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Abstract: In this paper, we study the regularity of weak solutions to the incompressible Boussinesq
equations in R3 x (0, T). The main goal is to establish the regularity criterion in terms of one velocity
component and the gradient of temperature in Lorentz spaces.
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1. Introduction

In this paper, we consider the following Cauchy problem for the incompressible Boussinesq
equations in R3 x (0, T)
o+ (u-V)u— Au+ V= bes,
010 — A0+ (u- V)8 =0,
V-u=V-b=0,
u(x,0) = up(x), 6(x,0) = 6y(x),

where u = (uq(x,t), up(x, t), u3(x, t)) denotes the unknown velocity vector, 6§ = (61 (x, t),62(x,t),03(x,t))
and 7t = 7t(x,t) denote, respectively, the temperature and the hydrostatic pressure. While 1, and 6,
are the prescribed initial data for the velocity and temperature with properties V - uy = 0. Moreover,
the term fe3 represents buoyancy force on fluid motion.

We would like to point out that the system (1) at § = 0 reduces to the incompressible Navier-Stokes
equations, which has been greatly analyzed. From the viewpoint of the model, therefore, Navier-Stokes
flow is viewed as the flow of a simplified Boussinesq equation.

)

Besides their physical applications, the Boussinesq equations are also mathematically significant.
Fundamental mathematical issues such as the global regularity of their solutions have generated
extensive research, and many interesting results have been obtained (see, for example, [1-14] and
references therein).

On the other hand, it is desirable to show the regularity of the weak solutions if some partial
components of the velocity satisfy certain growth conditions. For the 3D Navier-Stokes equations,
there are many results to show such regularity of weak solutions in terms of partial components of
the velocity u (see, for example, References [15-23] and the references cited therein). It is obvious that,
for the assumptions of all regularity criteria, every component of the velocity field must satisfy the
same assumptions, and it does not make any difference between the components of the velocity field.
As pointed out by Neustupa and Penel [24], it is interesting to know how to effect the regularity of the
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velocity field by the regularity of only one component of the velocity field. In particular, Zhou [25]
showed that the solution is regular if one component of the velocity, for example, u3 satisfies

uz € LP(0, T; LY(R3)) with ;—0— < %, 6 < g < oo )

q

Condition (2) can be replaced respectively by the following:
3 .. 2 3 _5
uz € LF(0,T; L7(R%)) with ?+a§§, — <g<oo, 3)

(see Kukavica and Ziane [26]). Later, Cao and Titi [16] showed the regularity of weak solution to the
Navier-Stokes equations under the assumption

2 3 2 2 7
LP(0, T; L7(R3 ith = += =24 -, - 4
uz € LP( (R?)) wi p+q 3+3q 9> 3 4)

Motivated by the above work, Zhou and Pokorny [27] showed the following regularity condition

2 3 3 1
uz € LP(0, T, LY(R%)) with =+ =24 —,
P g9 4 2

10

—, 5

; ®)
while the limiting case uz € L®(0,T; L% (R3)) was covered in [21]. For many other result works,
especially the regularity criteria involving only one velocity component, or its gradient, with no
intention to be complete, one can consult [28,29] and references therein. However, the conditions (2)—(5)
are quite strong compared with the condition of Serrin’s regularity criterion :

u € LP(0,T; L7(R?)) with 2—#3 <1, 3<g<oo, (6)

and do not imply the invariance under the above scaling transformation. Therefore, it is of interest
in showing regularity by imposing Serrin’s condition (6) with respect to the one component of the
velocity field.

Similar to the research of the 3D Navier-Stokes equations, the authors are interested in the
regularity criterion of (1) by reducing to the components of u. There are many other or similar results
on the hydrodynamical systems modeling the flow of nematic liquid crystal material, Boussinesq
equations and MHD equations (see e.g., References [30,31] and the references therein).

Motivated by the reference mentioned above, the purpose of the present paper is to give a further
observation on the global regularity of the solution for system (1) and to extend the regularity of weak
solutions to the Boussinesq equations (1) in terms of one velocity component and the gradient of
the temperature.

2. Notations and Main Result

Before stating our result, we introduce some notations and function spaces. These spaces can
be found in many papers. For the functional space, L (R3) denotes the usual Lebesgue space of
real-valued functions with norm ||-||;, :

(Jro |f(x)|pdx)%, for 1<p<oo,
£l = esssup |f(x)|, for p=oo.

x€R3

On the other hand, the usual Sobolev space of order m is defined by

H"(R®) = {u € L2(R%) : V"u € 2(R%) }
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with the norm .
2

2 2
il = (lullF2 + V™)

To prove Theorem 1, we use the theory of Lorentz spaces and introduce the following notations.
We define the non-increasing rearrangement of f,

(1) :inf{t >0:m(t) < A}, for A >0,

where f is a measurable function on R?® and m £(t) is the distribution function of f, which is defined by
the Lebesgue measure of the set {x € R%: [f(x)| > t}. The Lorentz space LP1((R3) is defined by

LP1 = {f : R® — R measurable such that ||f]|,,, < oo} with 1 <p < o

is equipped with the quasi-norm

1
© 1 dt\e
flea = (3 [ P F 0N )", i 1<q<e.
pJo t
Moreover, we define f** by
Kk _ 1 A * (/! !
W =5 [,

and Lorentz spaces LP*(R?) by

() = {f € §'(R): |l < o0,

where )
[ fllLpee = sup(A? f*(A)),
A>0

for 1 < p < co. For details, we refer to References [32,33].
From the definition of the Lorentz space, we can obtain the following continuous embeddings :

LP(R3) = LPP(R3) — LPA(R3) — LP®(R3), 1< p<g<oo.
In order to prove Theorem 1, we recall the Holder inequality in the Lorentz spaces (see, e.g., O'Neil [34]).

