytokines
such as IL-1β, IL-6, and TNF-α and chemokines like C-X-C motif ligand (CXCL) 5 and
IL-8 [42–44]. Abnormal activation of neutrophils has been observed in patients with UC [45].
Neutrophils directly promote tissue damage by releasing proteases such as matrix metal-
loproteinases (MMPs) and neutrophil elastases, and reactive oxygen species (ROS) [46].
The accumulation of activated neutrophils promotes changes in cryptic structures and the
formation of crypt abscesses, mediated by an unbalanced enzymatic response, generation
of TNF-α and IL-1β, and secretion of calprotectin [47–49].

In UC, lymphocyte antigen 6 complex (Ly6C)high monocytes are increased at inflam-
matory sites. Their migration is regulated by the C-C motif chemokine receptor (CCR)2,
IL-8 and TGF-β, which are constitutively produced by IECs [50–52]. Ly6Chigh monocytes
are highly susceptible to bacteria due to elevated expression of Toll-like receptor (TLR)2 and
nod-like receptor (NOD)2 [53]. Additionally, C-X3-C motif chemokine receptor (CX3CR)int

macrophages with upregulated TLR2 also accumulate at inflammatory sites in UC [50,54].
These macrophages have an increased ability to secrete inflammatory cytokines such as
TNF-α, IL-1β, and IL-6 [55]. Abnormally activated macrophages promote myofibroblast-
mediated fibrosis by producing TGF-β1, connective tissue growth factor (CTGF), and
fibroblast activating protein (FAP) [56].

Dendritic cells (DCs) link the innate and adaptive immune systems. Plasmacytoid DCs
secrete type I IFN, X-C motif chemokine receptor 1 (XCR1)+ myeloid DC1s are superior
in antigen presentation to cytotoxic T cells, and signal regulatory protein α (SIPRα)+

myeloid DC2s polarize cluster of differentiation (CD)4+ T cell responses. Myeloid DCs
are the dominant subtype in the intestinal lamina propria [57]. Activated DCs secrete
inflammatory cytokines such as IL-1β, IL-18, IL-6, IL-12, and IL-23 to activate adaptive
immunity. In UC, DCs exhibit an abnormal, immature phenotype with decreased expression
of cutaneous lymphocyte antigen (CLA) and CCR4 and increased expression of CCR9 and
β7 integrin [58–60]. Immature CD11c+CD11b+ myeloid DCs produce IL-23, which could
sustain colitis [61]. The circulating cells in the peripheral blood of patients with active UC
contain plasmacytoid DCs that migrate to secondary lymphoid organs, where they produce
IL-6, IL-8, and TNF-α to perpetuate the disease [62].

ILCs are derived from common lymphoid progenitor (CLP) but are classified under
the innate immune system. ILCs respond rapidly to signals and cytokines and act early in
immune responses [63,64]. Retinoic acid receptor-related orphan receptor (ROR)γt+ ILC3
produces IL-17A and IFN-γ, promoting the pathogenesis of T cell-independent colitis [65].
Conversely, the frequency of natural cytotoxicity receptor (NCR)+ ILC3 producing IL-22 is
reduced at inflammatory sites in patients with UC [66–68]. RORγt− ILC1 promotes colitis
through the production of IFN-γ and TNF-α [69,70]. ILC2 produces type 2 cytokines like
IL-5 and IL-13, which contribute to epithelial barrier function and antigen clearance in the
lumen but also play a role in chronic inflammation and tissue fibrosis [71].

2.2.2. Adaptive Immunity

Under steady-state conditions, there are only a small number of CD4+ T cells in the
intestinal epithelium. However, in patients with active UC, there is a significant increase
in the number of CD4+ T cells in the intestinal epithelium [72]. Infiltration of T cells and
accumulation of cytokines associated with T cells at inflammatory sites are common features
of patients with UC [73–75]. Naïve CD4+ T cells are activated by antigen-presenting cells
(APCs) in lymphoid tissues. Upon activation, these cells upregulate homing receptors, such
as α4β7 integrins. Naïve CD4+ T cells differentiate into different subsets, including Th1,
Th2, Th9, Th17, Th22, Treg, and Tr1 cells, depending on the microenvironment of various
cytokines and transcription factors [72]. The cytokines produced by these subsets have
multifaceted functions and complicatedly influence the pathophysiology of UC.
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Several murine colitis models are characterized by excessive IL-12 and IL-23 produc-
tion and decreased IL-10 and TGF-β production [76,77]. Both IL-12 and IL-23 are secreted
by DCs and macrophages in response to early innate signals [78,79]. IL-12 induces Th1 cell
differentiation and promotes IFN-γ and TNF-α production [80]. The identification of the
IL-23 receptor (IL-23R) as a susceptibility locus for IBD and the clinical utility of anti-IL-23
antibodies confirm IL-23′s involvement in the pathophysiology of UC [81,82]. Prolonged
IL-23 production in both humans and murine models converts barrier-promoting Th17
cells into pathogenic Th17 cells, leading to increased secretion of multiple cytokines, in-
cluding IFN-γ, TNF-α, IL-17A, and granulocyte–macrophage colony-stimulating factor
(GM-CSF) [83–85]. IL-23 also promotes intestinal inflammation by suppressing Foxp3+ Treg
cells [86]. IL-1β and IL-23 collaborate to induce IL-17 production by Th17 cells and ILCs,
promoting pathogenic responses [87]. The efficacy of anti-IL-12/23p40 antibodies against
UC indicates that Th1 and Th17 cells are involved in the pathophysiology of UC [88].

