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Abstract: Polymicrobial mastitis is now becoming very common in dairy animals, resulting in
exaggerated resistance to multiple antibiotics. The current study was executed to find drug responses
in individual and mixed Culture of Staphylococcus aureus and Escherichia coli isolated from milk
samples, as well as to evaluate the antibacterial potential of tungsten oxide nanoparticles. These
isolates (alone and in mixed culture) were further processed for their responses to antibiotics using
the disc diffusion method. On the other hand, tungsten oxide WO3 (W) nanoparticles coupled with
antibiotics (ampicillin, A, and oxytetracycline, O) were prepared through the chemical method and
characterized by X-ray diffraction, scanning electron microscopy (SEM), and UV-visible techniques.
The preparations consisting of nanoparticles alone (W) and coupled with ampicillin (WA) and
oxytetracycline (WO) were tested against individual and mixed Culture through the well diffusion
and broth microdilution methods. The findings of the current study showed the highest resistance in
E. coli was against penicillin (60%) and ampicillin (50%), while amikacin, erythromycin, ciprofloxacin,
and oxytetracycline were the most effective antibiotics. S. aureus showed the highest resistance against
penicillin (50%), oxytetracycline (40%), and ciprofloxacin (40%), while, except for ampicillin, the
sensitive strains of S. aureus were in the range of 40–60% against the rest of antibiotics. The highest
zones of inhibition (ZOI) against mixed Culture were shown by imipenem and ampicillin, whereas
the highest percentage decrease in ZOI was noted in cases of ciprofloxacin (−240%) and gentamicin
(−119.4%) in comparison to individual Culture of S. aureus and E. coli. It was noteworthy that the
increase in ZOI was not more than 38% against mixed Culture as compared to the individual Culture.
On the other hand, there was a significant reduction in the minimum inhibitory concentration (MIC)
of nanoparticle-coupled antibiotics compared to nanoparticles alone for individual and mixed-culture
bacteria, while MICs in the case of mixed Culture remained consistently high throughout the trial.
This study therefore concluded that diverse drug resistance was present in both individual and
mixed-culture bacteria, whereas the application of tungsten oxide nanoparticle-coupled antibiotics
proved to be an effective candidate in reversing the drug resistance in bacterial strains.
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1. Introduction

Developing countries like Pakistan experience two-pronged challenges in the form
of horizontal expansion of dairy animals and prevailing dairy udder challenges, overall
jeopardizing health, and the economy. Such scenarios lead to a daily shortfall of milk for
the consumers, e.g., Karachi, a cosmopolitan city of Pakistan, has reached an uncertain
supply of up to 4 million liters per day. In addition, it is expected that milk consumption
will find a minimum annual growth rate of 5% soon [1]. The dairy sector is currently facing
a serious threat in the form of mastitis, which leads to a notable decrease in the yield and
quality of milk, along with a sharp increase in treatment expenses and bovine mortality [2].
Furthermore, the augmentation of milk production is hampered by bacterial attacks in
the udders of dairy animals, putting both animal and public health at risk [3]. Dairy
cows are susceptible to more than 150 types of bacteria that can cause mastitis, including
S. aureus, Mycoplasma species, Streptococcus uberis, Streptococcus dysgalactiae, Escherichia
coli, and Klebsiella pneumoniae [4], which are responsible for the development of a wide
variety of lesions [5]. In veterinary practice, the use of antibiotics often goes unjustified,
culminating in development of microbial resistance and hence compromising animal and
public health [6]. Microorganisms evolve antimicrobial resistance to survive in continuously
changing environments [7]. Recent investigations have documented substantial fluctuations
in the efficacy of antibiotics against pathogens such as E. coli and S. aureus, providing clear
indications of their escalating resistance tendencies [8,9].

