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Abstract: Combining the study of queuing with inventory is very common and such systems
are referred to as queuing-inventory systems in the literature. These systems occur naturally in
practice and have been studied extensively in the literature. The inventory systems considered in
the literature generally include (s, S)-type. However, in this paper we look at opportunistic-type
inventory replenishment in which there is an independent point process that is used to model events
that are called opportunistic for replenishing inventory. When an opportunity (to replenish) occurs,
a probabilistic rule that depends on the inventory level is used to determine whether to avail it or
not. Assuming that the customers arrive according to a Markovian arrival process, the demands
for inventory occur in batches of varying size, the demands require random service times that are
modeled using a continuous-time phase-type distribution, and the point process for the opportunistic
replenishment is a Poisson process, we apply matrix-analytic methods to study two of such models.
In one of the models, the customers are lost when at arrivals there is no inventory and in the other
model, the customers can enter into the system even if the inventory is zero but the server has to be
busy at that moment. However, the customers are lost at arrivals when the server is idle with zero
inventory or at service completion epochs that leave the inventory to be zero. Illustrative numerical
examples are presented, and some possible future work is highlighted.

Keywords: queuing-inventory systems; algorithmic probability; batch demands; random opportuni-
ties; lead times; matrix-analytic methods

1. Introduction

Models for inventory management under uncertainty have been studied extensively.
The two key questions of when and how many to order have been addressed under a
variety of factors such as the nature of inventory review (continuous or periodic), order
quantity (fixed or variable), lead time for an order to be fulfilled (negligible, constant or
random), nature of demand (deterministic or random), and other factors to optimize a
function of various costs such as ordering, carrying inventory, lost sales, etc.

Most models assume a single supplier and fixed cost of replenishment. Some models
incorporate the availability of random opportunities for replenishment which may lower
system costs due to reduced unit cost and/or ordering cost. We refer to them as oppor-
tunistic replenishment. Friend [1] studied systems with special opportunities occurring
according to a Poisson process. These opportunities, which may be exercised only at
the instant of their occurrence, are offered for the same unit price but at reduced or zero
ordering cost. Hurter and Kaminsky [2] extend this model to systems where the special
opportunities may be exercised during a random period. Silver, Robb, and Rahnama [3]
developed an efficient heuristic for the Hurter and Kaminsky [2] model. Gurnani [4]
considered periodic review systems and used game theory to study the economics of
placing a special order between reviews if a discounted sale is offered. Moinzadeh [5]
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considered systems with constant demand rate, zero lead time, and special discounted
opportunities occurring at exponentially distributed intervals, and obtained optimal or-
der quantity at regular price when inventory reaches zero, and the threshold and order
quantity at discounted price. Feng and Sun [6] suggest modifying the (s, S) policy to a
four-parameter system (threshold and order quantity for regular and discount purchases)
and proposed a bisection search procedure to determine the optimal values of the four
parameters. Goh and Sharafali [7] consider the model in [1,2] and incorporate the policy
of passing the cost reduction due to special purchases downstream to increase demand.
Chaouch [8] considers the model in [1,2] when special and regular prices are valid over
alternating exponential intervals. Tajbakhsh and Zolfaghari [9] consider systems with dis-
counts offered at exponential intervals with the discount price given by a discrete random
variable and develop optimal order quantities at each special price and further extended
the model to the case of multiple suppliers. Karimi-Nasab and Konstantaras [10] consider
a system with constant demand, periodic random review intervals (uniformly distributed
or exponential subject a maximum and minimum) and random special sale offers, and
determine maximum inventory level for regular purchases, and a higher maximum for
special purchases. Den Boer and Zwart [11] consider a system where the management
makes simultaneous decisions on whether to take advantage of the special discounted offer,
and the selling price of a unit similar to [7]. All the above references assume that the lead
time for receiving a special replenishment is negligible.

In all the above models, it is assumed that the special opportunities for replenishment
are always considered as a supplement to the normal replenishment process. In many
situations such as drugstores, groceries, small supermarkets, etc., the suppliers visit the
retailers at random (but frequent) intervals to offer special sales. This raises the possibility
that for some systems it may be more economical to manage inventory solely based on
special offers. This is particularly attractive for non-critical items (e.g., canned goods,
generic medication) where stock outs are not critical. Special replenishment opportunities
offer lower unit cost and/or reduced ordering cost, and are usually available without delay.

Inventory models discussed above assume that the time to process a demand is neg-
ligible. In many situations, completing a customer’s service requires other resources, in
addition to the item(s) in inventory (e.g., requiring a pharmacist to process the sale for
prescription medication). Such inventory systems are referred to as queuing-inventory (QI)
models or inventory models with positive service time, and have received a great deal
of attention recently. Research in queuing-inventory systems may be classified based on
features such as the nature of customer arrival process, service time distribution, server
vacation, service discipline, customer behavior, inventory review policy, replenishment
policy, stock-out assumptions, perishability of units, lead time for replenishment, among
others. We refer the readers to Krishnamurthy, Shajin, and Narayanan [12] for a general
review of queuing-inventory models, to Choi et al. [13] for a survey of QI models with
phase-type service times, and to Melikova and Shahmaliyeva [14] for a discussion of QI
models for perishable items. Recent generalizations of QI models are due to Chakravarthy,
Maity and Gupta [15], who studied a QI model in which the service is carried out in batches,
Chakravathy [16], who studied a QI model in which the demand occurs in batches, and
Chakravarthy and Rumyantsev [17], who study a QI system with batch demand, Marko-
vian Arrival Process (MAP), and phase-type service time and exponential replenishment
lead times.

In this paper, we explore queuing-inventory systems which solely use special oppor-
tunities for replenishment. This research is at the interface of the two areas of traditional
inventory systems, and the queuing-inventory systems. Most traditional inventory models
consider the demand to occur one unit at a time, at either constant or exponential intervals.
Our models extend this to consider demand that can occur in batches of random size, with
arrivals following a very general process which allows for a broad class of inter-arrival
times and autocorrelation between inter-arrival times. For both types of inventory systems,
it is a significant departure to manage inventory exclusively based on random replenish-
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ment opportunities. The objective of this study was to understand the behavior of such
systems and compare them with the traditional (s, S)-type inventory management systems.

2. General Description

The customer arrivals are modeled using Neuts’ versatile Markovian point process,
now referred to as batch Markovian arrival process (BMAP). If customers arrive one at
a time, the process is referred to as Markovian arrival process or briefly MAP. While the
customers arrive singly to the service facility, but their demands for inventory items are in
varying sizes. One of the major advantages of using MAP to model the arrival process is to
capture any correlation present in successive arrivals. The MAP is completely described by
two parameter matrices, say, (E0, E1) of dimension m. While, E0 governs transitions within
the underlying Markov process with generator E = E0 + E1, the transitions governed by E1
correspond to the arrivals of customers. We assume that E is an irreducible generator. MAP
and BMAP have been extensively used in stochastic model and there is a vast literature
available on these. We refer the reader to [18–29] for details on MAP and BMAP and other
key references.

Each customer demands a random number of items from inventory before being
processed by a single server. At the instant of an arrival, the available inventory is reduced
by the amount demanded by the customer. The number of remaining items in inventory is
referred to as available to promise or ATP in the business community. In this paper, we
always refer to ATP when referring to inventory. Physical inventory is not relevant because
once allocated to a customer, a unit is no longer available.

When the inventory level is positive, but less than the number of units demanded by
a customer, the customer’s demand is partially satisfied and the inventory level is set to
zero. Arrivals to the system when inventory level is zero, are denied entry and are lost.
The time to service a customer has a phase-type or PH-distribution and is independent of
the number of units demanded. For details on PH-distributions and their usefulness in
stochastic modeling, we refer the reader to [29–31].

Opportunities to replenish the inventory occur according to a Poisson process. We
assume that the lead time associated with a replenishment is zero. Replenishment decisions
are based on two parameters K and L (0 ≤ L < K < ∞) and for convenience we refer to the
policy as a (K, L) policy. If the inventory at the time a replenishment opportunity becomes
available is equal to i, a replenishment order to bring the inventory level to K is placed
with probability 1 if i ≤ L, and with with probability ai−L if L < i < K.

In this paper, we consider two types of models, referred to as Opportunistic Model 1
and Opportunistic Model 2, and these are described in the following sections.

Any queuing-inventory model with positive service time can be looked at two different
ways according to these two models to see which one will be better from either customer
or management or from both points of view. Therefore, there is a trade-off between the two
models and a comparison of these would benefit practicing managers to make a decision
on the choice of the models.

We use the classical matrix-analytic method (see, e.g., [30]) to formulate the associated
stochastic process with matrix-geometric steady-state probability vector. Performance
measures of interest are obtained in terms of the steady-state probabilities.

The structure of the present paper is as follows. Models 1 and 2 are analyzed in
Sections 3 and 4, respectively. Some selected system performance measures are presented
in Sections 3.2 and 4.2. In Section 5, we numerically study the key performance measures
of both models in steady-state as well as present a cost analysis to compare the two
models. Some concluding remarks are noted in Section 6. The following notation is used in
the paper.