On the other hand, Th2 and Th9 cells are abnormally activated at inflammatory sites
in UC, leading to increased expression of their major cytokines, including IL-5, IL-13, and
IL-9 [89,90]. Th2 cells are involved in extracellular microorganism elimination and support
IgE-mediated B cell responses by secreting IL-4, IL-5, and IL-13, but their overactivation
can contribute to chronic inflammation [72]. IL-5 is involved in the differentiation of
eosinophils [91]. IL-33, a Th2 cytokine, is elevated at inflammatory sites in patients with
UC compared to healthy controls [90,92–94]. Furthermore, blocking IL-33/suppression of
tumorigenicity 2 (ST2) signaling has been shown to decrease disease activity, suggesting a
pathogenic role for IL-33 [95].

IL-9 is a pro-inflammatory cytokine that activates JAK1 and JAK3 signaling upon
binding to its receptor. Excessive IL-9 production in the intestinal tract can impair resistance
to commensal bacteria by compromising the integrity of the epithelial barrier, leading to
inflammation [96]. In addition, IL-9 promotes early population expansion of memory B
cells and the production of IgG and IgE by B cells [97–99].

B cells can be classified into regulatory B cells secreting IL-10 and effector B cells
secreting antibodies and various cytokines [100]. Regulatory B cells are decreased in the
blood and intestinal tissues of patients with UC. Effector B cells cause inflammation by
presenting antigens to T cells and secreting IL-2, IL-4, IFN-γ, TGF-β, and GM-CSF [101]. In
contrast to the predominance of IgA in the intestinal mucosa of healthy individuals, IgG is
predominant in the inflammatory mucosa of patients with UC [102,103]. The decreased
IgA and increased IgG may be involved in the pathophysiology of UC [98]. IgG has a high
affinity for antigens and activates the complement system. By binding to the fragment
crystallizable (Fc)γ receptor, IgG promotes immune cell migration and maturation [101].

Indigenous bacterial-specific IgG antibodies are increased in the inflamed mucosa of
patients with UC. In murine models, the induction of these antibodies induces intestinal
inflammation by activating macrophage and Th17 cells and promoting neutrophil mi-
gration [104]. Fc receptor neonatal (FcRn) maintains IgG concentration by recycling IgG
extracellularly. In a mouse model of dextran sodium sulfate (DSS)-induced colitis, specific
inhibition of FcRn has been demonstrated to lower IgG concentrations and ameliorate
colitis [105].

Both innate immune cells, including neutrophils, monocytes, macrophages, DCs, and
ILCs, and adaptive immune cells, including T cells and B cells, are intricately involved in
the pathophysiology of UC (Figure 2).
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Inflammatory cytokines such as IL-1β, TNF-α, and IL-6 play a central role in this process. These 
cytokines exert multifaceted effects on immune and non-immune cells, exacerbating the pathophys-
iology of UC. In UC, abnormally activated neutrophils release MMPs, ROS, elastases, iNOS, and 
calprotectin, which damage IECs. In UC, monocytes and macrophages with upregulated PRRs pro-
liferate and have increased susceptibility to bacteria. ILCs promote the pathophysiology of UC via 
the release of IL-17, TNF-α, and IFN-γ. Naïve CD4+ T cells are activated by APCs in lymphoid tissues 
to upregulate homing receptors such as chemokine receptors and α4β7 integrin for T cell distribu-
tion to mucosa. Naïve CD4+ T cells differentiate into distinct subsets through the microenvironment 
of various cytokines and activation and repression of transcription factors, which contribute to the 
pathophysiology of UC. B cells are also involved in the pathophysiology of UC, as IgG is increased 
in the inflamed mucosa of patients with UC. Furthermore, OSM, IL-6, and IL-17 activate down-
stream signaling of mesenchymal cells, which promote inflammation. Abbreviations: APC, antigen-
presenting cell; CD, cluster of differentiation; CTGF, connective tissue growth factor; CXCL, C-X-C 
motif ligand; DAMP, damage-associated molecular pattern; DC, dendric cell; FAP, fibroblast acti-
vating protein; IEC, intestinal epithelial cell; IFN, interferon; IL, interleukin; ILC, innate lymphoid 
cell; Ig, immunoglobulin; iNOS, inducible nitric oxide synthase; MAdCAM-1, mucosal addressin 
cell adhesion molecule 1; MMP, matrix metalloproteinase; OSM, oncostatin M; PAMP, pathogen-
associated molecular pattern; PRR, pattern recognition receptor; ROS, reactive oxygen species; TGF-
β, transforming growth factor-β; Th, T helper; TNF, anti-tumor necrosis factor; UC, ulcerative colitis. 

