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Abstract: After oral surgery, intraoral wound healing and tissue regeneration is an important factor
for the success of the entire therapy. In recent years, non-invasive medical plasma (NIPP) has been
shown to accelerate wound healing, which would be particularly beneficial for patients with wound
healing disorders. Since the application of NIPP in dentistry has not been sufficiently understood, the
aim of the present study was to investigate the effect of a medical argon plasma device on gingival
cells. Human gingival fibroblasts, keratinocytes, and tissue biopsies were treated with NIPP for
different durations. Crucial markers associated with wound healing were examined at the mRNA
and protein levels by real-time PCR, ELISA and immunohistochemistry. NIPP treatment led to an
increase in Ki67 and MMP1 at mRNA and protein levels. NIPP application lasting longer than 60 s
resulted in an increase in apoptotic genes at mRNA level and superficial damage to the epithelium in
the tissue biopsies. Overall, our experimental setup demonstrated that NIPP application times of
30 s were most suitable for the treatment of gingival cells and tissue biopsies. Our study provides
evidence for potential use of NIPP in dentistry, which would be a promising treatment option for
oral surgery.

Keywords: non-invasive physical plasma; cold atmospheric plasma; cold atmospheric pressure
plasma; gingival keratinocytes; gingival fibroblasts; tissue biopsies; wound healing; in vitro

1. Introduction

In dentistry, especially in the field of oral and maxillofacial surgery, intraoral wound
healing is a key factor for the success of an intervention. In particular, the regeneration of
the soft tissue is essential for the underlying structures of the bone, as this is an important
barrier against microorganisms, a large number of which reside in the oral cavity [1]. In
addition, the gingiva is a barrier against antigens found in the air, which make their first
contact with human organisms there before passing into the gastrointestinal and respiratory
tracts [2].
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The gingiva consists of a surface epithelium separated from the underlying dense
connective tissue by a basal lamina [3]. The surface epithelium is a multilayered squamous
epithelium that is keratinised in the masticatory areas and nonkeratinised in the other
lining areas. For this reason, keratinocytes and fibroblasts are predominantly found in
this tissue [3]. An important element of the connective tissue is collagen 1: Its main
structural component collagen type 1 α1 (COL1A1) is produced by fibroblasts and can also
be influenced by keratinocytes. [4,5].

The interaction of various factors contributes to wound healing: Various cytokines
are involved not only in inflammatory responses, but also in critical functions of wound
healing such as wound contraction or tissue remodeling [6–10]. During wound healing,
the reorganization of collagen is essential for the entire tissue repair [11]. This process of
remodeling is mainly controlled by matrix metalloproteinases (MMP)s, such as MMP1 [12].
The main characteristic of a healing wound is a high proliferation rate of dividing cells,
as indicated by high levels of proliferation-associated proteins Ki67 and Proliferating Cell
Nuclear Antigen (PCNA) [13,14]. Ki67 is found in all active cell cycle phases, but it is
not present in quiescent cells [15]. PCNA is a nuclear protein that is obligatory for DNA
synthesis and is mainly expressed during the longer G1 and S phases of the cell cycle [16].

Within the last 10 years, non-invasive physical plasma (NIPP) has become the focus
of medical research. NIPP is a highly reactive, electrically conductive gas, also known
as the 4th state of matter, which has various properties [17]. For example, antimicrobial,
antioncogenic, and wound-healing effects have been described for the medical field [18–23].
Several types of NIPP devices have been designed: Plasma jets, Dielectric Barrier Discharges
(DBD), and hybrid devices that combine both technologies [24]. In all devices, plasma is
generated between the cathode and anode by a high-frequency voltage. In DBD devices, the
treated object is the counter-electrode, whereas in plasma jets, a carrier gas is used to deliver
NIPP from inside the device to the target [25]. Various clinical studies have also shown a
supportive effect of different NIPP devices on gingival wound healing [26,27]. However, a
more in-depth molecular investigation of the effect of NIPP on gingival cells and tissues
has not yet been described. The aim of the study was therefore to investigate the effect of
NIPP generated by a medical argon plasma device on human gingival keratinocytes (HGK)
and human gingival fibroblasts (HGF) regarding crucial molecules involved in wound
healing. Since apoptotic effects by NIPP have also been described [19], the effects on crucial
apoptotic molecules, such as caspase (CASP)9 and CASP3, were also to be investigated in
this study. In addition, the effect of NIPP should also be demonstrated histologically in
tissue biopsies of gingival tissue to demonstrate the effect of a regular clinical use of NIPP
in dentistry.