• The subscript i, i = 1, 2 refers to the model under consideration.
• The symbol ′ stands for the transpose notation.
• The notations ⊗ and ⊕ stand for the Kronecker product and Kronecker sum, respec-

tively (see, e.g., [32,33]).
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• e′ = (1, 1, · · · , 1), whose dimension should be clear in the context. Where more clarity
is needed, the dimension will be mentioned, e.g., e(m) is a column vector of 1s of
dimension m.

• e′i = (0, 0, · · · , 1, 0, · · · , 0), where 1 is in the ith position.
• I denotes an identity matrix, whose dimension is dictated by the context.
• ∆(E1, · · · , Er) denotes a diagonal matrix with diagonal (possibly block) entries given

by E1 through Er. In the context where this notation is used, it will be clear whether
the entities are scalars or vectors or matrices.

3. Opportunistic Model 1

In this first model, we consider the scenario where the customers arrive to a service
facility consisting of a single server. The arrivals are modeled using Neuts’ versatile
Markovian point process, now referred to as batch Markovian arrival process (BMAP).
While the customers arrive singly to the service facility, their demands for inventory items
are in varying sizes. The MAP parameter matrices describing the arrivals of customers are
(E0, E1) of dimension m. The customers’ demands are in batches of varying sizes. Suppose
that M denotes the demand size. We assume that M has the following discrete distribution
on finite support,

P(M = i) = pi, 1 ≤ i ≤ N,
N

∑
i=1

pi = 1. (1)

In order to determine the arrival rate of the customers to the system, we first define
the invariant vector of the generator E = E0 + E1 that governs the underlying Markov
process for the arrivals. Suppose that θ is the invariant probability vector of E. That is,

θE = 0, θe = 1. (2)

Then, the arrival rate of the customers is given by

λ = θE1e. (3)

Let µM to be the mean of the demand size of each customer. That is,

µM =
N

∑
i=1

i pi. (4)

In this paper, we assume that the demands of the customers are either fully met or
partially met or not met at all, depending on, respectively, if the demands in the inventory
are fully adequate, partially adequate, or the inventory level is zero. When the inventory
level is zero at the time of the arrival of a customer, the arriving customer will be lost.

The size of the inventory is assumed to be finite with a capacity to hold at most K items.
As described and motivated earlier, the main purpose of this paper was to incorporate
opportunistic replenishment into stochastic models dealing with queues with inventory
and positive services. The opportunistic events occur according to a Poisson process with
parameter γ. Therefore, when an opportunity occurs for replenishing the inventory, the
system has the ability to bring the current inventory level to the maximum level through a
given probability structure. Suppose that the inventory level at the time a replenishment
opportunity is i. Then, the opportunity will be availed to bring the inventory level to K
with probability 1 if i ≤ L; however, if i > L, then with probability ai−L, 0 ≤ ai−L < 1, the
opportunity will be availed to bring the inventory to K, for L < i ≤ K− 1.

When a customer enters the system (either with fully or partially met demands), the
inventory level will be reduced by that customer’s demand size. Note that the only way an
arriving customer will be lost is when the inventory level is zero at that moment. However,
customers have to wait until their demands are processed with a positive service time,
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which is assumed to be random. The services follow a phase-type (PH)-distribution with
representation (β, S) of order n. Note that the mean service rate, say, µ, is given by

µ =
[

β(−S)−1e
]−1

. (5)

For use in sequel, we define S0 = −Se.
Suppose we define the quantities:

• J1(t) to be the number of customers in the system (including one in service),
• J2(t) to be the level of the inventory,
• J3(t) to be the phase of the service (if the server is idle, this will not be defined),
• J4(t) to be the phase of the arrival process,

at time t. The Markov process {(J1(t), J2(t), J3(t), J4(t)) : t ≥ 0} is a quasi-birth-and-death
process (QBD) with state space given by

Ω1 = {(0, j, r) : 0 ≤ j ≤ K, 1 ≤ r ≤ m}⋃{((i, j, k, r) : 0 ≤ j ≤ K, 1 ≤ k ≤ n, 1 ≤ r ≤ m, i ≥ 1}.

We now define the levels based on the set of states defined above. Suppose that
0 = {(0, j, r) : 0 ≤ j ≤ K, 1 ≤ r ≤ m} and i = {(i, j, k, r) : 0 ≤ j ≤ K, 1 ≤ k ≤ n, 1 ≤ r ≤
m}, i ≥ 1. This way, we notice that 0 corresponds to an idle system while i corresponds
to the system having i customers with one in service, and the inventory, and the arrival
process are in various states. For use in the sequel, we define a few additional notations.

• p̂i, probabilities of demands greater than i, are computed as

p̂i =
N

∑
k=i+1

pk, 1 ≤ i ≤ N − 1. (6)

• P, a square matrix of dimension K + 1 is defined as

P =



0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
p̂1 p1 0 · · · 0 0 0
p̂2 p2 p1 · · · 0 0 0
...

...
... · · ·

...
...

...
p̂N−1 pN−1 pN−2 · · · 0 0 0

0 pN pN−1 · · · 0 0 0
0 0 pN · · · 0 0 0
...

...
... · · ·

...
...

...
0 0 0 · · · p2 p1 0



. (7)

A quick look at P indicates that the customers’ demands are taken into consideration
at the time of their arrivals. The first column of P justifies that the structure due to the
customers’ demands are met partially. It is easy to verify that

Pe = (0, 1, . . . , 1)′. (8)

The generator, Q1, of the QBD-process for Opportunistic Model 1 is given by (note
that blank spaces correspond to the entries are zero)
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Q1 =


B P⊗ β⊗ E1

I ⊗ S0 ⊗ I A1 A0
A2 A1 A0

A2 A1 A0
. . . . . . . . .

. (9)

For a better display of the matrices, we take

F = E− γI,
F0 = E0 − γI,
Fr = E0 − arγI, 1 ≤ r ≤ K− L− 1,
SE = (S⊕ E)− γI,
SE0 = (S⊕ E0)− γI,
SEr = (S⊕ E0)− arγI, 1 ≤ r ≤ K− L− 1.

(10)

The matrices appearing in Q1 are as follows.

B =

0 1 2 · · · L L + 1 · · · K− 1 K



0 F γI
1 F0 γI
2 F0 γI
...

. . .
...

L F0 γI
L + 1 F1 a1γI

...
. . .

...
K− 1 FK−L−1 aK−L−1γI

K E0

, (11)

A1 =

0 1 2 · · · L L + 1 · · · K− 1 K



0 SE γI
1 SE0 γI
2 SE0 γI
...

. . .
...

L SE0 γI
L + 1 SE1 a1γI

...
. . .

...
K− 1 SEK−L−1 aK−L−1γI

K SE0 + γI

, (12)

and
A0 = P⊗ I ⊗ E1, A2 = I ⊗ S0β⊗ I. (13)

Suppose that η = (η0, · · · , ηK) denotes the invariant probability vector of A = A0 +
A1 + A2, that is, ηA = 0 and ηe = 1. The following lemma, which is intuitively clear, is
very useful in numerical computation as well as for probabilistic interpretation.

Lemma 1. The vector η is such that

K

∑
i=0

ηi = (µβ(−S−1)⊗ θ). (14)
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Proof. Setting A = A0 + A1 + A2, S̃ = S + S0β, and noting that A(e⊗ I ⊗ I) = [e⊗ (S̃⊕
E)], we see that

ηA = 0 ⇒ ηA(e⊗ I ⊗ I) = 0 ⇒ η[e⊗ (S̃⊕ E)] = 0, (15)

which implies that
η(e⊗ I)[S̃⊕ E] = 0. (16)

On noting that the the invariant vectors of S̃ and E, are, respectively, given by
µβ(−S−1) and θ, the stated result follows from Equation (16).

The computation of η is done by exploiting the structure of the matrices appearing in
A. From the definition of η and the equations associated with the invariant vector, we get

η0 = ∑N
j=1 ηj pj,0(I ⊗ E1)[γI − (S̃⊕ E)]−1,

ηk = ∑N+k
j=k+1 ηk pj,k(I ⊗ E1)[γI − (S̃⊕ E0)]

−1, 1 ≤ k ≤ L,

ηk = ∑N+k
j=k+1 ηk pj,k(I ⊗ E1)[ak−L γI − (S̃⊕ E0)]

−1, L + 1 ≤ k ≤ K− 1,

ηK = γ [∑L
j=0 ηk + ∑K−1

j=L+1 aj−L ηk](−(S̃⊕ E0)]
−1.

(17)

The following lemma, which again is intuitively clear, gives necessary and sufficient
condition for the stability of the model under study.

Lemma 2. The queuing-inventory model with opportunistic replenishment with the generator
given in (9) is stable if and only if

λ− η0(e⊗ E1e) < µ. (18)

Proof. From the celebrated Neuts’ ergodicity criterion (see, e.g., [30]) for stability of QBD-
process: πA0e < πA2e, the stated result follows immediately after some elementary matrix
manipulations.