3. Mechanisms of Biologics and Small Molecule Compounds 
3.1. Anti-TNF-α Antibodies 

TNF-α is synthesized as a transmembrane TNF (mTNF), from which soluble TNF 
(sTNF) is released. sTNF binds preferentially to TNF receptor (TNFR) 1, while mTNF 
binds preferentially to TNFR2 [106]. TNFR1 is ubiquitously expressed and has a cell death 
domain, while TNFR2 is primarily expressed on lymphocytes and endothelial cells and 
lacks a cell death domain [107]. TNF-α primarily causes receptor-interacting serine/thre-
onine-protein kinase (RIPK)1/3-dependent cell death via TNFR1 [108,109]. The TNFR2 
pathway leads to the production of inflammatory cytokines such as IL-1β and IL-6, which 
have anti-apoptotic effects [110]. Anti-TNF-α antibodies inhibit TNFR1 signaling by 

Figure 2. The role of cytokines that contribute to the pathophysiology of UC. The interaction
of DAMPs and PAMPs with PRRs on the IECs and immune cells activates the innate immune
system. Inflammatory cytokines such as IL-1β, TNF-α, and IL-6 play a central role in this process.
These cytokines exert multifaceted effects on immune and non-immune cells, exacerbating the
pathophysiology of UC. In UC, abnormally activated neutrophils release MMPs, ROS, elastases,
iNOS, and calprotectin, which damage IECs. In UC, monocytes and macrophages with upregulated
PRRs proliferate and have increased susceptibility to bacteria. ILCs promote the pathophysiology
of UC via the release of IL-17, TNF-α, and IFN-γ. Naïve CD4+ T cells are activated by APCs in
lymphoid tissues to upregulate homing receptors such as chemokine receptors and α4β7 integrin
for T cell distribution to mucosa. Naïve CD4+ T cells differentiate into distinct subsets through the
microenvironment of various cytokines and activation and repression of transcription factors, which
contribute to the pathophysiology of UC. B cells are also involved in the pathophysiology of UC,
as IgG is increased in the inflamed mucosa of patients with UC. Furthermore, OSM, IL-6, and IL-17
activate downstream signaling of mesenchymal cells, which promote inflammation. Abbreviations:
APC, antigen-presenting cell; CD, cluster of differentiation; CTGF, connective tissue growth factor;
CXCL, C-X-C motif ligand; DAMP, damage-associated molecular pattern; DC, dendric cell; FAP,
fibroblast activating protein; IEC, intestinal epithelial cell; IFN, interferon; IL, interleukin; ILC, innate
lymphoid cell; Ig, immunoglobulin; iNOS, inducible nitric oxide synthase; MAdCAM-1, mucosal
addressin cell adhesion molecule 1; MMP, matrix metalloproteinase; OSM, oncostatin M; PAMP,
pathogen-associated molecular pattern; PRR, pattern recognition receptor; ROS, reactive oxygen
species; TGF-β, transforming growth factor-β; Th, T helper; TNF, anti-tumor necrosis factor; UC,
ulcerative colitis.

3. Mechanisms of Biologics and Small Molecule Compounds
3.1. Anti-TNF-α Antibodies

TNF-α is synthesized as a transmembrane TNF (mTNF), from which soluble TNF
(sTNF) is released. sTNF binds preferentially to TNF receptor (TNFR) 1, while mTNF binds
preferentially to TNFR2 [106]. TNFR1 is ubiquitously expressed and has a cell death domain,
while TNFR2 is primarily expressed on lymphocytes and endothelial cells and lacks a cell
death domain [107]. TNF-α primarily causes receptor-interacting serine/threonine-protein
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kinase (RIPK)1/3-dependent cell death via TNFR1 [108,109]. The TNFR2 pathway leads to
the production of inflammatory cytokines such as IL-1β and IL-6, which have anti-apoptotic
effects [110]. Anti-TNF-α antibodies inhibit TNFR1 signaling by neutralizing sTNF and
TNF-α production by binding mTNF, which induces cell apoptosis through antibody-
dependent cellular cytotoxicity, complement-dependent cytotoxicity, and outer-to-inner
signaling. Anti-TNF-α antibodies also indirectly increase regulatory macrophages [111]
and Foxp3+ Treg cells suppressing Th17 cells [112].

3.2. Anti-IL-12/23p40 Antibodies and Anti-IL-23p19 Antibodies

IL-12 and IL-23 are primarily produced by APCs. IL-12 acts on naïve T cells and
promotes their differentiation into Th1 cells that produce TNF-α and IFN-γ [113]. IL-12 also
induces the release of IFN-γ and TNF-α from CD8+ T cells, natural killer (NK) cells, and
ILC1. Furthermore, IL-12 activates antimicrobial responses by DCs and macrophages [114].
IL-23 contributes to Th17 proliferation and stabilization and promotes the secretion of IL-17,
TNF-α, and IL-22 by Th17 cells [115,116]. IL-23 also induces the secretion of IL-17 and IL-22
by γδ T cells and ILC3 [114] and the secretion of inflammatory cytokines such as TNF-α
and IL-1β by binding to IL-23Rs on macrophages [117,118]. In addition, IL-23 suppresses
IL-10 production from Treg cells, thereby reducing intestinal barrier and defense functions.
Furthermore, experiments in mice have shown that IL-23 contributes to the differentiation,
proliferation, and maintenance of Th2 cells [6].