2. Materials and Methods
2.1. Cell Culture

HGF (HGF-1; CRL-2014) and HGK (Primary Gingival Keratinocytes; PCS-200-014)
were obtained from ATCC (Manassas, VA, USA). HGF were propagated in Dulbecco’s
modified essential medium (DMEM; Invitrogen, Waltham, MA, USA), containing 10% fetal
bovine serum (FBS; Invitrogen, Waltham, MA, USA), and 1% penicillin/streptomycin (In-
vitrogen) at 37 ◦C with 5% CO2 and 95% humidity. The cultivation of HGK was performed
under the same conditions in Keratinocyte Growth Medium 2 (PromoCell, Heidelberg,
Germany), supplemented with 1% penicillin/streptomycin. The cell culture medium was
changed every 2–3 days. For the experiments, 50,000 cells/well were each cultivated in
3.5 cm dishes (VWR, Radnor, PA, USA). One day prior to the experiments, FBS concentra-
tion of HGF was reduced to 1%.

2.2. NIPP Application

NIPP was generated by an argon plasma jet (kINPen med, neoplas med, Greifswald,
Germany) at 4.0 L of argon per minute. The treatment of medium covered cells was
performed at a distance of 2 cm (nozzle to cells), describing a spiral for the indicated times.
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2.3. Analysis of mRNA Expression

One day after the experiments, the RNA was extracted using a RNeasy Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. An iScript™ Select cDNA
Synthesis Kit (Bio-Rad Laboratories, Munich, Germany) was used to reverse transcribe 1 µg
RNA into cDNA. A mixture of 12.5 µL SsoAdvanced™ Universal SYBR® Green Supermix
(Bio-Rad), 2.5 µL commercially available primer (GAPDH, Ki67, PCNA, COL1A1, MMP1,
CASP9, and CASP3; QuantiTect Primer Assay, Qiagen), and 9 µL deionised water were
used to amplify 1 µL cDNA by the iCycler iQ™5 detection system (Bio-Rad). For real time
PCR, the following protocol was used: 5 min heating at 95 ◦C, 40 cycles denaturation at
95 ◦C for 10 s and combined anealing/extension at 60 ◦C for 30 s. The data were evaluated
using the comparative threshold cycle method.

2.4. Analysis of Ki67 and MMP1 Protein Levels

Ki67 protein levels were analysed in cell lysates using the Human Ki67 enzyme-linked
immunoassay (ELISA) Kit (ab253221, abcam, Cambridge, UK). For quantification of MMP1
protein levels, cell supernatants were analysed using the Human Total MMP-1 DuoSet
(ELISA) kit (DY901, Bio-Techne, Minneapolis, MI, USA) according to the manufacturer’s
instructions. Absorbance was measured at 450 nm using a microplate reader (Epoch™
Microplate Spectrophotometer, BioTek Instruments, Winooski, VT, USA) and normalized
to total protein concentration using Pierce BCA Protein Assay Kit (23227, Thermo Scientific,
Pierce Biotechnology, Rockford, WA, USA). The absorbance was measured at 570 nm, as
described above.