Letting x = (x0, x1, x2, · · · ), with the vector x0 of dimension (K + 1)m and each of the
vectors xi, i ≥ 1, of dimension (K + 1)mn, be the steady-state probability vector of Q(1)

process under consideration, we notice the following:

xQ1 = 0, xe = 1. (19)

The following theorem is a direct consequence of Neuts’ result on QBD-process (see,
e.g., [30]) and we state it here for the sake of completeness.

Theorem 1. Under the stability condition given in (18), the steady-state probability vector, x, of
Q1 is of matrix-geometric type:

xi = x1Ri−1, i ≥ 1, (20)

where the (rate) matrix R is the minimal non-negative solution to:

R2 A2 + RA1 + A0 = 0. (21)

and the vectors x0 and x1 are obtained by solving

x0B + x1(I ⊗ S0 ⊗ I) = 0,

x0(P⊗ β⊗ E1) + x1(A1 + RA2) = 0,
(22)

subject to:
x0e + x1(I − R)−1e = 1. (23)



Mathematics 2021, 9, 1092 8 of 26

3.1. Computation of R

Without any additional special structure to the rate matrix, R, it is pertinent that we
compute it numerically. Of course, any sparsity in the coefficient matrices seen in the
matrix-quadratic equation given in (21) should be fully exploited (see, e.g., [20,21,30,34]),
especially, when m, n, L, and K are sufficiently large. In addition, the fact that R A2 eA0 e,
will help to identify if there are any zero rows in R further simplifying the computational
steps. For example, let V = R2 and partition R into matrices of dimension mn as follows.

R =


R0,0 R0,1 · · · R0,K
R0,0 R0,1 · · · R0,K

...
... · · ·

...
RK,0 RK,1 · · · RK,K

. (24)

Noting that for the model under study R0,j, 0 ≤ j ≤ K = 0, we can exploit that
observation. Now, the equation in (21) with the help of the partition of R can be rewritten
for numerical implementation as follows, noting that, for 1 ≤ i ≤ K,

Vi,0(S0β⊗ I) + Ri,0(S⊕ E− γI) + pi,0(I ⊗ E1) = 0,
Vi,j(S0β⊗ I) + Ri,j(S⊕ E0 − γI) + pi,j(I ⊗ E1) = 0, 1 ≤ j ≤ L,

Vi,j(S0β⊗ I) + Ri,j(S⊕ E0) + pi,j(I ⊗ E1) = 0, L + 1 ≤ j ≤ K− 1,
Vi,K(S0β⊗ I) + Ri,K(S⊕ E0) + γRi,L + pi,K(I ⊗ E1) = 0.

(25)

If m and n are very large, one can further exploit the coefficient matrices seen in (25).
For example, the Kronecker products and sums appearing in the Equation (25) can be
exploited so as to deal only with matrices of dimension m. Suppose that

ζi,j = lim
t→∞

P(J2(t) = i, J4(t) = j) =, 0 ≤ i ≤ K, 1 ≤ j ≤ m. (26)

Recall that J2(t), and J4(t) are, respectively, track of the number in the inventory and
the phase of the arrival process. Let ζ = (ζ0, ζ1, · · · , ζK) be such that ζi, 0 ≤ i ≤ K, of
dimension m gives the (marginal) probability vector of seeing i in the inventory with the
phase of the arrival process being in various phases in steady-state.

Lemma 3. The (marginal) probability vector ζ is independent of the service time distribution.

Proof. Observe that the steady-state equations given in (36) when rewritten yield

x0B + x1(I ⊗ S0 ⊗ I) = 0,

x0(P⊗ β⊗ E1) + x1 A1 + x2 A2 = 0,

xi−1 A0 + xi A1 + xi+1 A2 = 0, i ≥ 2.

(27)

Suppose we define H = B + P⊗ E1, a square matrix of dimension (K + 1)mn, and
partition it into blocks of dimension mn×mn as

H =


H0,0 H0,1 · · · H0,K
H1,0 H1,1 · · · H1,K

...
...

...
...

HK,0 HK,1 · · · HK,K

. (28)

From the definitions of B (see Equation (11)) and P (see Equation (7)), it is easy to
identify the (block) elements of H.
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It is easy to verify that A(I ⊗ e⊗ I) is given by
e⊗ H0,0 e⊗ H0,1 · · · e⊗ H0,K
e⊗ H1,0 e⊗ H1,1 · · · e⊗ H1,K

...
...

...
...

e⊗ HK,0 e⊗ HK,1 · · · e⊗ HK,K

. (29)

By post-multiplying the second and third equations in (27) by I ⊗ e⊗ I and adding
the resulting equations with the first equation in (27), we get

x0H +
∞

∑
i=1

xi A(I ⊗ e⊗ I) = 0, (30)

which, on observing that

ζ = x0 +
∞

∑
i=1

xi(I ⊗ e⊗ I), (31)

implies that
ζH = 0. (32)

The above equation yields the stated result as the matrix H is independent of the
service time distribution.

Remark 1. Lemma 3 is intuitively clear. This is due to the fact that the inventory level is decreased
at arrival times and the service time plays no role.

3.2. Selected System Measures in Steady-State

For qualitative evaluation of the models presented in this paper, we look at the system
performance measures in the following table. For Opportunistic Model 1, the measures
along with their formulas are as follows.

1. Server idle probability: ν1 = x0e.
2. Probability of idle server with positive inventory: ν1I = x0e− x0,0e.
3. Percent of server idle time with positive inventory: ν∗1 = ν1I/ν1

4. Mean number of customers in the system: µ1 = x1(I − R)−2e.
5. Variance of the number of customers in the system:

σ2
1 = 2x1(I − R)−3e− µ1(1 + µ1).

6. Probability of customer loss (at arrivals): ϑ1 = 1
λ

[
∑∞

i=0 xi,0(e⊗ E1e)
]
.

7. Mean inventory level: µ̂1 = ∑K
j=1 j

[
x0,je + ∑∞

i=1 xi,je
]
.

8. Variance of the inventory level: σ̂2
1 = ∑K

j=1 j2
[

x0,je + ∑∞
i=1 xi,je

]
− µ̂2

1.

9. Mean cycle time of replenishment:

κ1 =
(

γ
[ L

∑
j=0

x0,je +
K−1

∑
j=L+1

aj−L

∞

∑
i=1

xi,je
])−1

10. Mean replenishment quantity:

Γ1 = γ
[ L

∑
j=0

(K− j)
(

x0,je +
∞

∑
i=1

xi,je
)
+

K−1

∑
j=L+1

(K− j) aj−L

(
x0,je +

∞

∑
i=1

xi,j e
)]

.
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11. Probability of procuring an order when a replenishment opportunity arises:

ξ1 =
L

∑
j=0

(
x0,je +

∞

∑
i=1

xi,je
)
+

K−1

∑
j=L+1

aj−L

(
x0,je +

∞

∑
i=1

xi,j e
)

.

4. Opportunistic Model 2

In the Opportunistic Model 1, we assumed that the customers are lost at arrivals when
the inventory level is zero. However, in Opportunistic Model 2, we will admit customers
into the system even if the inventory is zero as long as the server is busy serving. If the
server is idle with zero inventory, then the arriving customers will be lost. In this model,
we assume that the inventory level is reduced by the amount the customers’ demand
is either fully or partially met just before the service starts (or equivalently just after a
service completion). Thus, there is a possibility that the customers may be lost at service
completion epochs when the inventory level is zero. All the customers waiting at the time
of a service completion which results in zero inventory will be lost. This is due to the
fact that a service requires at least one inventory. Arrivals, services, and the probabilistic
structure for availing the opportunistic events are all the same as in the Opportunistic
Model 1.

The Opportunistic Model 2 is of the GI/M/1-type [30]. Suppose that we define

• Ĵ1(t) to be the number of customers in the system,
• Ĵ2(t) to be the level of the inventory,
• Ĵ3(t) to be the phase of the service (if the server is idle, this will not be defined),
• Ĵ4(t) to be the phase of the arrival process,

at time t. The stochastic process {( Ĵ1(t), Ĵ2(t), Ĵ3(t), Ĵ4(t)) : t ≥ 0} is a Markov process with
the state space given by

Ω2 = {(0, j, r) : 0 ≤ j ≤ K, 1 ≤ r ≤ m}

⋃{((i, j, k, r) : 0 ≤ j ≤ K, 1 ≤ j ≤ n, 1 ≤ r ≤ m, i ≥ 1}.

We define the set of states similar to Opportunistic Model 1. The generator, Q2, of the
system governing Model 2 is of the form

Q2 =


B P⊗ β⊗ E1

I ⊗ S0 ⊗ I G1 G0
C G2 G1 G0
C G2 G1 G0
...

. . . . . . . . .

.

The matrix B is as given (11) and the matrices C, G0, G1, and G2 appearing in Q2 are
as follows.

C = e1(K + 1)⊗ e′1(K + 1)⊗ S0 ⊗ I,

G0 = I ⊗ D1, G2 = P⊗ S0β⊗ I,
(33)
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and

G1=

0 1 2 · · · L L+1 · · · K−1 K



0 SE0 γI
1 SE0 γI
2 SE0 γI
...

. . .
...