The wise approach in the current scenario is the five R concept, specifically, respon-
sibility, refinement, reduction, replacement, and review of antimicrobial use (AMU). To
reduce the burden of antibiotics or to replace antibiotics, alternatives are needed. As an
alternative, nanoparticles are thought to work differently than antibiotics and can help
reduce drug resistance by serving as carriers for antibiotics, having synergistic effects with
antimicrobials and being antimicrobials themselves. Nanoparticles larger than 10 nm have
been found to cause cytotoxicity and cellular disintegration through their interaction with
the cellular wall and membrane constituents [9]. The integration of antibacterial agents
into biomaterials is a strategic approach aimed at mitigating these challenges. In medicine
and pharmaceuticals, nanotechnology plays a crucial role [10]. Apart from their higher
reactivity, these particles are unique in their physicochemical properties, which include
lower surface-to-volume ratios, greater stability, bioactivity, and bioavailability [11]. Re-
cent studies showed that combining nanoparticles with antibiotics, antimicrobial peptides,
and essential oils minimizes the potentially toxic effects of nanoparticles [12]. Tungsten
oxide coating has found novel applications in antibacterial coatings, where it helps to
improve the antibacterial efficacy of surgical equipment and medical devices [13]. Re-
searchers discovered that WO3-X nanodots exhibited strong bactericidal activity after
they were exposed to membrane stress [14]. WO3-X nanodots demonstrate a remarkable
capability to eliminate both Escherichia coli and Staphylococcus aureus [15]. Furthermore,
previous studies have demonstrated that WO3 showed promising antimicrobial activity
against many bacterial strains, including E. coli, P. multocida, B. subtilis (gram-positive), and
S. aureus (gram-positive) [16].

The study of nanoparticle coupling with antibiotics targeting E. coli and S. aureus is of
significance because it can helps combat antimicrobial resistance, boost the antimicrobial
activity of these drugs, facilitate targeted drug delivery, support combination therapies, ad-
vances the diagnosis of various bacterial-related diseases, and expedite the healing process.
Hence, the purpose of this research article was to investigate responses of individual and
mixed culture Staphylococcus aureus and E. coli against antibiotics, and to evaluate tungsten
oxide nanoparticle-coupled antibiotics as drug resistance modulators.
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2. Materials and Methods
2.1. Sample Collection

The sample collection area encompassed districts within the Bahawalpur region, cho-
sen based on accessibility and the consent of dairy farmers. Milk samples were aseptically
collected in sterile vials using the convenience statistical method to reach a total sample
number of n = 200 [17]. The samples were screened at the time of collection for subclinical
mastitis following the protocol described by Muhammad et al. [18]. The positive samples
were delivered to the laboratory of the Department of Microbiology at Cholistan University
of Bahawalpur in a container maintained at a temperature of 4 ◦C.

2.2. Isolation of E. coli and S. aureus

The milk samples were put into incubation for 24 h at 37 ◦C, following which centrifu-
gation at a speed of 3634× g for 5 min was conducted. The characteristic bacterial colonies
were streaked on differential media of both bacteria, i.e., mannitol salt agar for S. aureus
and MacConkey agar for E. coli. The plates were incubated at 37 ◦C for another 24 h. The
mannitol salt agar was transformed into a yellow color with pinpoint round colonies on
the media for S. aureus, while MacConkey agar was transformed into pink colonies on the
media for E. coli. These colonies were further subjected to a series of biochemical assays
as described by Bergey’s manual of determinative bacteriology [19]. The confirmation of
S. aureus and E. coli was determined using pooled information obtained from microbiologi-
cal and biochemical experiments.

2.3. Antibiotic Susceptibility of E. coli and S. aureus

To determine the susceptibility of E. coli, S. aureus, and mixed Culture of E. coli and
S. aureus, a total of eight antibiotics (erythromycin, ciprofloxacin, imipenem, amikacin,
ampicillin, oxytetracycline, and gentamicin) were tested. The selection of these antibiotics
was based on their common usage in clinical laboratories and adherence to the guidelines
provided by the Clinical Laboratory and Standard Institute. Some of the antibiotics had
previously been used in other studies (unpublished data or under review for publication) of
the authors so have been exempted from this study. The Kirby–Bauer disc diffusion method
was used to determine zones of inhibition, which were then compared with the standards
provided by the Clinical Laboratory and Standard Institute [20]. In brief, fresh E. coli and
S. aureus growth was adjusted at 1–1.5 × 108 CFU/mL (colony-forming units/milliliter)
on sterile Mueller–Hinton agar and antibiotic discs were put aseptically at equal distances
from one another. The agar plates were incubated at 37 ◦C for 20–24 h, and zones were
measured with vernier calipers and compared with the standard zones to identify resistant,
intermediate, and sensitive strains of S. aureus and E. coli [20]. S. aureus subspecies aureus
ATCC 25923TM and E. coli ATCC25922 were used as a control strain in this study.