2.5. Caspase-3/7 Assay

Cells were seeded into 3.5 cm dishes, as described above, and were subsequently treated
with NIPP. Immediately after treatment, cell suspension was transferred to 96 well plates and
incubated for 24 h and 48 h. After incubation, medium was removed and 100 µL of Caspase
3/7 detection solution (CellEventTM Caspase 3/7 Green Detection Reagent, Thermo Fisher
Scientific, Waltham, MA, USA) was added according to the manufacturer’s instructions
for 45 min. Staurosporine (Sigma-Aldrich, St. Louis, MO, USA) treated cells served as
positive control. Fluorescens was measured at 535 nm following excitation at 495 nm using
a microplate reader (Tecan, Männedorf, Switzerland).

2.6. Staining of Tissue Biopsies

Human gingival biopsies, intraoperatively classified as tissue waste, were taken from
five healthy patients during routine surgeries in the Department of Oral Surgery at Bonn
University Hospital. The approval of the ethics committee of the University of Bonn
(#111/17) and the written informed consent of the patients were obtained in advance.
Tissue was rinsed with Phosphate buffered saline (PBS; Invitrogen) and cut into thirds.
Two thirds were treated with NIPP using the spacer provided by the company; the other
third served as a control group. The tissues were stored in 3.5 cm wells (VWR) in DMEM
(Invitrogen), containing 1% FBS (Invitrogen), and 1% penicillin/streptomycin (Invitrogen)
at 37 ◦C with 5% CO2 and 95% humidity for 24 h. Subsequently, the pieces of tissues
were fixed in 4% paraformaldehyde (Sigma-Aldrich) for 2 d, hydrated, dehydrated in an
ascending ethanol series (AppliChem, Darmstadt, Germany), and embedded in paraffin
(McCormick Scientific, Richmond, IL, USA). The tissue was sliced into sections of 4 µm and
mounted on glass slides (SuperFrost Plus; Thermo Fisher Scientific).

For histological analysis, sections were stained with hematoxylin and eosin (HE; Merck,
Darmstadt, Germany), dehydrated, and mounted with DePeX (SERVA Electrophoresis
GmbH, Heidelberg, Germany).

For immunohistochemistry, sections were deparaffinated, rehydrated, and rinsed
with TBST (Merck) for 10 min. Afterwards, the endogenous peroxidase was blocked by
using 0.3% methanol (AppliChem)/H2O2 (Merck) solution for 10 min. After another
rinsing with TBST, the sections were blocked with 5% Bovine Serum Albumin Fraction
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V (BSA; Roche Diagnostics, Mannheim, Germany) in PBS for 30 min and incubated with
primary antibodies rabbit anti-Ki67 (1:2000; abcam), or rabbit anti-MMP1 (1:600; abcam)
in 1% BSA in a humid chamber at 4 ◦C overnight. Following this, the sections were
rinsed with TBST and incubated with goat anti-rabbit IgG-HRP secondary antibody (Dako,
Glostrup, Denmark) at room temperature for 30 min. The staining was visualized with
3.3′-diaminobenzidine chromogen (Thermo Fisher Scientific) and—after rinsing with TBST—
counterstained with Mayer’s hematoxylin (Merck) for 5 s. After the rinsing and dehydra-
tion, the slides were mounted with DePeX. Analysis was performed using the Axioskop 2
microscope (Carl Zeiss, Jena, Germany) with an AxioCam MRc camera and the AxioVision
4.7 software (Carl Zeiss).

2.7. Statistical Analysis

For statistics, GraphPad Prism Software Version 7 (GraphPad Software, Inc., La Jolla,
CA, USA) was used with one-way ANOVA and post hoc Dunnett’s multiple comparisons
test. p values below 0.05 were defined as statistically significant.