L SE0 γI
L + 1 SE1 a1γI

...
. . .

...
K− 1 SEK−L−1 aK−L−1γI

K SE0 + γI

, (34)

where SEr , 0 ≤ r ≤ K− L− 1 are as defined in (10). Note that the level 0 can be reached
from any other level and hence this queuing model can be thought as a catastrophic model,
and hence is always stable. In addition, observe that when γ → ∞ the model becomes
unstable when λ ≥ µ.

Suppose that y, partitioned as y = (y0, y1, y2, · · · ), satisfies

yQ2 = 0, ye = 1. (35)

The following theorem is a direct consequence of Neuts’ result (see, e.g., [30]) and for
the sake of completeness, we will register it here.

Theorem 2. Assuming that γ is finite, the steady-state probability vector, y, of Q2 is of matrix-
geometric type and is given by:

yi = y1R̂i−1, i ≥ 1, (36)

where the (rate) matrix R̂ is the minimal non-negative solution to:

R̂2G2 + R̂G1 + G0 = 0. (37)

and the vectors y0 and y1 are obtained by solving

y0B + y1[(I ⊗ S0 ⊗ I) + R̂(I − R̂)−1C] = 0,

y0(P⊗ β⊗ E1) + y1[G1 + R̂G2] = 0,
(38)

subject to
y0 e + y1(I − R̂)−1e = 1.

The rate matrix R̂ can be efficiently computed by exploiting the structure of the coefficient
matrices and the steps are similar to the computation of R seen in the Opportunistic Model 1 and
hence will be omitted. Again, the exploitation of the structure of the coefficient matrices will result
in dealing with matrices of smaller dimensions.

4.1. Computation of y0 and y1

Due to the special structure of the coefficient matrices appearing in the solution of the
vectors, y0 and y1, it is worth to exploit them as follows. First, we partition these vectors
as follows.

y0 = (y0,0, · · · , y0,K), y1 = (y1,0, · · · , y1,K). (39)
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Note that the vectors, y0,j, 0 ≤ j ≤ K, have dimension m, whereas the vectors,
y1,j, 0 ≤ j ≤ K, have dimension mn.

y0,0 = y1(I − R̂)−1
(

S0 ⊗ I
0

)
(γI − E)−1,

y0,j = ∑n
k=1 y1,j,kS0

k(γI − E0)
−1, 1 ≤ j ≤ L,

y0,j = ∑n
k=1 y1,j,kS0

k(aj−LγI − E0)
−1, L + 1 ≤ j ≤ K− 1,

y0,K =
[
γ ∑L

k=0 y0,k + γ ∑K−1
k=L+1 ak−Ly0,k + ∑n

k=1 y1,j,kS0
kS0

k

]
(−E0)

−1.

(40)

y1,j =
[

∑K
k=0 pk,j(β⊗ E1) + ∑K

k=0 y1,kDk,j

]
[γI − (S⊕ E0)]

−1, 0 ≤ j ≤ L,

y1,j =
[

∑K
k=0 pk,j(β⊗ E1)+∑K

k=0 y1,kDk,j

]
[aj−L γI−(S⊕ E0)]

−1, L+1≤ j≤K−1,

y1,K =
[
γ ∑L

k=0 y1,k + γ ∑K−1
k=L+1 ak−Ly1,k + ∑K

k=0 y1,j,kDk,j

]
[−(S⊕ E0)]

−1,

(41)

and the normalizing constant is given by

K

∑
k=0

y0 e +
K

∑
k=0

y1 b = 1, (42)

where the block entries, Dj,k, 0 ≤ j, k ≤ K, of the matrix D and the vector b are defined as

b = (I − R̂)−1e, R̂G2 = D. (43)

The vector b = (b0, · · · , bK) is obtained as follows. Suppose that (I − R̂) b = e((K +
1)mn), then we have

bi = (I − R̂i,i)
−1
[
e(mn) +

K

∑
j=0,j 6=i

R̂i,jb
]
. (44)

The block entries of D are computed as follows

Dj,k =
K

∑
k=0

pk,j R̂i,k (S0β⊗ I), 0 ≤ j, k ≤ K. (45)

Note that the quantity

(I−R̂)−1
(

S0 ⊗ I
0

)
=(I−R̂)−1

(
S0 ⊗ e1(m) S0 ⊗ e2(m) · · · S0 ⊗ em(m)

0 0 · · · 0

)
, (46)

can be obtained by solving for dj, 1 ≤ j ≤ m, which satisfies

(I − R̂) dj =

(
S0 ⊗ ej(m)

0

)
, (47)

and one can use the same type of equations seen in (44) by replacing e(mn) with(
S0 ⊗ ej(m)

0

)
. (48)
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4.2. Selected System Measures in Steady-State

For qualitative evaluation of the models presented in this paper, we look at the system
performance measures in the following table. For the Opportunistic Model 1, the measures
along with their formulas are as follows.

1. Server idle probability: ν2 = y0e.
2. Probability of idle server with positive inventory: ν2I = y0e− y0,0e.
3. Percent of server idle time with positive inventory: ν∗2 = ν2I/ν2.
4. Mean number of customers in the system: µ2 = y1(I − R̂)−2e.
5. Variance of the number of customers in the system:

σ2
2 = 2y1(I − R̂)−3e− µ2(1 + µ2).

6. Probability of customer loss at arrivals:

ϑ2 =
1
λ

[
y0,0(e⊗ E1e) +

∞

∑
i=1

(i− 1)yi,0(S0 ⊗ e)
]
.

7. Mean inventory level: µ̂2 = ∑K
j=1 j

[
y0,je + ∑∞

i=1 yi,je
]
.

8. Variance of the inventory level: σ̂2
2 = ∑K

j=1 j2
[
y0,je + ∑∞

i=1 yi,je
]
− µ̂2

2.

9. Mean cycle time of replenishment:

κ2 =
(

γ
[ L

∑
j=0

y0,je +
K−1

∑
j=L+1

aj−L

∞

∑
i=1

yi,je
])−1

.

10. Mean replenishment quantity:

Γ2 = γ
[ L

∑
j=0

(K− j)
(

y0,je +
∞

∑
i=1

yi,je
)
+

K−1

∑
j=L+1

(K− j) aj−L

(
y0,je +

∞

∑
i=1

yi,j e
)]

.

11. Probability of procuring an order when a replenishment opportunity arises:

ξ2 =
L

∑
j=0

(
y0,je +

∞

∑
i=1

yi,je
)
+

K−1

∑
j=L+1

aj−L

(
y0,je +

∞

∑
i=1

yi,j e
)

.

Note that the loss probability, ϑ2, has two components, the first is for the loss at arrivals
(ϑ2a) and the second one is for the loss at a service completion due to zero inventory (ϑ2d),
which makes the server become idle and hence it cannot serve any customer.

5. Illustrative Numerical Examples

First, we describe the experimental setup. We start with considering the dependence
of relative difference of performance measures across various batch size distributions.

We define the following arrival processes (along with their parameters including the
standard deviations):

ERA Erlang distributed inter-arrival times with density λ̃kxk−1e−λ̃x/(k− 1)!, λ̃ = 4, and
k = 4 (standard deviation ≈ 0.5774).

HEA Hyperexponential inter-arrival times with density ∑k
i=1 piλ̃ie−λ̃ix, k = 4, λ̃i = (63.1) ·

10−i, i = 1, 2, 3, and p = (0.6, 0.25, 0.10, 0.05) (standard deviation ≈ 4.9629).
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PCA Markov arrival process (E0, E1) with positive correlation≈ 0.4637 (standard deviation
≈ 1.3153), where

E0 =

 −1.05 1.05 0
0 −1.05 0
0 0 −10.5

, E1 =

 0 0 0
1.035 0 0.0105
0.105 0 10.395

.

The parameters of distributions are normalized so as to obtain a unit arrival rate. The
graphs of the probability density function of the three inter-arrival times are plotted in
Figure 1 and the joint probability function of the MAP with positive correlation is plotted
in Figure 2.

Figure 1. Probability density functions of the inter-arrival times.

Figure 2. Joint Probability Density Function of MAP− PC.

We also use the following service time distributions:

ERS Erlang distributed service times having density µ̃kxk−1e−µ̃x/(k− 1)! with k = 3.
EXS Exponentially distributed service times of rate µ.
HES Hyperexponentially distributed service times with density ∑k

i=1 piµ̃ie−µ̃ix, k = 3,
p = (0.7, 0.25, 0.05) and µ̃i = (8.2 µ) · 10−i, i = 1, . . . , 3.
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The service rate µ will be normalized so as to arrive at a given service rate. Obvi-
ously, the above three PH-distributions are qualitatively different covering a wide range
applicable in practice. The plot of these three distributions is given in Figure 3.

Figure 3. Probability density function of the service times.