2.4. Response of Mixed Culture against Different Antibiotics

The disc diffusion method was employed to assess the susceptibility of mixed Culture
consisting of S. aureus and E. coli against various antibiotics. For this purpose, a total
of three samples each of S. aureus (S) and E. coli (E) were randomly selected from the
previous trial (Section 2.3). These samples were mixed with each other to create three mixed
culture samples, namely S1E1, S2E2, and S3E3. Briefly, the 0.5 McFarland solution of each
bacterial strain was combined in equal proportion to make a resulting concentration of
0.5 McFarland (equal to 1–1.5 × 108 CFU/mL) for the SE combination. This study involved
the examination of both individual bacteria and mixed Culture to assess their responses
to a total of eight antibiotics with the same protocol as mentioned in Section 2.3 of this
manuscript. Zones of inhibition (ZOI) were measured and compared, and comparisons of
each individual and mixed culture were made. The percentage increase or decrease in ZOI
values of mixed Culture with individual bacteria was calculated to evaluate the extent of
variation exhibited by mixed Culture against antibiotics.
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2.5. Synthesis and Characterization of Nanoparticle-Coupled Antibiotics
Synthesis of WO3 Nanoparticles

Sodium tungstate (Na2WO4) and cetyltrimethylammonium bromide (CTAB) were
individually dissolved in deionized water using a solution of 6 g of Na2WO4 and 18 mL
of deionized water. Both solutions were mixed, and a small amount of hydrochloric acid
(HCl) was added to adjust the pH to within the range of 1–2. This reaction mixture was
autoclaved at 80 ◦C in a 100 mL Teflon vessel for 4 days in a stainless-steel lined auto-
clave. The hydrothermally precipitated materials were filtered and rinsed with deionized
water and ethanol at regular intervals after hydrothermal treatment. After precipitation,
the precipitates dried at 120 ◦C for two hours. A further 3.5 h of calcination at 500 ◦C
was completed. After calcination, the product was ground into powder with a pestle
and mortar.

Ampicillin and oxytetracycline were selected for this trial based on their clinical
use, resistance profile, and better coupling ability with nanoparticles in a pilot study.
These antibiotics were dissolved in 20 mL of deionized water, while 1.5 g of nanoparticles
were dispersed in deionized water and stirred for five hours at room temperature in the
presence of PVP dissolved in 20 mL of deionized water. The solutions were stored at room
temperature for 24 h with regular mixing and stirring. The product was centrifuged for
30 min at 3000 rpm to settle at the bottom. A mortar and pestle were used to grind
the product after it was dried for 8 h at 100 ◦C. The absorbance of coated nanoparticles
was measured using a US-1100 double beam UV-visible spectrophotometer from LYNX,
LM-56-1001AE in Pakistan. We performed XRD using a Rigaku TTR instrument (Tokyo,
Japan) at 40 kV and 300 mA, in the range 2θ between 20 and 80, with Cu kα (λ) radiation
around 0.15406 nm, to investigate the crystal structure of nanoparticles. An FTIR analysis
was conducted using an FTIR spectrometer (Perkin Elmer Spectrum America) at room
temperature within the spectral range of 4000–500 cm−1. Scanning images and elemental
analysis were performed on a TESCAN MIRA 3 (Brno, Czech Republic), which is available
at the Institute of Space Technology, Islamabad, Pakistan. The Raman spectra were collected
using a Peak Seeker Pro-Agiltron Raman spectrometer (USA) with a laser light source of
50 mW at 785 nm. At room temperature, 50 mg of each sample were placed on aluminum
slides for examination. Thermal analysis was executed in a controlled nitrogen environment
employing a Q600 SDT thermogravimetric analyzer with a heating rate of 10 ◦C per minute.
The analysis of sample mass changes was performed using a POWEREACH JC 2000D2W
contact angle tester produced in Pakistan.