3. Results
3.1. Analysis of Ki67 and PCNA

At first, we investigated the effect of NIPP on cellular growth. In HGF and HGK,
treatment with NIPP caused an increase in Ki67 mRNA levels. In HGF, there was a dose-
dependent increase of Ki67 mRNA for exposure times of 10 s to 30 s (Figure 1a). Longer
treatment times resulted in a decrease in Ki67 mRNA regulation. In HGK, the dose-
dependent mRNA upregulation was evident up to an application time of nearly 60 s
(Figure 1b). The mRNA regulation of PCNA in HGF showed a similar pattern to Ki67 with
a peak at 30 s (Figure 1c). Interestingly, in HGK, the PCNA expression maximum also
occurred after 60 s of NIPP but was more pronounced than the Ki67 expression (Figure 1d).
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Figure 1. Influence of NIPP on Ki67 and PCNA mRNA levels in HGF and HGK at 24 h. Treatment
was performed for the indicated times: (a) Ki67 mRNA in HGF; (b) Ki67 mRNA in HGK; (c) PCNA
mRNA in HGF; (d) PCNA mRNA in HGK. n = 9. * statistical significance compared to control (0 s)
(p < 0.05).

Following the investigation of mRNA expression, we then focused on the examination
of protein expression of Ki67.

In HGF protein expression of both one day and two days was similar to mRNA level
at one day (Figure 2a,b). Interestingly, in contrast to mRNA data, 10 s of NIPP treatment
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showed a significant reduction in Ki67 protein expression after 48 h. However, the protein
data confirmed that 30 s was the most effective NIPP treatment time in HGF.
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Protein levels were related to total protein and normalised to control. Treatment was performed for
the indicated times: (a) Ki67 concentration in HGF cell lysates at 24 h; (b) Ki67 concentration in HGF
cell lysates at 48 h; (c) Ki67 concentration in HGK cell lysates at 24 h; (d) Ki67 concentration in HGK
cell lysates at 48 h. n = 6. * statistical significance compared to control (0 s) (p < 0.05).

In contrast, in HGK, Ki67 protein levels decreased in a dose-dependent manner after
24 h of incubation, indicating anti-proliferative effects of NIPP (Figure 2c). Interestingly,
Ki67 protein expression after 48 h correlated with mRNA data from the 24 h incubation
(Figure 1b), demonstrating a dose-dependent stimulatory effect with a maximum at 30 s
NIPP treatment (Figure 2d). Similar to the 24 h incubation data in HGK, 90 s NIPP led to a
strong reduction of Ki67 protein levels by almost 50% at 48 h (Figure 2d).

3.2. Analysis of COL1A1 and MMP1

Next, we focused on the study of marker molecules related to tissue remodeling.
First, we examined the mRNA expression of COL1A1 as a major component of gingival
connective tissue. Interestingly, NIPP had little effect on mRNA expression in HGF after
24 h (Figure 3a). In HGK, 10 s of NIPP caused a reduction in COL1A1 mRNA expression
after 24 h—however, only very limited effects of NIPP were observed in HGK (Figure 3b).
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Figure 3. Impact of NIPP on COL1A1 and MMP1 mRNA levels in HGF and HGK at 24 h. Treatment
was performed for the indicated times: (a) COL1A1 mRNA in HGF; (b) COL1A1 mRNA in HGK;
(c) MMP1 mRNA in HGF; (d) MMP1 mRNA in HGK. n = 9. * statistical significance compared to
control (0 s) (p < 0.05).

In addition, we investigated the influence of NIPP on MMP1, which plays a pivotal
role in collagen degradation and remodeling.

In HGF, there was a significant increase in MMP1 regulation in relation to increasing
NIPP treatment time (Figure 3c). In HGK, a similar effect was seen, but an increase in
MMP1 mRNA regulation was only seen from 30 s NIPP treatment after 24 h (Figure 3d).