For our illustrative examples, here we take the batch size distribution to be uniform
in {1, . . . , N} and the batch size maximum to be N, which is set at N = 7. It should be
pointed out that we did consider other batch size distributions like constant, truncated
Poisson, and truncated geometric. For the range of parameters considered, we observed
that numerical results with other batch size distribution are similar to those with uniform
distribution.

When a replenishment opportunity occurs, an order is placed with probability 1
when the inventory level is at most L, and with probability ai, when the inventory level
is i, L + 1 < i ≤ K− 1. Order quantity is always determined to bring the inventory level
to K. We considered three types of probability functions for ai, namely, constant, linearly
decreasing, and non-linearly decreasing for i = L + 1 ≤ i ≤ K− 1. We observed that the
effect of the type of probability function used for ai on the system performance is minimal.
In many cases, the corresponding results for the three probability functions are equal within
the fourth decimal.

Queuing-inventory systems consist of two interacting subsystems, namely the inven-
tory subsystem (ISS) and the customer subsystem (CSS).

• In ISS, inventory is consumed and replenished as needed and is characterized by the
parameters K, L, γ and the distribution of the time between two opportunities for
replenishment. The arrival process to CSS impacts ISS through the demand for items.
µ̂1[µ̂2], σ̂1[σ̂2], Γ1[Γ2], ξ1[ξ2], κ1[κ2] represent the measures of performance for ISS for
Model 1 [Model 2].

• In CSS, customers arrive, receive service (plus items from inventory), and depart and
are characterized by the arrival and service processes. Some arrivals are lost due
to lack of inventory at the time of arrival. In Model 2, customers may also be lost
at a service completion epoch due to lack of inventory at that moment. Customer
loss is impacted by the availability of inventory in ISS. µ1[µ2], σ1[σ2], ν1[ν2], ν∗1 [ν

∗
2 ],

ϑ1[ϑ2a, ϑ2d] represent measures of performance for CSS for Model 1 [Model 2].

Inventory levels control the interaction between the two subsystems. If the inventory
levels are high [low], customer loss and the interaction between ISS and CSS will be low
[high]. In the limiting case when infinite inventory is maintained, interaction between
the two subsystems decreases to zero and Model 2 converges to Model 1. In this paper,
we consider ϑ1[ϑ2] and µ1[µ2] as good measures for describing the extent of interaction
between ISS and CSS for the two models.
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Tables 1 and 2 respectively summarize the results for CSS and ISS for a broad range
of parameter values. These tables represent a subset of the numerical results used in the
following qualitative summary of the effect of various parameters on the performance of
two subsystems for the two models. Table 3 compares the system measures for the two
models. In these tables, the abbreviations Arr. and Ser. are used to identify the arrival
process and service time distribution.

Table 1. Customer subsystem (µ = 1.1).

Model 1 Model 2

Arr. Ser. γ K L µ1 σ1 ν1 ν∗1 ϑ1 µ2 σ2 ν2 ν∗2 ϑ2a ϑ2d

ERA ERS 0.05 50 20 0.800 1.243 0.594 0.146 0.553 0.851 1.387 0.605 0.140 0.520 0.046

ERA ERS 0.05 50 30 0.841 1.284 0.581 0.151 0.539 0.896 1.433 0.591 0.145 0.505 0.045

ERA ERS 0.05 60 20 0.929 1.362 0.552 0.162 0.507 0.978 1.500 0.564 0.156 0.476 0.044

ERA ERS 0.05 60 30 0.982 1.412 0.536 0.169 0.490 1.033 1.554 0.548 0.161 0.460 0.043

ERA ERS 0.1 50 20 1.307 1.536 0.394 0.295 0.333 1.356 1.683 0.414 0.275 0.300 0.056

ERA ERS 0.1 50 30 1.412 1.618 0.368 0.314 0.305 1.465 1.770 0.388 0.292 0.275 0.052

ERA ERS 0.1 60 20 1.467 1.657 0.355 0.325 0.290 1.504 1.789 0.377 0.302 0.263 0.051

ERA ERS 0.1 60 30 1.590 1.754 0.328 0.348 0.261 1.632 1.889 0.349 0.323 0.236 0.048

ERA HES 0.05 50 20 3.598 7.554 0.594 0.301 0.554 4.493 10.916 0.646 0.282 0.461 0.149

ERA HES 0.05 50 30 3.899 8.040 0.581 0.310 0.539 4.827 11.457 0.633 0.291 0.447 0.150

ERA HES 0.05 60 20 4.553 9.000 0.551 0.335 0.506 5.160 11.827 0.613 0.311 0.420 0.154

ERA HES 0.05 60 30 4.976 9.648 0.536 0.346 0.490 5.580 12.476 0.598 0.321 0.404 0.154

ERA HES 0.1 50 20 8.942 14.632 0.394 0.522 0.333 6.785 13.328 0.504 0.474 0.263 0.192

ERA HES 0.1 50 30 10.233 16.246 0.368 0.549 0.305 7.428 14.150 0.483 0.494 0.242 0.189

ERA HES 0.1 60 20 10.935 17.085 0.355 0.565 0.290 7.590 14.288 0.474 0.509 0.231 0.191

ERA HES 0.1 60 30 12.650 19.147 0.328 0.596 0.261 8.368 15.260 0.452 0.532 0.210 0.187

HEA ERS 0.05 50 20 1.854 3.755 0.702 0.591 0.672 4.103 9.868 0.729 0.527 0.368 0.334

HEA ERS 0.05 50 30 1.940 3.866 0.695 0.597 0.664 4.411 10.366 0.717 0.534 0.355 0.334

HEA ERS 0.05 60 20 2.433 4.633 0.664 0.618 0.630 4.898 11.088 0.699 0.544 0.337 0.332

HEA ERS 0.05 60 30 2.560 4.790 0.655 0.627 0.620 5.305 11.715 0.685 0.552 0.323 0.330

HEA ERS 0.1 50 20 3.140 5.378 0.589 0.811 0.548 6.310 12.724 0.630 0.707 0.202 0.391

HEA ERS 0.1 50 30 3.363 5.637 0.576 0.821 0.533 7.104 13.825 0.606 0.718 0.186 0.381

HEA ERS 0.1 60 20 4.135 6.737 0.546 0.836 0.500 7.416 14.206 0.597 0.723 0.179 0.378

HEA ERS 0.1 60 30 4.469 7.121 0.530 0.848 0.483 8.441 15.577 0.570 0.736 0.162 0.365

HEA HES 0.05 50 20 2.724 6.166 0.702 0.584 0.672 6.331 17.011 0.738 0.530 0.396 0.315

HEA HES 0.05 50 30 2.863 6.385 0.695 0.590 0.664 6.756 17.756 0.728 0.536 0.385 0.316

HEA HES 0.05 60 20 3.608 7.659 0.664 0.611 0.630 7.351 18.528 0.709 0.549 0.361 0.319

HEA HES 0.05 60 30 3.818 7.975 0.655 0.619 0.620 7.897 19.437 0.697 0.556 0.348 0.318

HEA HES 0.1 50 20 5.208 10.094 0.589 0.781 0.548 8.912 20.301 0.654 0.702 0.240 0.379

HEA HES 0.1 50 30 5.610 10.656 0.576 0.790 0.533 9.735 21.506 0.636 0.710 0.226 0.374

HEA HES 0.1 60 20 6.863 12.535 0.546 0.806 0.501 10.192 21.985 0.623 0.719 0.212 0.374

HEA HES 0.1 60 30 7.468 13.348 0.530 0.817 0.483 11.226 23.441 0.604 0.729 0.196 0.368

PCA ERS 0.05 50 20 0.762 2.337 0.673 0.473 0.640 2.372 12.737 0.682 0.462 0.419 0.230

PCA ERS 0.05 50 30 0.798 2.407 0.660 0.498 0.626 2.641 13.843 0.669 0.486 0.396 0.239

PCA ERS 0.05 60 20 0.978 3.094 0.645 0.517 0.610 3.020 15.335 0.658 0.503 0.375 0.248

PCA ERS 0.05 60 30 1.028 3.195 0.632 0.546 0.595 3.408 16.816 0.643 0.531 0.349 0.257

PCA ERS 0.1 50 20 1.553 4.613 0.553 0.727 0.508 4.362 19.515 0.574 0.701 0.218 0.311

PCA ERS 0.1 50 30 1.654 4.825 0.537 0.768 0.490 5.186 22.225 0.555 0.740 0.188 0.320
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Table 1. Cont.