Anti-IL-12/23p40 antibodies target p40, a common subunit of IL-12 and IL-23, and
exert their anti-inflammatory effect by inhibiting both IL-12 and IL-23 signaling. Conversely,
anti-IL-23p19 antibodies target p19, a subunit specific to IL-23, inhibiting only IL-23 without
affecting other IL-12 family members [114].

Anti-IL-23p19 antibodies may be safer than anti-IL-12/23p40 antibodies due to the
preservation of Th1 immune responses against infection and malignancies [119]. Although
both anti-IL-12/23p40 and anti-IL-23p19 antibodies have been shown to alleviate experi-
mental colitis to the same extent [25], there is no evidence suggesting a difference in the
effects of these two antibodies in clinical practice. Basic research in mouse colitis models
and clinical studies in patients with UC have shown that cytokine profiles differ depending
on the disease stage of UC [6]. Th1- and Th17-cytokines are primarily involved in the patho-
genesis of UC in the early phase, while Th2- and Th17-cytokines are primarily involved in
the late phase. These differences could influence the choice of antibody treatment.

In addition, differences in binding affinity to target cytokines and specific effects
via the Fc region of antibodies have also been reported. For example, guselkumab more
effectively suppresses IL-23 secretion from CD64+ monocytes by binding to CD64 via the
Fc region [120]. These differences in the molecular properties of antibodies may guide
clinicians in selecting the most appropriate antibody for treatment.

3.3. Anti-α4β7 Integrin Antibodies

Anti-α4β7 integrin antibodies recognize a conformational epitope of the α4β7 integrin
heterodimer. The transmembrane cell adhesion protein α4β7 is expressed on immune cells,
including T cells, B cells, eosinophils, and ILC [121,122]. The ligand for α4β7, mucosal
addressin cell adhesion molecule 1 (MAdCAM-1), is primarily found on endothelial cells
within the gastrointestinal track and gut-associated lymph tissue [123,124]. Naïve T cells
migrate to lymphoid tissues via high endothelial venules (HEVs) [125]. T cells activated by
DCs or antigens in lymph nodes are transported from efferent lymphatic vessels through the
S1P-S1P receptor (S1PR) signaling pathway [126]. Activated immune cells expressing α4β7
migrate from HEV-like vessels to intestinal tissues via the α4β7 and MAdCAM-1 signaling
pathways [127,128]. Anti-α4β7 integrin antibodies suppress mucosal inflammation by
inhibiting the migration of immune cells to the mucosal lamina propria.
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3.4. JAK Inhibitors

Cytokines bind to specific receptors, causing activation and initiation of intracellular
signaling pathways in various cell types [129]. JAK is a tyrosine kinase that binds to
the intracellular domain of cytokine receptors [130]. When extracellular ligands bind
to cytokine receptors, the JAK-STAT pathway is activated, and signals are transduced.
The JAK family includes JAK1, JAK2, JAK3, and tyrosine kinase 2 (TYK2), with different
combinations for each cytokine receptor [131–133]. In IBD field, currently available JAK
inhibitors include tofacitinib, filgotinib, and upadacitinib, each with selectivity for different
JAK families [5]. Compared to approaches that use antibodies to inhibit a single cytokine
(e.g., TNF-α), JAK inhibitors have the potential to affect multiple cytokine-dependent
pathways involved in the pathophysiology of UC (Table 1).

Table 1. List of cytokines by JAK family.

JAK1 and
JAK3

JAK1 and
JAK2

JAK1 and
TYK2

JAK1 and
JAK2, TYK2

JAK2 and
TYK2

JAK2 and
JAK2

Cytokine
IL-2, IL-4, IL-7,

IL-9, IL-15,
IL-21

IFN-γ
IFN-α, IFN-β,
IL-22, IL-26,

IL-10

IL-11, IL-13,
IL-6, OSM, LIF

IL-12, IL-23,
TPO

EPO, GH, IL-3,
GM-CSF, IL-5

JAK inhibitor Tofa, Filgo, Upa Tofa, Filgo, Upa Tofa, Filgo, Upa Tofa, Filgo, Upa (Tofa) (Tofa)

Describes the relationship between cytokine receptors and the corresponding JAK family members. Abbrevia-
tions: EPO, erythropoietin; Filgo, filgotinib; GH, growth hormone; GM-CSF, granulocyte–macrophage colony-
stimulating factor; IFN, interferon; IL, interleukin; JAK, Janus kinase; LIF, leukemia inhibitory factor; OSM,
oncostatin M; Tofa, tofacitinib; TPO, thrombopoietin; TYK, tyrosine kinase; Upa, upadacitinib.

4. Molecules Predicting Therapeutic Efficacy

Previous reports on cytokine profiles predicting the therapeutic efficacy of each bio-
logic in patients with UC are summarized in Table 2.