The NIPP effect on the modulation of MMP1 expression was also detected at the
protein level.
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Figure 4. Effects of NIPP on MMP1 protein levels in HGF and HGK at 24 h and 48 h, respectively.
Protein levels were related to total protein and normalised to control. Treatment was performed for
the indicated times: (a) MMP1 concentration in HGF cell culture supernatants at 24 h; (b) MMP1
concentration in HGF cell culture supernatants at 48 h; (c) MMP1 concentration in HGK cell culture
supernatants at 24 h; (d) MMP1 concentration in HGK cell culture supernatants at 48 h. n = 6.
* statistical significance compared to control (0 s) (p < 0.05).
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In HGF, the dose-dependent effect of the NIPP application time was already apparent
after 24 h (Figure 4a) and was also still visible after two days, with a peak at 90 s of NIPP
(Figure 4b). HGK showed a similar pattern, with 90 s NIPP also having the strongest effect
on MMP1 protein levels at one and two days (Figure 4c,d).

3.3. Examination of CASP9 and CASP3

Finally, we investigated the influence of NIPP on apoptotic genes, as NIPP is also
known for its apoptotic effect in cancer cells. It was shown for application times of 90 s
NIPP in HGF and 60 s NIPP, as well as 90 s NIPP in HGK, that there was an upregulation
in the mRNA expression of CASP9 (Figure 5a,b). Interestingly, this effect could not be
detected with HGF in the mRNA expression of CASP3, which is regulating the end of the
apoptotic cascade (Figure 5c). In comparison, CASP3 mRNA was upregulated in HGK at
application times of 60 s. Interestingly, the effect of 90 s NIPP was significantly lower on
CASP3 expression (Figure 5d).
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The apoptotic effect of NIPP on the cells was measured with a caspase-3/7 assay.
Surprisingly, the slight apoptotic effect of NIPP on the cells could not be confirmed: Both
HGF and HGK showed no significant increase of active caspase 3/7 after 24 h and 48 h
compared to the untreated control (Figure 6a–d).
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3.4. Examination of Tissue Biopsies

To evaluate the in vitro data, gingival tissue was treated with NIPP in vitro and
analysed. For this purpose, tissue biopsies were treated with NIPP immediately after
collection, incubated for 24 h, and examined histologically. Analysis of the sections showed
that an application of 60 s NIPP led to damage of the superficial keratinocyte layer and
slight dissolution of the suprabasal layers in the tissue (Figure 7).
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The expression of Ki67 could also be detected in the tissue biopsies. Since the tis-
sues were stored in cell culture medium, the control group also showed Ki67 expression.
However, 30 s NIPP application, in particular, caused an increase in Ki67 expression in the
fibroblasts of the connective tissue and the basal layer of the keratinocytes. A 60 s NIPP
application resulted in increased immunostaining of the superficial keratinocyte layers and
reduced staining in basal layers. (Figure 8).
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Finally, we also investigated the expression of MMP1 in tissue biopsies. Here, in
particular, the strong dose-dependent effects of NIPP could be demonstrated, which were
especially evident in the subepithelial layer. Additionally, some keratinocytes were stained
in the basal layer of epithelium. A 30 s NIPP treatment resulted in an increase in MMP1
staining throughout the whole lamina propria, and this was even more pronounced with
a 60 s treatment (Figure 9).
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4. Discussion

In the present study we have shown the proliferation-promoting effect of NIPP gener-
ated by an argon plasma device on gingival tissue concerning crucial markers regarding
tissue regeneration and wound healing (Figure 10). In previous in vitro studies, we have
shown similar effects of DBD-generated NIPP on hard tissue cells [28,29]. However, as the
soft tissue is crucial for the healing of the underlying hard tissue without complications,
the aim of this study was to investigate the effect on gingival cells and tissue.