Model 1 Model 2

Arr. Ser. γ K L µ1 σ1 ν1 ν∗1 ϑ1 µ2 σ2 ν2 ν∗2 ϑ2a ϑ2d

PCA ERS 0.1 60 20 2.092 6.237 0.529 0.765 0.481 5.427 23.006 0.555 0.736 0.187 0.321

PCA ERS 0.1 60 30 2.238 6.543 0.513 0.806 0.464 6.573 26.474 0.536 0.774 0.158 0.328

PCA HES 0.05 50 20 2.132 5.285 0.673 0.525 0.640 5.142 22.448 0.701 0.496 0.432 0.239

PCA HES 0.05 50 30 2.290 5.552 0.660 0.549 0.626 5.574 23.685 0.688 0.516 0.413 0.244

PCA HES 0.05 60 20 2.616 6.316 0.645 0.568 0.610 6.030 24.915 0.678 0.534 0.390 0.256

PCA HES 0.05 60 30 2.811 6.634 0.632 0.594 0.595 6.589 26.449 0.664 0.556 0.369 0.261

PCA HES 0.1 50 20 4.248 9.239 0.553 0.762 0.508 7.712 28.419 0.607 0.712 0.254 0.314

PCA HES 0.1 50 30 4.606 9.777 0.537 0.797 0.490 8.545 30.479 0.590 0.742 0.230 0.319

PCA HES 0.1 60 20 5.195 11.193 0.529 0.796 0.481 8.870 31.287 0.588 0.742 0.222 0.325

PCA HES 0.1 60 30 5.625 11.838 0.513 0.830 0.464 9.930 33.825 0.571 0.772 0.199 0.329

Table 2. Inventory subsystem—µ = 1.1, ERS.

Model 1 Model 2

Arr. γ K L µ̂1 σ̂1 Γ1 ξ1 κ1 µ̂2 σ̂2 Γ2 ξ2 κ2

ERA 0.05 50 20 11.692 16.321 47.055 0.735 27.228 12.398 16.642 46.897 0.718 27.861

ERA 0.05 50 30 12.410 16.727 44.536 0.804 24.878 13.155 17.034 44.260 0.789 25.342

ERA 0.05 60 20 15.421 19.918 56.746 0.677 29.537 16.253 20.247 56.578 0.660 30.296

ERA 0.05 60 30 16.403 20.333 54.240 0.735 27.215 17.223 20.632 54.003 0.720 27.791

ERA 0.10 50 20 18.142 17.416 44.610 0.583 17.158 18.849 17.486 44.379 0.566 17.678

ERA 0.10 50 30 19.864 17.752 40.356 0.673 14.855 20.583 17.778 40.015 0.658 15.206

ERA 0.10 60 20 22.995 20.644 54.013 0.515 19.433 23.727 20.715 53.788 0.500 20.003

ERA 0.10 60 30 25.101 20.820 49.822 0.583 17.155 25.839 20.818 49.509 0.569 17.592

HEA 0.05 50 20 22.059 22.423 47.842 0.529 37.781 23.096 21.213 46.314 0.499 40.081

HEA 0.05 50 30 22.786 22.726 46.149 0.563 35.502 23.943 21.331 43.373 0.557 35.894

HEA 0.05 60 20 26.855 26.413 57.532 0.499 40.049 28.058 24.908 55.905 0.462 43.287

HEA 0.05 60 30 27.820 26.714 55.848 0.529 37.782 29.090 24.932 53.056 0.511 39.182

HEA 0.10 50 20 28.909 21.539 46.540 0.376 26.572 28.910 19.603 43.757 0.363 27.541

HEA 0.10 50 30 30.178 21.720 44.134 0.410 24.368 30.311 19.383 39.322 0.431 23.199

HEA 0.10 60 20 34.649 25.150 55.954 0.348 28.752 34.484 22.873 52.992 0.328 30.487

HEA 0.10 60 30 36.260 25.219 53.575 0.376 26.573 36.080 22.419 48.708 0.382 26.208

PCA 0.05 50 20 16.747 17.684 45.521 0.615 32.508 17.322 17.644 45.190 0.603 33.193

PCA 0.05 50 30 18.184 18.117 41.838 0.697 28.701 18.788 18.022 41.335 0.688 29.058

PCA 0.05 60 20 21.269 21.103 55.111 0.553 36.149 21.979 21.000 54.703 0.539 37.141

PCA 0.05 60 30 23.030 21.436 51.562 0.615 32.510 23.778 21.255 50.943 0.604 33.102

PCA 0.10 50 20 23.346 17.188 42.458 0.454 22.055 23.965 16.855 41.808 0.440 22.751

PCA 0.10 50 30 25.980 17.206 36.985 0.541 18.480 26.618 16.736 36.101 0.534 18.762

PCA 0.10 60 20 28.547 20.167 51.733 0.394 25.408 29.262 19.730 50.926 0.379 26.462

PCA 0.10 60 30 31.492 19.905 46.540 0.454 22.055 32.211 19.311 45.446 0.444 22.564
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5.1. Impact of Service Rate and Service Time Distribution

In Model 1, customers do not enter the system when inventory level is zero, and when
a customer enters the system the inventory level is immediately reduced to reflect the new
customer’s demand. As a consequence, the service rate and service time distribution do not
impact ISS. They do impact ISS in Model 2 because customers who arrive when inventory
level is zero wait in line hoping for a replenishment during their wait. However, this
impact is minimal because the likelihood of a replenishment during their wait is typically
very small.

As it might be expected, the performance measures for CSS improved with increasing
service rate in both models. The overall impact of service time variability is to degrade
the performance of the system, with HES generating the strongest impact. Specifically,
increasing service rate increased the probability of an idle server (ν1, ν2) and decreased
the number of customers in the system (µ1, µ2). Increasing variability of service time
distribution, on the other hand, increased the mean (µ1, µ2), the standard deviation (σ1, σ2),
and the coefficient of variation of the number of customers in the system, and increased
the percent of time the server is idle with positive inventory (ν∗1 , ν∗2 ). The probability of
customer loss in Model 1 (ν1) was unaffected by the service time variability, but ν2 increased
marginally. We also observed that when the service rate is less than the arrival rate, ν1 < ϑ1
and ν2 < ϑ2; and when service rate is greater than the arrival rate, ν1 > ϑ1 and ν2 > ϑ2.

Table 3. Comparing Model 1 and Model 2

Model 1 (µ = 1.1, γ = 0.1, K = 50)

Arr. Ser. L µ1 σ1 µ̂1 σ̂1 Γ1 κ1 ν1 ν∗1 ϑ1 ϑ∗1

ERA ERS 20 1.307 1.536 18.142 17.416 44.610 17.158 0.394 0.295 0.333 0.000

ERA ERS 30 1.412 1.618 19.864 17.752 40.356 14.855 0.368 0.314 0.305 0.000

ERA EXS 20 1.844 2.391 18.143 17.415 44.609 17.158 0.394 0.345 0.333 0.000

ERA EXS 30 2.023 2.566 19.867 17.751 40.353 14.855 0.368 0.366 0.305 0.000

ERA HES 20 8.942 14.632 18.141 17.415 44.608 17.165 0.394 0.522 0.333 0.000

ERA HES 30 10.233 16.246 19.865 17.750 40.348 14.861 0.368 0.549 0.305 0.000

HEA ERS 20 3.140 5.378 28.909 21.539 46.540 26.572 0.589 0.811 0.548 0.000

HEA ERS 30 3.363 5.637 30.178 21.720 44.134 24.368 0.576 0.821 0.533 0.000

HEA EXS 20 3.244 5.605 28.909 21.539 46.540 26.570 0.589 0.809 0.548 0.000

HEA EXS 30 3.476 5.878 30.178 21.720 44.134 24.366 0.576 0.819 0.533 0.000

HEA HES 20 5.208 10.094 28.909 21.539 46.540 26.573 0.589 0.781 0.548 0.000

HEA HES 30 5.610 10.656 30.177 21.720 44.134 24.367 0.576 0.790 0.533 0.000

PCA ERS 20 1.553 4.613 23.346 17.188 42.458 22.055 0.553 0.727 0.508 0.000

PCA ERS 30 1.654 4.825 25.980 17.206 36.985 18.480 0.537 0.768 0.490 0.000

PCA EXS 20 1.681 4.771 23.345 17.190 42.460 22.050 0.553 0.732 0.508 0.000

PCA EXS 30 1.793 4.991 25.982 17.205 36.983 18.479 0.537 0.772 0.490 0.000

PCA HES 20 4.248 9.239 23.345 17.189 42.458 22.055 0.553 0.762 0.508 0.000

PCA HES 30 4.606 9.777 25.978 17.207 36.987 18.480 0.537 0.797 0.490 0.000
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Table 3. Cont.