Table 2. Cytokine profiles and therapeutic efficacy of biologics.

Molecule Sample Measurements Outcome Predicting Treatment Effect Reference

Anti-TNF-α
antibodies

OSM, OSMR Mucosa mRNA (qPCR)
Endoscopic and

histologic
remission

Mucosal healing (based on
endoscopic and histologic
criteria) was achieved in

69–85% of patients with low
OSM module expression, but
only 10–15% of patients with

high OSM module expression.

[134]

Panel
(IL-13Rα2,

TNFRSF11B,
IL-11, STC1,

PTGS2)

Mucosa mRNA (qPCR)
Endoscopic and

histologic
remission

The panel divided responders
and non-responders, with a

sensitivity of 0.95 and
specificity of 0.85.

[135]

IFN Blood mRNA (qPCR)

Clinical and
endoscopic

remission and
normalization of

CRP

A low type I IFN signature
score predicted response to

anti-TNF-α antibody with an
AUC of 0.95, sensitivity of

0.93, specificity of 0.88, PPV of
0.87, and NPV of 0.93. A low
type II IFN signature score

predicted response to
anti-TNF-α antibodies with an

AUC of 0.87, sensitivity of
0.86, specificity of 0.75, PPV of

0.75, and NPV of 0.86.

[136]
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Table 2. Cont.

Molecule Sample Measurements Outcome Predicting Treatment Effect Reference

Anti-TNF-α
antibodies

TREM-1 Blood,
Mucosa mRNA (qPCR)

Endoscopic
remission
(MES ≤ 1)

Low whole blood and
mucosal TREM-1 mRNA

levels predicted response to
anti-TNF-α antibodies with

AUCs of 0.78 (95% CI
0.65–0.90, p = 0.001) and 0.77
(95% CI 0.62–0.92, p = 0.003).

[137]

Panel (TNF-α,
IL-12, IL-8,
IL-2, IL-5,

IL-1β, IFN-γ)

Blood Concentration
Endoscopic and

histologic
remission

The cytokine score had a
sensitivity of 0.84, specificity
of 0.93, and accuracy rate of
0.90 (44/49) for predicting

response to anti-TNF-α
antibodies.

[16]

Anti-IL-12/23
antibodies IL-22 Mucosa mRNA (qPCR)

Clinical remission
(Mayo score of
≤2 and no

subscore > 1) and
Mucosal healing
(Endoscopic and

histologic
remission)

Patients with low IL-22
enrichment scores had

approximately twice as many
clinical remissions (25% vs.
13%) and mucosal healing

(26% vs. 16%) as all patients
were not stratified.

[138]

Anti-α4β7
integrin

antibodies

IL-6, IL-8 Blood Concentration

Clinical remission
(partial Mayo

score of <2) and
Endoscopic

remission (MES
of 0 or 1)

High serum IL-6 and IL-8
levels at baseline and

decreased IL-6 and IL-8 levels
6 weeks after introduction of
anti-α4β7 integrin antibodies
predicted clinical remission

with a sensitivity of 0.83 and
specificity of 0.87, and

endoscopic remission with a
sensitivity of 0.82 and

specificity of 0.90.

[139]

IL-6 Blood Concentration

Non-response
(≤2 point

decrease in Mayo
score from

baseline, 0 point
decrease in rectal
bleeding score or
≥1 point in rectal

bleeding score)

High baseline serum IL-6
levels predicted resistance to
vedolizumab with an AUC of

0.77 (95% CI: 0.57–0.98),
sensitivity of 0.79, and

specificity of 0.88.

[140]

Abbreviations: AUC, area under the curve; CI, confidence interval; CRP, C-reactive protein; IFN, interferon;
IL, interleukin; MES, mayo endoscopic subscore; NPV, negative predictive value; OSM, oncostatin M; OSMR,
oncostatin M receptor; PPV, positive predictive value; PTGS2, prostaglandin-endoperoxide synthase 2; qPCR,
quantitative polymerase chain reaction; STC1, stanniocalcin 1; TNF, anti-tumor necrosis factor; TNFRSF11B, tumor
necrosis factor receptor superfamily member 11B; TREM-1, triggering receptor expressed on myeloid cells 1.

4.1. Anti-TNF-α Antibodies

Recent studies have demonstrated several mechanisms of resistance to treatment with
anti-TNF-α antibodies. The mechanisms are briefly summarized below (Figure 3).
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Figure 3. Factors contributing to resistance to treatment with anti-TNF-α antibodies. OSM and
IL-1β induce chemokine production by inflammatory fibroblasts and promote neutrophil recruitment.
This pathway may be resistant to treatment with anti-TNF-α antibodies. IFN induces epithelial cell
death that is resistant to treatment with anti-TNF-α antibodies. Macrophages expressing high levels
of TREM-1 are resistant to differentiation into the regulatory phenotype induced by anti-TNF-α
antibodies. T cells expressing TNFR2 and IL-23R are resistant to apoptosis induced by anti-TNF-α
antibodies. Abbreviation: DC, dendric cell; IFN, interferon; IL, interleukin; ILC, innate lymphoid cell;
IL-23R, interleukin-23 receptor; OSM, oncostatin M; Th, T helper; TNF, anti-tumor necrosis factor;
TNFR2, tumor necrosis factor receptor 2; TREM-1, triggering receptor expressed on myeloid cells 1.