First, we focused on mRNA expression of different molecules crucial for wound
healing. For this reason, we examined the mRNA expression of Ki67 and PCNA, which
are well-established markers for the detection of proliferating cells [16] and additionally
focused on Ki67 protein expression. In HGF cells, the proliferative effect is strongest with
30 s NIPP treatment and decreases with longer application times. In HGK, similar effects
were observed, but Ki67 protein expression showed the same pattern as mRNA expression
only after 48 h, which might be due to the time needed to transcribe the mRNA information
into the protein.
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The proliferation-promoting effect of NIPP has already been described in the liter-
ature [29–36]. In previous in vitro studies, we have shown an upregulation of Ki67 and
PCNA expression after 60 s of NIPP treatment at 24 h in PDL cells, gingival keratinocytes,
and cementoblasts using a DBD [30,35,37]. Interestingly, after one day in HGK using a DBD,
60 s NIPP treatment revealed similar results in regard to Ki67 mRNA expression, as we
have shown in the present study, using an argon plasma jet. However, mRNA expression
of PCNA after 60 s of NIPP treatment was higher using a plasma jet than using a DBD [37].
Further studies to systematically compare the two devices are needed to better understand
the exact effect of NIPP on gingival cells. Since in the present study we demonstrated
an effect on Ki67 and PCNA for only 10 s of NIPP treatment after one day, even short
applications seem to have an effect, which would facilitate clinical use. Other authors
have shown this proliferative effect with as little as 3 s of NIPP treatment in vivo after
6 days, using the same device as we have used [32]. But different applications of NIPP have
also been described in the literature: Park et al. (2019) showed an upregulation of PCNA
protein expression in adipose tissue-derived stem cells after NIPP treatment of 50 s per h
for 10 times at 24 h and 72 h, respectively [38]. For this reason, further studies are necessary
to investigate different application times, such as 20 s, 40 s, and 50 s of NIPP treatment. It
is also possible that the maximum of mRNA and protein expression is not at a treatment
time of 30 s, but between 10 s and 30 s or 30 s and 60 s. Only further studies can illuminate
this. In addition, the different effects of the various devices on the same cells should also be
systematically examined.

It must also be considered that protein expression must also have an effect on cell
number. However, in the previous in vitro studies mentioned above, we were also able to
show that the NIPP-regulated upregulation of Ki67 and PCNA correlates with an increasing
cell number: Thus, a significant increase in cell number was shown after 24 h in osteoblast-
like cells [29]. However, a systematic investigation of the cell number with regard to
different time points should also be the target of further studies with HGF and HGK.

Furthermore, the influence of NIPP on other components of in vitro cell regeneration,
such as the metabolic activity of the cells or cell migration, has been described in the
literature: Cui et al. have described increased cell migration and higher levels of angiogenic
growth factors in human keratinocytes treated with LTP for 30 s, 60 s and 180 s using a DBD
plasma device [36]. Liu et al. used MTT to demonstrate an increase in cell viability in mouse
fibroblasts in vitro after 48 h when exposed to an argon plasma jet at 0.5 L/min from 0–30 s:
They showed a peak at 15 s, which might be due to the different device or a different, not
specified distance to the cells [39]. Nevertheless, it must be taken into account that different
cell types and cells from different tissues can show different cell responses to the same
stimuli—as already shown for HGF and HGK.



Biomedicines 2022, 10, 889 12 of 16

Further on, we focused on COL1A1 and MMP1, which are both important regulators
of early wound healing [40,41]. COL1A1 is mainly produced by fibroblasts rather than
keratinocytes, although keratinocytes are able to control the production of COL1A1 in
fibroblasts [4]. However, we decided to also investigate the mRNA expression of COL1A1
in keratinocytes, as platelet-released growth factors (e.g., platelet-rich fibrin) have been
described to stimulate COL1A1 mRNA expression in keratinocytes [42]. Interestingly,
COL1A1 mRNA regulation was not substantially affected by plasma in either HGF or
HGK. In previous in vitro studies, we found an upregulation of COL1A1 mRNA after
NIPP treatment of osteoblasts, PDL cells, and cementoblasts using a DBD [29,30,35]. In
addition, dermal and gingival fibroblasts have both been described to show increased
mRNA expression of COL1A1 after NIPP application for 1, 3 and 5 min, and 1, 2, and
4 min in vitro [43,44]. We can only speculate about the reasons for the differences in the
literature, but on the one hand cells seem to react differently to NIPP influence, while on
the other hand all the authors have used different NIPP devices and different experimental
settings: Osteoblasts, PDL cells and cementoblasts were stimulated by a DBD [29,30,35];
dermal fibroblasts were stimulated by a non-commercial microwave plasma generator [43],
and HGF were stimulated by an experimental plasma jet supplied by compressed air at
1 L/min [44]. Since our device operates with argon gas at higher gas flow (4 L/min),
additional research is needed to further decipher the differences of the various devices on
gingival cells.