2.6. Resistance Modulation by Nanoparitcle Coupled Antibiotics against Individuals and
Mixed Culture

An empirical technique was used to estimate the antibacterial activity of WO3-coated
antibiotics. The minimum inhibitory concentrations (MICs) of the preparations were
determined using broth microdilutions.

2.6.1. Agar Well Diffusion Method

A fresh culture of individual E. coli and individual S. aureus was adjusted to
1–1.5 × 108 CFU/mL by obtaining turbidity of culture equal to 0.5 McFarland. To make
the final adjustment at 1–1.5 × 108 CFU/mL, a 1/2:1/2 ratio of both bacteria (each having
0.5 McFarland solutions equaling 1–1.5 × 108 CFU/mL) was used to generate the mixed
culture for the agar well diffusion method. This was achieved by combining half of an
E. coli solution (1–1.5 × 108 CFU/mL) and half of a S. aureus (1–1.5 × 108 CFU/mL) solution
to make a total of 1 mL (0.5 McFarland). The culture was spread on Mueller–Hinton agar
homogenously. The well borer was used to make wells (6–8 mm) on sterile Mueller–Hinton
agar at equal distances. Tungsten oxide nanoparticles alone and tungsten oxide nanopar-
ticles coupled with antibiotics were poured into the wells (15 µL of 0.01 gm/mL) and
incubated at 37 ◦C for 24 h. The zones of inhibition (ZOI) produced by this preparation
against E. coli, S. aureus, and mixed culture were measured using vernier calipers [21].
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2.6.2. Minimum Inhibitory Concentration (MIC)

Sterile broth was poured in all wells of sterile 96-well titration plate. Two-fold serial
dilutions, starting from 10,000 µg/mL of each preparation were carried out until the 11th
well. A fresh growth of E. coli and S. aureus adjusted at 1 × 105 CFU/mL was poured in
all wells except the negative control. To make the final adjustment at 1 × 105 CFU/mL for
mixed Culture, the solutions of E. coli (1 × 105 CFU/mL) and S. aureus (1 × 105 CFU/mL)
were combined in a 1/2:1/2 ratio. Positive control (well containing both broth and culture)
and negative control (well containing only broth) were reserved in the 12th column. The
optical density at 600 nm wavelength was measured after 0, 4, 20, 24, and 28 h of incubation.
In this study, OD values were taken at the 4 h duration both before and after the standard
time of incubation, i.e., 24 h. This was intended to find the first minimum dosage if
the infection is to be tackled on an immediate basis, as well as the hours around the
infection period.

A net OD value was determined by comparing the values taken with those obtained
after 0 h of incubation. Various concentrations were tested for inhibition of growth based
on the net OD value. The minimum inhibitory concentration (MIC) was determined to be
the lowest concentration of preparation that inhibited the growth of bacteria [22].

2.7. Statistical Analysis

Parametric tests, t-tests, and analysis of variance (ANOVA) were applied to the data ob-
tained from disc diffusion, well diffusion, and the broth microdilution method. Tukey’s test
was applied in conjunction with ANOVA to compare the means for statistically significant
differences. SPSS version 22 was used to analyze the data at p < 0.05.

Formulae Used

% Change in ZOI of mixed culture compared with the individual culture bacteria

=
(ZOI of mixed culture bacteria − ZOI of individual culture bacteria)