4.1.1. Oncostatin M

OSM is a member of the IL-6 cytokine family. Oncostatin M receptor (OSMR) is
expressed primarily on stromal cells, which produce IL-6, leukocyte adhesion factor, and
chemokines in response to OSM [134].

West et al. reported that OSM mRNA expression is elevated in the inflamed mucosa
of patients with UC who are resistant to anti-TNF-α antibodies compared to those who
responded to anti-TNF-α antibodies [134]. Mucosal healing was achieved in 69–85%
of patients with low OSM gene expression but only in 10–15% of patients with high
expression. In addition, they reported that tissues with high OSM mRNA and OSMR mRNA
expression showed enrichment in genes related to leukocyte chemotaxis, extracellular
matrix organization, and mesenchymal development. Smillie et al. conducted single-cell
RNA sequencing of colonic mucosa from patients with UC and healthy controls [141],
revealing an increase in inflammation-associated fibroblasts (IAFs), a unique subset of
fibroblasts in inflammatory tissues of patients with UC who are resistant to anti-TNF-
α antibodies. The most enriched gene in IAF was OSMR, suggesting that downstream
signaling activation of fibroblasts by OSM contributes to anti-TNF-α antibody resistance.
Friedrich et al. also reported an increase in chemokine-high expressing fibroblasts in tissues
from patients with IBD who were resistant to treatment with anti-TNF-α antibodies [142].
These results suggest that not only immune cells but also stromal cells, such as fibroblasts,
may be involved in the therapeutic effect of anti-TNF-α antibodies [135].

The JAK-STAT pathway, activated by OSM, contributed to intestinal inflammation in a
mouse model of DSS-induced colitis [143]. Clinical study in patients with IBD demonstrated
a significant reduction in serum OSM levels in patients who respond to treatment with JAK
inhibitors [144].

4.1.2. IFN Signature

Type I IFNs, secreted by various cells, including DCs and fibroblasts, play an anti-
inflammatory role by promoting epithelial repair and Treg cell differentiation. How-
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ever, they also play a pro-inflammatory role by inducing IFN-stimulated gene, which
has potent antimicrobial activity, and by promoting the production of inflammatory
cytokines [145,146]. Type II IFNs, secreted by various cells including Th1 cells, ILC1,
B cells, macrophages, and epithelial cells, provide broad protection against intracellular
microbes [147]. Excess type II IFN exacerbates inflammation by activating macrophages,
augmenting antigen processing, and inducing epithelial cell death [148].

IFN mRNA expressions in the blood and mucosa of patients with UC are heteroge-
neous [136,149]. High type I and type II IFN signatures in blood and colonic mucosa are
associated with resistance to treatment with anti-TNF-α antibodies [136,150]. Mavragani
et al. calculated type I IFN scores using interferon-induced protein with tetratricopeptide repeat
1 (IFIT-1) and interferon-induced protein 44 (IFI-44) mRNA expression. Similarly, type II
IFN scores were calculated using guanylate-binding protein 1 (GBP-1) and CXCL9 mRNA
expression [136]. They reported that the group with lower baseline values for both type
I and type II IFN scores had a better response to treatment with anti-TNF-α antibodies.
Combining the type I and type II IFN scores predicted the response to treatment with anti-
TNF-α antibodies with an area under the curve (AUC) of 0.98, sensitivity of 1.0, specificity
of 0.88, positive predictive value (PPV) of 0.88, and negative predictive value (NPV) of 1.0.

Cell death signaling by TNF-α is mainly dependent on RIPK1/3 signaling [105,106],
while IFN-induced cell death depends on JAK signaling [151]. It has also been suggested
that the combination of TNF-α and IFN promotes cell death in colon epithelial cell lines
through a TNFR1-independent synergistic effect [151,152]. It has been suggested that
these differences in the mechanism of cell death may contribute to resistance to anti-TNF-α
antibodies [152]. Flood et al. demonstrated that cell death induced by the cooperative effects
of IFN-β and TNF-α is inhibited by JAK inhibitors using a colon organoid model [151].
Woznicki et al. showed that JAK inhibitors also inhibit IFN-γ-induced cell death using a
colon cancer cell line [152].

4.1.3. TREM-1

The triggering receptor expressed on myeloid cells 1 (TREM-1) belongs to the PRR
family. TREM-1 is present on the surface of immune and non-immune cells, playing an
important role in the host immune system [153]. TREM-1 recognizes PAMPs and DAMPs,
collaborating with TLRs to amplify inflammatory innate immune responses [154].