Model 2 (µ = 1.1, γ = 0.1, K = 50)

Arr. Ser. L µ2 σ2 µ̂2 σ̂2 Γ2 κ2 ν2 ν∗2 ϑ2 ϑ∗2

ERA ERS 20 1.356 1.683 18.849 17.486 44.379 17.678 0.414 0.275 0.356 0.156

ERA ERS 30 1.465 1.770 20.583 17.778 40.015 15.206 0.388 0.292 0.327 0.160

ERA EXS 20 1.916 2.678 19.334 17.625 44.312 18.046 0.428 0.314 0.371 0.210

ERA EXS 30 2.101 2.860 21.112 17.925 39.932 15.509 0.402 0.332 0.342 0.217

ERA HES 20 6.785 13.328 22.408 18.541 44.228 20.777 0.504 0.474 0.454 0.422

ERA HES 30 7.428 14.150 24.551 19.020 40.071 18.015 0.483 0.494 0.431 0.439

HEA ERS 20 6.310 12.724 28.910 19.603 43.757 27.541 0.630 0.707 0.593 0.659

HEA ERS 30 7.104 13.825 30.311 19.383 39.322 23.199 0.606 0.718 0.567 0.673

HEA EXS 20 6.480 13.190 29.025 19.635 43.826 27.733 0.632 0.706 0.595 0.654

HEA EXS 30 7.280 14.306 30.446 19.437 39.457 23.427 0.609 0.717 0.570 0.668

HEA HES 20 8.912 20.301 30.279 19.907 44.550 30.039 0.654 0.702 0.619 0.612

HEA HES 30 9.735 21.506 31.912 19.896 40.902 26.200 0.636 0.710 0.600 0.624

PCA ERS 20 4.362 19.515 23.965 16.855 41.808 22.751 0.574 0.701 0.529 0.587

PCA ERS 30 5.186 22.225 26.618 16.736 36.101 18.762 0.555 0.740 0.509 0.630

PCA EXS 20 4.568 20.087 24.067 16.891 41.823 22.856 0.576 0.702 0.533 0.584

PCA EXS 30 5.392 22.750 26.719 16.774 36.134 18.851 0.557 0.740 0.512 0.625

PCA HES 20 7.712 28.419 25.607 17.460 42.148 24.912 0.607 0.712 0.568 0.552

PCA HES 30 8.545 30.479 28.307 17.489 36.858 20.822 0.590 0.742 0.549 0.581

5.2. Effect of Arrival Process

Arrival process impacts both the ISS and the CSS and in general, increasing variability
of arrivals had the effect of degrading the performance of the system. It is interesting to note
that for systems with both a highly variable arrival process and service time distribution,
the combined effect is more attenuated than the individual effects.

Systems with highly variable arrival processes (HEA and PCA relative to ERA) had
higher probability of a customer loss (ϑ1 and ϑ2), and higher mean (µ1, µ2), standard
deviation (σ1, σ2), and the coefficient of variation of the number of customers in the system.
Similarly, HEA and PCA produced higher mean (µ̂1, µ̂2), standard deviation (σ̂1, σ̂2) but
lower coefficient of variation of the inventory levels. Mean cycle times (ξ1, ξ2) were lower
but the order quantities (Γ1, Γ2) remained relatively unaffected. HEA and PCA increased
the probability that the server is idle (ν1, ν2) as well as the percent of time the server is idle
with inventory of units on hand (ν∗1 , ν∗2 ), significantly degrading the system performance.
The impact of HEA was more pronounced than PCA.

Figures 4 and 5 summarize the effect of the arrival and service processes on the steady-
state marginal distributions of the number of customers in the system. In these figures, X
and Y axes are truncated at much smaller values than required by the results in order to
highlight the differences in the probability distributions.

Figures 4 and 5 indicate that increasing variability in the system (either for service
times or for the arrival process) shifts the probability from states with smaller number in
the system to the states with higher number in the system, thus creating a longer tail for
the distribution. Model 2, in general, has a slightly longer tail relative to Model 1.
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5.3. Impact of γ

γ is not under the control of the management but understanding its effect on the
system is essential to choose K and L efficient operation of the system. We considered
values of γ =1/10, 1/15, 1/20, and 1/25 (with λ = 1) in the numerical analysis.

For a given K and L, larger values of γ resulted in more frequent usage of opportunistic
events to procure replenishment or smaller order cycle times, κ1 and κ2), and hence smaller
size replenishments, Γ1 and Γ2, resulting in a net increase in the mean inventory levels µ̂1
and µ̂2). This observation should be interpreted with caution because it states the effect of
larger γ, keeping K and L at the same level. Larger γ indicates more frequent opportunities
for replenishment permitting smaller K and L to achieve the same service level. Larger
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γ, in addition to increasing the means, µ̂1 and µ̂2, also increased the standard deviations,
σ̂1 and σ̂2, but with a net decrease in the coefficients of variation of the inventory levels.
Larger γ also had a similar effect on the numbers of customers in the system by increasing
the means, µ1 and µ2, and the standard deviations, σ1 and σ2, but resulted in a net decrease
in the coefficients of variation. Further discussion on the combined effect of changes in γ
with other parameters such as K and L is presented in the following.

Inventory system with larger values of γ, indicating frequent replenishment opportu-
nities, will permit maintaining smaller inventories to achieve the same level of service.

5.4. Impact of K and L

In the inventory subsystem, as K increases, with all other parameters remaining
the same, more items are procured when opportunistic events occur leading to larger
inventories on average. Larger inventories lead to larger cycle times (κ1 and κ2) because of
an increased likelihood of skipping current opportunities to wait for future ones. The net
effect is an increase in the means µ̂1 and µ̂2 and also an increase in the standard deviations
σ̂1 and σ̂2, but a reduction in the coefficient of variation of the inventory levels. Changes in L
had a slightly different, and smaller, effect on the inventory subsystem than corresponding
changes in K. As L increases with all other parameters remaining the same, opportunistic
events are availed more often (smaller κ1 and κ2) and in smaller quantities. The net result is
once again an increase in the means, µ̂1 and µ̂2, and an increase in the standard deviations,
σ̂1 and σ̂2), but a reduction in the coefficient of variation, of the numbers in the system.

In the customer subsystem, increasing K or L keeping the rest of the parameters the
same, led to an increase in the means, µ1 and µ2, and an increase in the standard deviations,
σ1 and σ2, but a reduction in the coefficient of variation, of the number of customers in the
system. Increasing K or L also resulted in a decrease the customer loss probability (ϑ1, ϑ2),
server idle probability (ν1, ν2), and an increase in the percent of server idle time with
positive inventory (ν∗1 , ν∗2 ). Effect of changes in K are much stronger than corresponding
changes in L.

5.5. Cost Analysis

A system that can provide the desired service level at the minimum cost is the goal
of any optimization. We consider three costs associated with the system, namely, cost of
carrying inventory, cost of placing an order, and cost of lost customers/demand. A fourth
item, the cost of keeping customers waiting, is not considered in this study because it was
not considered particularly relevant. Let c1, c2, and c3 denote the costs of carrying a unit
inventory per unit time, cost of placing an order, and the average cost of a lost customer.
Z1 and Z2, the total cost per unit time for the two models can be expressed as follows. The
system cost per unit time is then given by

Z1 = c1 µ̂1 +
c2

κ1
+ c3 ϑ1

Z2 = c1 µ̂2 +
c2

κ2
+ c3 (ϑ2a + ϑ2d)

The first two components in Z1 and Z2 represent the cost of the inventory subsystem,
and the third item represents the cost of the customer subsystem. The goal of management
is to choose the values of K and L that minimize the total cost. Using values of c1 = 0.25,
c2 = 100, and c3 = 10, a summary of the cost for a select set of parameter values is presented
in Table 4, where the minimum cost values for each combination of K and L are highlighted
in bold. In order to find the best combination of values of K and L, a more refined search
than in Table 4 needs to be performed.
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Table 4. Total cost summary γ = 0.1, µ = 1.1.

Service Dist. ERS EXS HES

Arr. L/K 40 50 60 40 50 60 40 50 60

Model 1

ERA 10 13.085 12.946 13.125 13.084 12.942 13.123 13.080 12.941 13.123

ERA 20 13.982 13.695 13.799 13.981 13.695 13.797 13.979 13.691 13.796

ERA 30 15.304 14.751 14.718 15.303 14.750 14.717 15.301 14.745 14.708

HEA 10 15.453 15.999 16.667 15.453 16.000 16.669 15.453 16.000 16.668

HEA 20 15.925 16.470 17.145 15.926 16.471 17.146 15.926 16.470 17.146

HEA 30 16.444 16.982 17.662 16.445 16.983 17.663 16.444 16.983 17.663

PCA 10 14.161 14.445 14.976 14.164 14.446 14.981 14.162 14.444 14.979

PCA 20 15.355 15.448 15.886 15.356 15.451 15.888 15.355 15.449 15.885

PCA 30 17.125 16.807 17.046 17.127 16.810 17.050 17.125 16.808 17.047

Model 2

ERA 10 13.258 13.184 13.412 13.363 13.333 13.598 13.913 14.120 14.596

ERA 20 14.169 13.928 14.077 14.281 14.084 14.260 14.871 14.957 15.364

ERA 30 15.541 14.993 14.979 15.656 15.144 15.161 16.158 16.000 16.289

HEA 10 15.622 16.262 17.034 15.635 16.283 17.062 15.778 16.507 17.358

HEA 20 16.280 16.786 17.465 16.292 16.812 17.502 16.423 17.089 17.901

HEA 30 17.263 17.557 18.106 17.258 17.577 18.143 17.229 17.795 18.550

PCA 10 14.306 14.664 15.277 14.333 14.703 15.323 14.618 15.096 15.803

PCA 20 15.533 15.681 16.174 15.556 15.720 16.228 15.787 16.093 16.710

PCA 30 17.360 17.072 17.347 17.375 17.107 17.401 17.428 17.373 17.817

5.6. Comparing Model 1 and Model 2

Table 3 compares the steady behavior of the system under the two models. For a
given set of parameter values, Model 1 performed better than Model 2 in terms of the
mean number of customers in the system, mean inventory level, and probability of an idle
server. For Model 2, the loss of demand can occur either at arrival, or at service completion
epochs. ϑ2 is always larger than ϑ1, but the difference is significantly higher for the case of
HES. This high loss rate may cause higher idle probability. Higher variability of the arrival
process (as in the case of HEA or PSA) appears to mitigate the effect. For Model 2, the
proportion of customers lost at departure instants varied from a low of 9.01% to a high of
68.4%. We notice that these percentages are significantly larger for HES, HEA, and PCA.