ZOI of mixed culture bacteria
× 100

3. Results
3.1. Characterization of Nanoparticles
3.1.1. Tungsten Oxide

The FTIR spectra of tungsten oxide (WO3) within the range of 1000 to 500 cm−1 refer to
the characteristic lattice vibration exhibited by tungsten oxide nanoparticles. The stretching
vibration of W-O-W and the bending vibration of W-O and W=O are characterized by a
prominent peak at around 799 cm−1. The peak at 1600 cm−1 is described as a vibration of the
symmetrical OH of the hydroxyl group as well as a W-OH phase interaction. The utilization
of an acidic medium during the preparation of the sample may yield larger crystallites
with higher concentrations of oxygen defects than the sample prepared in less acidic media.
Consequently, the symmetrical vibrations of the W-OH, H2O, and W-OH molecules were
affected. A strong stretching W-O-W response in the inorganic compound itself is visible
at 799 cm−1. The correlation between vibration and sample preparation was observed to
be stronger when using more acidic media, such as a pH value of 2. Figure 1 represents
a comprehensive view of the product, where the WO3 nanoparticles exhibit an array of
randomly arranged particles. Upon closer examination, the nanoparticle surface has a
smooth texture, characterized by spheroidal or oval morphology. The nanoparticles of WO3
are oval with rounded ends and their respective ends intersect at different points. Figure 1a
displays the scanning electron microscopy (SEM) images depicting the synthesized product
WO3, which was obtained using hydrothermal methods. It was observed that a drug
coating had been applied to the WO3 nanoparticles, resulting in a variation in absorbance
with wavelength. However, the absorbance pattern exhibited several peaks.
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Figure 1. Scanning electron microscopic images of tungsten oxide nanoparticles alone and coated
with antibiotics. (a) SEM image of tungsten oxide nanoparticle, (b) SEM image of tungsten oxide
nanoparticles coupled with ampicillin, (c) SEM image of tungsten oxide nanoparticles coupled
with oxytetracycline.

3.1.2. Tungsten Oxide Coupled Antibiotics

It has been observed in previous studies that the most characteristic bands of oxytetra-
cycline (OTC) fall in the 1100 cm−1 to 1700 cm−1 region. Peaks at 1653 cm−1 to 1522 cm−1

were assigned to the -C=O and -NH2 groups of the amide group in ring A, respectively.
The peaks at 1617 cm−1 and 1541 cm−1 were attributed to the -C=O group in ring C and
amide -NH, respectively. The 1457 cm−1 peak, on the other hand, was attributed to C=C
skeletal vibration. The O-H stretching vibration in the alcohol and phenolic groups is re-
sponsible for the intense stretching bond centered between 3300 cm−1 to 3500 cm−1. When
a tungsten oxide nanoparticle (WO3) is associated with it, a tungsten oxide appears at
799 cm−1, indicating that the W-O-W stretching vibration is present. These peaks con-
firmed the presence of pure WO3 nanoparticles in a sample and their interaction with OTC
(Figure 2).

The peak at 799 cm−1 indicates that W-O-W stretching vibrations are present in WO3.
The prominent peak at 1550 cm−1 indicates that the C-C stretching vibration of the aromatic
ring is present in the sample. The presence of an alkene =C-H bend is shown by the peak at
1004 cm−1. The peak from 1680 cm−1 to 1630 cm−1 reveals the presence of a C=O stretching
vibration in the amide group, together with the presence of two alkyl groups. Additionally,
the bending vibrations of CH3 and CH2 can be observed at 1475 cm−1 and 1365 cm−1,
respectively. The C=O stretching vibration in the carboxylic group generally exhibits a peak
within the range of 1760 cm−1 to 1665 cm−1 in. The peak at 1585 cm−1 corresponds to the
vibrational mode associated with the stretching of C-C bonds within the aromatic ring. The
peak at 799 cm−1 confirms the presence of pure WO3 nanoparticles in the sample and its
interaction with ampicillin (Figure 2).