Verstockt et al. reported that IBD patients with lower levels of TREM-1 mRNA
expression in their blood and mucosa were more likely to respond to treatment with anti-
TNF antibodies and achieve endoscopic remission [137]. Czarnewski et al., using human
homologs of differentially expressed genes identified by mRNA sequencing of the colon
from mouse models of DSS-induced colitis, stratified patients with UC into two major
transcriptome profiles (UC1 and UC2) [155]. Approximately 70% of UC2 patients responded
to infliximab, compared to less than 10% of UC1 patients. Furthermore, approximately 60%
of UC2 patients responded to vedolizumab (VED), while only 13% of UC1 patients did.
TREM-1 was identified as the most accurate biomarker for classifying UC1 and UC2.

Prins et al. reported that the differentiation of monocytes into regulatory macrophages
induced by anti-TNF-α antibodies was inhibited in monocytes expressing high levels
of TREM-1 [156]. In addition, they reported a decrease in the expression of genes re-
lated to autophagy in these monocytes. Kökten et al. reported that inhibiting TREM-
1 decreased the expression of mammalian target of rapamycin (mTOR) and increased
the expression of autophagy related protein (ATG)1/UNC-51-like kinase (ULK)1 and
ATG13 (which are involved in the initiation of autophagosome formation) and ATG5,
ATG16L1, and microtubule-associated protein 1 light chain 3 (MAP1LC3)-I/II (which
are involved in membrane elongation and expansion of formed autophagosomes) [157].
Because autophagy is indirectly involved in the differentiation and maintenance of regula-
tory macrophages [158,159], an increase in monocytes expressing high levels of TREM-1
may contribute to resistance to treatment with anti-TNF-α antibodies [160]. In addition,
high TREM-1 expression may impair autophagy in intestinal epithelial cells, which pro-
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motes endoplasmic reticulum stress and exacerbates inflammation resistant to anti-TNF-α
antibodies [157,161–164]. In a mouse model of DSS-induced colitis, pharmacological or
genetic inhibition of TREM-1 has been shown to enhance macroautophagy and chaperone-
mediated autophagy via mTOR dysregulation, thereby reducing endoplasmic reticulum
stress and suppressing colitis [157].

4.1.4. IL-23

Regarding a resistance factor to T cell apoptosis induced by anti-TNF-α antibodies,
Schmitt et al. confirmed that IL-23 is upregulated in the mucosa of patients with IBD
who do not respond to treatment with anti-TNF-α antibodies [165]. They found that a
unique T cell subset, TNFR2+IL-23R+ T cells, was increased in the mucosa of these patients.
TNFR2+IL-23R+ T cells were resistant to apoptosis induced by anti-TNF-α antibodies in
an IL-23-dependent manner. They also reported that apoptosis-resistant TNFR2+IL23R+

T cells expressed integrin α4β7 and showed increased expression of IFN-γ, T-box protein
expressed in T cells (T-bet), IL-17A, and RORγt compared to TNFR2+IL23R− cells.

4.1.5. IL-1β

Obraztsov et al. calculated Pearson correlation coefficients to analyze the relationship
between 17 serum cytokine levels and the response to treatment with anti-TNF-α antibodies
and developed a cytokine score using seven cytokine subsets including IL-1β, TNF-α, IL-12,
IL-8, IL-2, IL-5, and IFN-γ [16]. In the study, patients received treatment with 5 mg/kg of
anti-TNF-α antibody at weeks 0, 2, and 6, and their response to the treatment was evaluated
at week 12. The score predicted clinical remission (Mayo score < 3) after three courses
of anti-TNF-α antibody treatment with a sensitivity of 84.2%, specificity of 93.3%, and
accuracy of 89.8% (44/49). Among several cytokine expressions, a high level of IL-1β is
mostly associated with resistance to anti-TNF-α antibodies. Another report also suggests
that high expression of IL-1β is associated with resistance to anti-TNF-α antibodies [16].

Bouwman et al. evaluated the association between activation of signaling pathways in
the inflamed mucosa of patients with UC and responsiveness to treatment with anti-TNF-α
antibodies [166]. They reported that the nuclear factor κ-light-chain-enhancer of activated
B cells (NFκB), TGF-β, and JAK-STAT3 signaling pathways were activated in the mucosa
of patients with UC who resistant to anti-TNF-α antibodies [166]. Candidate cytokines
upstream of these signals were IL-1β and IL-17.

Friedrich et al. conducted RNA sequencing on surgically resected specimens from
patients with IBD who did not respond to medical therapy [142]. They used weighted
gene correlation network analysis to cluster co-expressed genes and identified 38 modules.
Among these modules, two modules were associated with resistance to treatment with anti-
TNF-α antibodies, and strongly linked to neutrophils and stromal cells. In addition, these
modules were enriched with genes associated with inflammasomes. Furthermore, they
identified inflammatory fibroblasts with high levels of chemokines that promote neutrophil
recruitment using single-cell RNA sequencing. They reported that anti-TNF-α antibodies
failed to suppress chemokine expression in these inflammatory fibroblasts, whereas IL-1
receptor inhibitors did. Thus, the activation of fibroblasts by IL-1β could contribute to
resistance to treatment with anti-TNF-α antibody.

4.2. Anti-IL-12/23p40 Antibodies and Anti-IL-23p19 Antibodies
IL-22

In two randomized controlled trials, the administration of an anti-IL-23 antibody
significantly reduced IL-22 levels in the blood and IL-22 mRNA expression in the mucosa
compared to the placebo group [81,167].