Furthermore, MMP1 was upregulated by NIPP both at the mRNA level and at the
protein level in the cell culture supernatant in a dose-dependent manner. We have already
been able to demonstrate the promoting effect of NIPP on MMP1 in cells of the periodontal
ligament and in hard tissue cells using a DBD in vitro [29,30]. Therefore, we can assume
that the effect of NIPP on the regulation of MMP1 is independent of the technology used
to generate NIPP. However, as elevated MMP1 levels have also been associated with
periodontitis [45], it must be ruled out that NIPP is not harmful to gingival cells and tissue.
However, since we have shown that short treatment times lead to early MMP1 upregulation
in HGK and HGF without affecting the regulation of apoptotic markers, this seems to be
ruled out. Other methods that promote wound healing also have an effect on increased
MMP1 secretion, such as the use of platelet-rich plasma [46].

Longer NIPP applications, such as 60 s and especially 90 s treatment, are associated
with upregulation of CASP3 and CASP9 mRNA. Interestingly, this does not result in higher
caspase-3/7 activity. It is possible that NIPP seems to irritate the cells but prevents the cells
from actually becoming apoptotic. This underlines the non-invasive effect of NIPP.

Apoptotic effects of NIPP have been abundantly described in the literature, especially
for malignant cells [47–49]. In non-malignant cells, the antiproliferative effect is evident
when NIPP is applied for a long time: In HaCaT keratinocytes, 180 s NIPP treatments
have been described as apoptotic after 24 h [50]. Additionally, Weiss et al. have shown
a significant decrease in the cell number of fibroblasts after 72 and 120 h when treated
for 120 s [51]. Further studies are needed here to determine whether the longer NIPP
treatment in HGK and HGF is also reflected in a decrease in cell number. It is possible
that the direct NIPP effects regarding apoptosis might already be detectable a few hours
after NIPP application. However, in previous studies, we also observed downregulation of
mRNA regulation of apoptotic genes and an anti-apoptotic effect in PDL cells and MG63
cells by NIPP [29,30]. However, one reason for the difference could be the device—in those
studies an ambient air-controlled DBD was used, whereas in the present study we have
used an argon plasma jet. Weiss et al. and Schmidt at al. have also used plasma jets [50,51].
Interestingly, in the literature overall harmful effects of NIPP jets on gingival cells have
been described: Lee et al. demonstrate a harmful effect of compressed-air plasma (3 L/min)
on HGF viability in vitro [52]. However, in this study, in contrast to our study design, the
cells were not covered with medium during the NIPP treatment. Regarding our results, it
must also be borne in mind that distance and continuous movement play a role. Thus, we
were also able to induce apoptotic effects on HGF and HGK with our NIPP device at closer
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distances without continuous movement of the jet (data not shown). In addition, it must
also be taken into account that the gas flow of 4 L/min might dry out the medium, even
though we did not observe any significant difference in the amount of medium after NIPP
treatment compared to the untreated control when collecting the cell culture supernatants
for the ELISA experiments. However, further in vitro studies between medium-covered
and non-covered cells are necessary to fully unravel the effects of gas flow and NIPP on the
cells. Additionally, as there is no gas flow with DBD devices, a systematic investigation of
the influence of these devices on gingival cells would help to further unravel the effect of
NIPP in dentistry.