3.2. Antibiotic Susceptibility of Individual Bacteria

The response of E. coli against different antibiotics was more inclined towards the
resistant category when compared to S. aureus (Table 1). None of the E. coli isolates showed
less than 20% resistance, however the highest percentage of resistant E. coli being 60%
against penicillin. In contrast, it was observed that none of the isolates exhibited a sensitivity
of less than 30% against any antibiotics tested in this study. The highest percentage
of sensitive strains (60%) were noted against imipenem, amikacin, and erythromycin.
Subsequently, the percentages of sensitive isolates were noted to be 50% for gentamicin,
40% for erythromycin, penicillin, and ciprofloxacin, and 30% for ampicillin. The largest
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percentage of intermediate isolates was higher in the case of S. aureus as compared to those
of E. coli. The highest proportion of intermediate susceptible isolates was reported in 40%
of S. aureus cases against ampicillin, followed by 30% against imipenem, while in E. coli
cases, the percentage of intermediate susceptible isolates remained between 10 and 20%
against different antibiotics.
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Figure 2. FTIR spectra and UV-visible spectra of tungsten oxide nanoparticles and antibiotics.
(a) UV-visible spectra of tungsten oxide nanoparticle, (b) FTIR spectra of WO3 + ampicillin,
(c) UV-visible spectra of oxytetracycline, (d) FTIR spectra of WO3 + ampicillin, (e) UV-visible spectra
of ampicillin.

Table 1. Antibiotic susceptibility profile of E. coli and S. aureus against different antibiotics.

Antibiotic

E. coli S. aureus

R
(%)

I
(%)

S
(%)

R
(%)

I
(%)

S
(%)

Imipenem 40 20 40 10 30 60
Amikacin 30 10 60 20 20 60

Oxytetracycline 30 20 50 40 20 40
Ampicillin 50 20 30 30 40 30
Gentamicin 40 10 50 30 20 50

Erythromycin 20 20 60 30 10 60
Ciprofloxacin 30 10 60 40 20 40

Penicillin 60 20 20 50 10 40

R = resistant, I = intermediate, S = sensitive.

3.3. Response of Mixed-Culture Bacteria against Antibiotics

A significant difference in the ZOI was observed among individual and mixed-culture
bacteria when exposed to various antibiotics. The findings of this study challenge the
commonly held belief that the reduction in ZOI is a consistent outcome in mixed Culture.
Specifically, the results indicate that certain combinations of antibiotics, such as imipenem
and ampicillin, exhibited increased susceptibility in terms of higher zones of inhibition
compared to individual culture bacteria (Table 1). The variability in the response of mixed-
culture bacteria in comparison to individual culture bacteria to different antibiotics was
observed, with instances of both elevated and dramatically lowered responses (Figure 3).
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This study revealed that the mixed culture exhibited 37.67% and 8.69% higher ZOI com-
pared to the individual S. aureus when exposed to ampicillin and imipenem, respectively.
However, when tested against other antibiotics, there was a significant decrease in ZOI,
except for erythromycin, where no change in ZOI was observed. The most significant
reduction in ZOI was observed while testing ciprofloxacin (−240%) followed by gentamicin
(−225.94%), penicillin (−70.60%), amikacin (−67.84%), and oxytetracycline (−52.10%) in
comparison with individual S. aureus. Similarly, the mixed-culture bacteria in comparison
to individual E. coli showed an increase in percentage ZOI only in the cases of imipenem
(30.4%) and ampicillin (29.51%). Gentamicin caused the highest percentage decrease in
ZOI in mixed culture over individual E. coli (−119.4%), followed by ciprofloxacin (−100%),
penicillin (−55.95%), oxytetracycline (−20.04%), and amikacin (−17.89%). Mixed Culture
versus individual E. coli showed lesser percentages of decreasing in ZOI when compared to
the mixed Culture versus individual S. aureus. The findings of this study indicate that the
E. coli bacteria exhibited a higher level of resistance compared to S. aureus. Furthermore,
the presence of E. coli in polymicrobial (mixed) Culture proved to be the major factor
contributing to the observed resistance.
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Figure 3. Percentage variation (increase/decrease) in zones of inhibition of mixed culture (E. coli
plus S. aureus) in comparison to individual-culture E. coli and individual culture S. aureus against
different antibiotics. This percentage was measured as “(ZOI of mixed culture − ZOI of individual
culture)/mixed culture × 100”.