Pavlidis et al. assessed the IL-22 enrichment scores of colonic mucosa collected before
ustekinumab initiation in patients with UC and observed substantial variation among
patients [138]. Patients with low IL-22 enrichment scores had nearly twice the remission
rates compared to all non-stratified patients, including clinical remission (25% vs. 13%)
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and mucosal healing (26% vs. 16%). Conversely, patients with high IL-22 enrichment
scores showed outcomes similar to those in the placebo groups. The study confirmed that
in patients resistant to anti-IL-12/23p40 antibodies, IL-22 expression depends on IL-1β
rather than IL-23. Additionally, it demonstrated that IL-22 might induce the production of
CXCL1 and CXCL5 from IECs via STAT3 activation and recruit C-X-C chemokine receptor
2 (CXCR2)-expressing neutrophils to the intestinal mucosa.

4.3. Anti-Integrin α4β7 Antibodies
4.3.1. α4β7 Integrin

α4β7 integrin expression in immune cells contributes to the therapeutic effect of VED.
Rath et al. reported that responders to treatment with VED had a higher mean number
of α4β7+ immune cells per high power field in the intestinal lamina propria compared to
non-responders (13.4 vs. 5.8, p = 0.0003) [168]. In a prospective clinical trial, responders to
VED had lower baseline α4β7 expression of CD3+ and CD4+ T cells in peripheral blood
compared to non-responders [169]. Furthermore, in responders, α4β7+ immune cells
increased in peripheral blood and decreased in intestinal mucosa after VED administra-
tion [170], suggesting that the α4β7-MAdCAM-1 axis is the dominant recruitment pathway
in VED responders.

Inflammatory cytokines like TNF-α promote MAdCAM-1 expression [171] and also
increase vascular cell adhesion molecule 1 (VCAM-1), E-cadherin and L-selectin [172,173].
Baseline expression of α4β1 and αEβ7 in peripheral blood was not associated with the
response to treatment with VED [169], but CD4+ T cells expressing αEβ7 and α4β1 in
the peripheral blood increased after VED administration in non-responders [170,174].
Thus, redundancy in compensatory homing pathways may contribute to VED resistance.
In a mouse model of enteritis unresponsive to α4β7 blockade, simultaneous inhibition
of compensatory pathways such as L-selectin [175] and αEβ7 [176] has been shown to
improve enteritis.

4.3.2. IL-6 and IL-8

Bertani et al. reported that higher baseline serum IL-6 and IL-8 concentrations and
decreased IL-6 and IL-8 after VED administration predict mucosal healing at week 54 [139].
However, the mechanism by which IL-6 and IL-8 predict the efficacy of treatment with VED
is unknown. Several studies, including the above study, have shown that patients resistant
to treatment with VED have higher disease activity, including longer disease duration,
higher endoscopy scores, higher c-reactive protein (CRP), and lower albumin [140,177–179].
Elevated IL-6 and IL-8 levels may reflect disease severity. VED prevents the recruitment of
new effector immune cells but has a limited effect on resident effector immune cells [180],
making VED less effective in patients with severe disease activity. Combination therapy
with other advanced therapies may overcome this limitation [181].

4.4. JAK Inhibitor

There are few reports on cytokine biomarkers that can predict the therapeutic effect
of JAK inhibitors. While cytokines, such as serum IL-4 and IL-10, have been reported
as potential biomarkers, their utility and underlying mechanisms have not been fully
investigated [182]. Roblin et al. examined serum cytokine concentrations in patients with
Crohn’s disease treated with filgotinib [144]. Although their study did not examine in
detail whether baseline serum cytokine concentrations could predict treatment response,
they found that significant reductions in IL-6 and OSM after treatment with filgotinib were
significantly correlated with an endoscopic response (>50% reduction in simple endoscopic
score for Crohn’s disease at week 10). As noted in the previous section, JAK inhibitors
have been shown to alleviate inflammation induced by OSM and IFN in experimental
mouse colitis models [143,151], suggesting the potential for JAK inhibitors to be effective in
patients with UC exhibiting IL-6, OSM, and IFN-dominant cytokine profiles.
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5. Prospects

Treatment options for UC have increased rapidly in recent years, leading to increas-
ingly complex management algorithms, including which drugs to use, in what order, when
to start, when to change doses, and when to discontinue. One of the obstacles to promoting
personalized medicine for UC is the absence of a definitive biomarker for guiding treatment
selection. The clinical application of cytokine profiles as a biomarker may be a feasible
approach, because the underlying inflammatory cytokine profiles vary among patients
with UC [183]. However, there is currently no evidence supporting the use of cytokine
profiles to select optimal therapeutic agents. The complexity of differences in cytokine
profiles between individuals, the variety of cytokine roles, and differences in racial and
genetic backgrounds may make the use of cytokine profiles as biomarkers difficult [184].

This review summarizes the mechanisms underlying the therapeutic efficacy of ad-
vanced therapies for UC. Clinical trials in large cohorts are needed to determine the utility
of cytokine profiles in selecting optimal therapeutic agents.
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