5.7. Comparing (K, L) System with (s, S) System

In this subsection, we compare the characteristics of the system considered in this
paper (the (K, L) system) with the (s, S) system considered in Chakravarthy and Rumyant-
sev [17]. In the (K, L) system, the replenishment opportunities occur randomly at expo-
nentially distributed intervals with no lead time for delivery. In the (s, S) system in [17],
orders are placed as inventory is depleted but the items are received after an exponentially
distributed lead time. In other words, the random lead time in the (s, S) system is replaced
by the random interval between replenishment opportunities in the (K− L) system. For
effective comparison, we use exactly the same parameters for both systems and set K = S
and L = s, and the mean lead time for delivery in the (s, S) system equal to the mean time
between two replenishment opportunities in the (K, L) system. Table 5 presents a summary
comparison for γ = 0.1, µ = 1.1, K = S = 60, L = s = 20 for both Model 1 and Model 2, for
all arrival and service distributions considered in Section 3.
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The summary indicates that for the combinations of parameters considered, (K, L)
system has a smaller server idle probability, smaller customer loss probability but on
all other counts (s, S) system had better operational performance for both Model 1 and
Model 2. Considering the customer subsystem, (K, L) model has larger mean and standard
deviation of the number of customers in the system relative to the (s, S) system. In the
inventory subsystem, (K, L) model has a larger cycle time, and a larger mean and standard
deviation of the inventory level relative to the (s, S) system. This indicates that orders
are placed less often in the (K, L) system, and more units are ordered each time an order
is placed, resulting in larger mean inventory level with greater variability. The overall
conclusion from these observations is that the additional uncertainty introduced in the
system by the random supply process adversely affects the system performance.

Cost computations are not performed because the results depend significantly on the
relative values of c1, c2, and c3. Furthermore, direct comparison of total costs could be
misleading because one has to optimize the two systems separately and then compare
the two optimal solutions to see which performs better. Even that is not very meaningful,
because one does not choose between a (K, L) system or an (s, S) system.

Table 5. Comparing the (K, L) system with the (s, S) system.

(K, L) System (γ = 0.1, µ = 1.1, K = 60, L = 20) (s, S) System (γ = 0.1, µ = 1.1, S = 60, s = 20)

Model 1

Arr. Ser. ϑ1 ν1 µ1 σ1 µ̂1 σ̂1 κ1 ϑ1 ν1 µ2 σ2 µ2 σ̂2 κ1

ERA ERS 0.355 0.290 1.467 1.657 22.995 20.644 19.433 0.423 0.365 1.209 1.475 15.660 16.179 16.221

ERA EXS 0.355 0.290 2.116 2.644 22.999 20.642 19.439 0.423 0.365 1.686 2.267 15.663 16.178 16.222

ERA HES 0.355 0.290 10.935 17.085 22.986 20.646 19.437 0.423 0.365 7.784 13.214 15.657 16.179 16.223

HEA ERS 0.546 0.500 4.135 6.737 34.649 25.150 28.752 0.629 0.592 2.438 4.414 24.481 19.098 25.437

HEA EXS 0.546 0.501 4.272 7.014 34.650 25.149 28.749 0.629 0.592 2.520 4.601 24.481 19.098 25.436

HEA HES 0.546 0.501 6.863 12.535 34.649 25.150 28.751 0.629 0.592 4.018 8.259 24.481 19.098 25.437

PCA ERS 0.529 0.481 2.092 6.237 28.547 20.167 25.408 0.568 0.525 1.220 3.468 21.748 16.972 21.571

PCA EXS 0.529 0.482 2.239 6.409 28.550 20.163 25.411 0.568 0.525 1.338 3.620 21.749 16.970 21.571

PCA HES 0.529 0.481 5.195 11.193 28.547 20.163 25.415 0.568 0.525 3.677 7.968 21.747 16.972 21.572

Model 2

Arr. Ser. ϑ2 ν2 µ2 σ2 µ̂2 σ̂2 κ2 ϑ2 ν2 µ2 σ2 µ2 σ̂2 κ2

ERA ERS 0.377 0.315 1.504 1.789 23.727 20.715 20.003 0.441 0.385 1.271 1.637 16.357 16.730 16.748

ERA EXS 0.391 0.330 2.151 2.883 24.273 20.838 20.445 0.453 0.398 1.796 2.600 16.843 16.946 17.113

ERA HES 0.474 0.421 7.590 14.288 27.673 21.708 23.619 0.524 0.476 6.418 12.959 19.846 18.270 19.642

HEA ERS 0.597 0.556 7.416 14.206 34.484 22.873 30.487 0.651 0.616 5.766 12.099 25.218 18.109 26.769

HEA EXS 0.599 0.559 7.594 14.674 34.623 22.909 30.690 0.653 0.618 5.931 12.567 25.307 18.153 26.928

HEA HES 0.623 0.586 10.192 21.985 36.118 23.210 33.174 0.675 0.643 8.199 19.488 26.326 18.629 28.909

PCA ERS 0.555 0.508 5.427 23.006 29.262 19.730 26.462 0.583 0.540 4.024 18.494 22.363 17.226 22.283

PCA EXS 0.557 0.512 5.641 23.527 29.380 19.768 26.565 0.585 0.543 4.220 19.058 22.436 17.207 22.384

PCA HES 0.588 0.547 8.870 31.287 31.069 20.387 28.799 0.617 0.578 7.246 27.332 23.755 17.800 24.279

6. Concluding Remarks

In this paper, we considered a queuing-inventory system where the replenishment
opportunities occur at random intervals at which time the decisions are made with regard
to the procurement and the quantities. We proposed an opportunistic system involving
two parameters, L and K, similar to the well-known (s, S) inventory management system.
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The cut-off point, L, between 0 and K, largely determines whether to avail the opportunistic
replenishment with certainty or with a probabilistic rule. The two models considered differ
in the way the customers enter the system or are getting lost. In Model 1, the customers are
lost when the inventory level is zero (irrespective of whether the server is idle or busy).
In Model 2, the customers are allowed to enter even when the inventory level is zero
but as long as the server is busy serving. Further, the customers may be lost at a service
completion due to lack of inventory to start a new service.

The analysis of the results from an extensive set of numerical experimentation under
various scenarios of the parameters indicates that with all other parameters remaining the
same, Model 1 appears to have better performance characteristics in terms of the number
of customers in the system, inventory levels in the system, and the likelihood of losing
a customer.

Variability in the overall system behavior can be due to the variability in the arrival
process or the service time distribution. In general, increasing the variability of either the
input process or the service time distribution, led to an increase in overall variability in
the system behavior. When both arrival process and service time distribution are highly
variable, the combined effect is more attenuated than the individual effects.

With the tools developed in this paper and the understanding of the system behavior
presented in this paper, it is possible to conduct an efficient search for the value of the
key parameters K, and L that minimizes the total system cost. While γ, the rate at which
replenishment opportunities arise, is not under the control of the management, one might
surmise that an optimal inventory system with larger values of γ will have smaller cost
because of the availability of frequent replenishment opportunities making it possible to
achieve the same level of service with smaller inventories.

A comparison with the (s, S) system studied by Chakravarthy and Rumyantsev [17]
revealed that, the (s, S) system has better operating characteristics in terms of number
in the system and inventory levels, apparently due to the random supply process. This
could be mitigated by the possibly having a lower purchase cost per unit. This aspect
is not studied in this paper. In addition, it would be interesting to compare the system
studied here with the (s, S) system in which the inventory level is always brought to level
S, irrespective of when the replenishment occurs.

A possible extension to this study could be to investigate systems with both regular
channels of purchase (as in the (s, S) system) and the opportunistic replenishment opportu-
nities (as in the (K, L) system) with possibly lower per unit cost of purchase in the context
of MAP arrivals of demands and phase-type services.

In this paper, we explored two queuing-inventory models where the replenishment
opportunities occur at random. Such models are appropriate for non-critical items (e.g.,
canned goods, generic medication) where stock outs for short periods of time are not
serious. Special replenishment opportunities typically offer lower unit cost with little or no
ordering cost, and units are usually available without delay. The results of this paper and
the detailed discussion of the system behavior, offer a useful tool to compare the traditional
inventory systems (e.g., (s, S) system) with the opportunistic models to determine the most
effective method to manage inventories under a more general scenario of using MAP for
the demand process and phase-type distributions for the processing of the demands.
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