3.4. Antibacterial Potential of Nanoparticle-Coupled Antibiotics against individual and
Mixed-Culture Bacteria

The MICs of tungsten oxide (W) nanoparticles alone and tungsten oxide nanoparticle-
coupled oxytetracycline (WO) and ampicillin (WA) against specific E. coli showed significant
differences (p < 0.05). A similar response was noticed in the cases of individual S. aureus
and mixed Culture. The highest MIC (2083.33 ± 721.69 µg/mL) was noted in the case of
W against mixed culture after 4 h of incubation, while the lowest (19.53 ± 0.00 µg/mL)
was noted in the case of WO against individual S. aureus after 28 h of incubation (Table 2).
However, it was noteworthy that a non-significant difference (p < 0.05) in MICs was found
between WA and WO at all types of tested incubation periods. The results indicate that
the MIC for W in mixed-culture bacteria was found to be higher in comparison to that
of individual bacteria (Figures 4 and 5). The MIC of WA against mixed culture, when
compared to E. coli alone, exhibited elevated values across all types of tested incubation
periods except at the 20th and 28th hours of incubation. During this period, no changes in
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MIC or reduction in MIC, respectively, were observed for the mixed culture in comparison
to the individual E. coli. Except for the 24th and 28th hours of incubation (where the MIC
remained unchanged), there was an observed increase in the MIC of the mixed culture
in comparison to that of individual S. aureus. With the response of mixed Culture in
comparison to those of individual S. aureus and individual E. coli, it was shown that the
application of WO resulted in an increase in MIC at different incubation periods.

Table 2. Comparisons of minimum inhibitory concentrations of nanoparticle-coupled antibiotics
against E. coli, S. aureus, and their mixed culture.

Bacterial Culture Type Preparation
Minimum Inhibitory Concentration (µg/mL) at Different Incubation Periods

4 h 20 h 24 h 28 h

E. coli alone
WA 520.83 ± 180.42 a 65.10 ± 22.55 a 52.08 ± 22.55 a 39.06 ± 0.00 a

WO 312.33 ± 0.29 a 65.10 ± 22.55 a 39.06 ± 0.00 a 32.55 ± 11.28 a

W 1458.33 ± 954.70 a 260.42 ± 90.21 b 130.21 ± 45.10 b 78.12 ± 0.00 a

S. aureus alone
WA 416.67 ± 180.42 a 65.10 ± 22.55 a 52.08 ± 22.55 ab 26.04 ± 11.28 a

WO 312.33 ± 0.29 a 52.08 ± 22.55 a 26.04 ± 11.28 b 19.53 ± 0.00 a

W 833.33 ± 360.84 a 156.25 ± 0.00 b 104.17 ± 45.10 a 65.10 ± 22.55 b

Mixed
(E. coli + S. aureus)

WA 520.83 ± 180.42 a 91.15 ± 59.67 a 52.08 ± 22.55 a 26.04 ± 11.28 a

WO 520.83 ± 180.42 a 104.17 ± 45.10 a 65.10 ± 22.55 a 39.06 ± 0.00 a

W 2083.33 ± 721.69 b 625.00 ± 0.00 b 312.50 ± 270.63 a 156.25 ± 0.00 b

Different alphabetic (a, b) superscripts within the column of incubation for different preparations against each
bacterial culture type indicate significant differences (p < 0.05); WA = tungsten oxide nanoparticle-coupled
ampicillin, WO = tungsten oxide nanoparticle-coupled oxytetracycline, W = tungsten oxide nanoparticles alone.
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produced against S. aureus (A) and E. coli (B), respectively, by oxide nanoparticles (WO3), tungsten
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There was a statistically significant decrease (p < 0.05) in the MIC after 4 h of incubation
for each of W, WA, and WO against S. aureus, E. coli, and mixed-culture bacteria. However,
the reduction in MIC remained stable after 24 h without any significant change. The
data also indicated that maximum effectiveness in terms of reduced MIC may be attained
following a 20 h incubation period. This trend was found to be equally applicable for W,
WA, and WO against S. aureus alone, E. coli alone, and mixed culture (Table S1, Figure 3).