In the present study, we also focused on the examination of tissue biopsies where
the monolayer results could be confirmed. Interestingly, we observed a slight injury of
the superficial keratinocyte layer after 60 s NIPP, which could be an effect of the direct
treatment. The difference from our in vitro experiments could be due to the fact that the
cells on the surface already become apoptotic immediately after treatment or that the
damage is attributed to a different mechanism. Further research on apoptosis is necessary
to better understand this difference. Jablonowski et al. have, however, described these side
effects of NIPP generated by a medical argon plasma device in an in vivo study: 10 s and
60 s NIPP cause focal mucosal erosion with superficial ulceration after 1 d in mice, but
heal within a week without complications [53]. Furthermore, this superficial lesion was
considered non-carcinogenic [54]. It seems that these superficial injuries do not contradict
the clinical use of NIPP: Clinical studies have shown wound-healing effects on gingival
wound healing regarding application times of 60 s using a plasma jet and 120 s using
a DBD [26,27]. Since clinical healing of the gingiva was observed even with prolonged
applications of NIPP, the observed superficial lesions do not seem to be relevant. This
is confirmed by our results showing expression of Ki67 and MMP1 protein in the tissue
layers beneath the epithelium. These results correspond to the results of other authors who
have found NIPP effects at tissue depths of up to 2 mm [55]. However, further in vivo and
in vitro studies are necessary to better understand the direct effect of NIPP on gingival
wound healing.

Nevertheless, other methods of applying NIPP would be possible in dentistry, which
might achieve a similar effect: Lou et al. observed an increase in Ki67 protein expression
after 24 h using NIPP activated medium [33]. This possibility of applying multibiological
functions to the fluid through NIPP treatment would greatly simplify its application in
dentistry, allowing it to be used as a mouth rinse [56].

Whatever the method of applying NIPP, the use of NIPP is a cost-effective and time-
saving method to improve gingival wound healing. In particular, patients with impaired
wound healing, such as diabetics or oncological patients, could benefit. A reduction of
these wound-healing disorders would not only have a psychological benefit for the patients
but would also help to save costs in the health care system [57,58].

However, this study has some limitations: For protein analysis, we focused only on the
selected markers Ki67 and MMP1. Since PCNA mRNA was also strongly regulated by NIPP,
the analysis of protein levels after NIPP treatment would also have been useful. However,
we followed the publication of Bologna-Molina et al., who identified both markers as similar
proliferation markers, but gave Ki67 a higher specificity regarding ameloblastic cells [16].
Further studies comparing Ki67 and PCNA directly in HGF and HGK could be interesting
to further decipher the NIPP effect on cell proliferation in gingival cells. Additionally,
we used tissue biopsies to study NIPP effects. Since this tissue is only nourished by the
cell culture medium, only marginal conclusions can be drawn about the biological effect
within a living organism. This had an impact on the Ki67 staining, as the cells in the
tissue were constantly proliferating due to storage in medium, requiring us to adjust the
antibody dilution to visualise differences between the groups. For this reason, fibroblast
staining within the tissue is low. However, the penetration depth of NIPP has already been
demonstrated in the literature [59]. Additionally, we studied tissue biopsies at one day
because of the risk of tissue degradation in the humified incubator, regarding a longer
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treatment time. For this reason, further in vivo experiments with a focus on intraoral
wound healing are necessary to further understand the effect of NIPP. However, the aim of
the present study was to use human samples, which is more representative of the patients
who will be treated with NIPP. Furthermore, it must be borne in mind that commercially
available cells were used for the monolayer experiments. Although we were able to confirm
cell culture results in the tissue model with regard to MMP1 and Ki67, primary HGF and
primary HGK may show different results of gene and protein expression. Further studies
should therefore investigate this point in more detail.

5. Conclusions

Within the limits of our in vitro study, we could demonstrate that NIPP generated by
a medical argon plasma device promotes wound healing-associated processes in human
gingival cells and tissue. Although the exact effects of different NIPP devices on the gingiva
are not yet known, it seems that argon-based plasma jets offer promising prospects for
patients suffering from delayed wound healing and, last but not least, offer all patients the
prospect of not being limited too long after surgical interventions.
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