4. Discussion
4.1. Characterization of Nanoparticle-Coupled Antibiotics

There is a clear peak in our current FTIIR spectra around 799 cm−1, which is a signal of
stretching vibrations in W-O-W and bending vibrations in W-O and O-W. Similarly, studies
on the stretching vibration of W-O-W linkages have yielded similar results [23]. The pH of
the solution governs the nature of the types of present, and tungsten ions have a strong
tendency to agglomerate in an acidic medium to produce a diverse spectrum of polyanions.
Other studies have indicated that the broadband appearing in the 600–800 cm−1 range has
been attributed to the O–W–O stretching modes present in the crystal structure of WO3 [24].

4.2. Antibiotic Susceptibility

In the past few years, antimicrobial resistance in mastitis pathogens has received attention
due to the burden it imposes on lactating cattle in terms of drug toxicity and increased costs
of therapeutics. Some studies on antimicrobial resistance were in line with the findings of the
current study, but several other studies reported results in contradiction to that of the current
study. The difference might be attributed to various factors, such as previous exposure to
antibiotics, hygiene, consultation with a veterinarian, implementation of a mastitis control
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program, or overall animal health. This study contrasts with the findings of Singh et al. [25],
who reported the high efficacy of ciprofloxacin against E. coli and S. aureus. As per the
findings of the previous study [26], E. coli was found to be sensitive to erythromycin, while
in another study it showed resistance to the same antibiotic [27]. In the case of S. aureus,
other studies reported that gentamicin and enrofloxacin had the highest sensitivity, a finding
that contradicts the results of current study [28]. In our study, amikacin, imipenem, and
erythromycin exhibited the highest efficacy, whereas ampicillin was found to have the least,
which is in accordance with the findings of Verma et al. [29]. The study conducted by León
et al. [30] reported penicillin to be highly effective against S. aureus, which is in line with the
findings of the current study. The utilization of antibiotics for therapeutic and nutritional
purposes has resulted in a significant increase in the prevalence of pathogenic bacteria that
exhibit resistance to many currently available antimicrobial agents.

4.3. Resistance Modulation by Nanoparticle Coupled Antibiotics

In the current study, nanoparticle-coupled antibiotics showed the highest MIC against
E. coli and S. aureus. Like our findings, other studies on WO3-X nanodots have also shown
significant bactericidal activity attributed to their membrane stress and photocatalytic
properties, resulting in a significantly enhanced antibacterial activity [14]. Similarly, Liu
et al. [31] showed that increasing the concentration of WS2 and prolonging the incubation
time resulted in the eradication of both the E. coli and S. aureus. Previous reports have
demonstrated that the antibacterial properties of WO3-X nanodots can be attributed to
membrane stress and their photocatalytic properties [32]. A study conducted by Duan
et al. [15], showed the remarkable antibacterial efficacy of tungsten oxide nanoparticles by a
one-pot synthetic approach against Gram-negative E. coli and Gram-positive S. aureus. The
antibacterial properties of tungsten nanoparticles were also investigated by Syed et al. [33]
against E. coli and S. aureus, resulting in the inhibition of bacterial growth. In a study
conducted by Ghasempour et al. [34], it was shown that tungsten oxide nanodots with
diameters of 50–90 nm had antibacterial activity against E. coli bacteria when exposed to
visible light irradiation. Moreover, it has been observed in other experimental findings that
nanoscale metal oxides display antimicrobial activity depending on their exposure time to
microbial cells, particle size, agglomeration process, and degree of degradation [35].

5. Conclusions

This study concluded diversified trends in drug resistance in individual S. aureus,
E. coli, and mixed-culture bacteria. Tungsten oxide (WO3), on the other hand, exhibited sub-
stantial antibacterial properties against both individual bacterial strains and mixed-culture
bacteria. Notably, as compared to non-coupled nanoparticles, WO3 nanoparticles coupled
with antibiotics demonstrated the highest level of antibacterial potential. These nanoparti-
cles exhibited pronounced antibacterial effects during the initial stages of incubation and
have shown promise for application in the mitigation of bacterial resistance. However, for
the purpose of establishing standardized benchmarks encompassing safety, effectiveness,
and stability parameters, it is advisable to undertake further in vivo investigations and
field trials.
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