Lemma 1. Let f € LP2%2(R3) and g € LP3B(R3) with 1 < py,p3 < 00,1 < go,q3 < o0. Then fg €

LPu71(R3) with
1 1 11 1 1

P2 op’m 42 s
and the Holder inequality of Lorentz spaces

1f&llira < Cllfllzeoas 18llLraas 5
holds true for a positive constant C.

The following result plays an important role in the proof of our theorem, the so-called
Gagliardo-Nirenberg inequality in Lorentz spaces, its proof can be found in Reference [35].

Lemma 2. Let f € LPA(R®) with 1 < p,q, p4,q4, p5,95 < oo. Then the Gagliardo-Nirenberg inequality of
Lorentz spaces

0 1-0
||fHLM <C ||f||LP4f'74 HfHLF’Sr‘?S
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holds for a positive constant C and

10 126071 0 . 126 4ei01).
P P4 ps 9 94 95

Now we give the definition of the weak solution.

Definition 1. Let T > 0, (ug,609) € L2(R3) with V - ug = 0 in the sense of distributions. A measurable
function (u(x,t),0(x,t)) is called a weak solution to the Boussinesq equations (1) on [0, T] if the following
conditions hold:

(u(x,t),0(x,t)) € L®(0, T; L2(R3)) N L2(0, T; H'(R3));
2. system (1) is satisfied in the sense of distributions;
3. the energy inequality, that is,

2 0 2 ! 2 d f 0 2 dt < 2 b 2 0 2
€Ol + 100 Ol +2 | VU2 dr+2 | IVO(T)]12 dT < [luollz2 + [1boll72 + 1Boll72

By a strong solution, we mean that a weak solution u of the Navier-Stokes equations (1) satisfies
(u(x,t),0(x, 1)) € L0, T; H'(R3)) N L2(0, T; H*(R?)).

It is well known that the strong solution is regular and unique.
Our main result is stated as follows:

Theorem 1. Let (ug,0y) € L2(R3) with V - ug = 0 in the sense of distributions. Assume that (u, ) is a weak
solution to system (1). If uz and V0 satisfies the following conditions

uz € L7055 (0, T; LY (R3)), with £ < a < oo, ”
2
VO € L%3(0, T; LF*(R3)), with 3 < B < oo,

then the solution (u,0) is regular on (0, T.

Remark 1. If 6 = 0, it is clear that theorem 1 improves the earlier results of References [21,27] for 3D
Navier-Stokes equations and extend the reqularity criterion (5) from Lebesgue space L* to Lorentz space L%,

Remark 2. This result proves a new regularity criterion for weak solutions to the Cauchy problem of the 3D
Boussinesq equations via one component of the velocity field and the gradient of the temperature in the framework
of the Lorentz spaces. This result reveals that the one component of the velocity field plays a dominant role in
reqularity theory of the Boussinesq equations.

3. Proof of the Main Result

In this section, under the assumptions of the Theorem 1, we prove our main result. Before proving
our result, we recall the following multiplicative Sobolev imbedding inequality in the whole space R3
(see, for example Reference [16]) :

2 1
1fllze < CIVAfllz2 19311, ®)

where V), = (9y,,0y,) is the horizontal gradient operator. We now give the proof of our main theorem.
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Proof. To prove our result, it suffices to show that for any fixed T > T*, there holds

sup (|| Vu(b)||72 + [VO(1)72) < Cr,
0<t<T*

where T*, which denotes the maximal existence time of a strong solution and Cr is an absolute constant
which only depends on T, 1y and 6.

The method of our proof is based on two major parts. The first one establishes the bounds
of (||th||%2 + ||V,0(t) H%z), while the second gives the bounds of the H! —norm of velocity u and
temperature 6 in terms of the results of part one.

Taking the inner product of (1); with —Ayu, (1), with —A;,0 in L2(R3), respectively, then adding
the three resulting equations together, we obtain, after integrating by parts, that

1d
3 2193z + 19,813 + | VTl + | 99461
= /R3(u~V)u~Ahudx—|—/R3(u~V)9-Ah9—'/R3(963)-Ahudx
= h+h+1I, 9

where Ay = ail + 8%2 is the horizontal Laplacian. For the notational simplicity, we set

t
20 = sup (Vi + 138l + LV V@) + 1V 940)3)d,
Te|lt
ot
THD = sup (|Vu(0)lfa + VO [F2) + [ (8u(o)]iE2 + [180]3)d,

e[l

fort € [T, T*). In view of (7), we choose €, > 0 to be precisely determined subsequently and then
select I' < T* sufficiently close to T* such that forall ' <t < T*,

t
JOVu@) I+ Vo) ) < e < 1, (10)
and
/r VORI % dr <y < 1. (1)

Integrating by parts and using the divergence-free condition, it is clear that (see e.g., Reference [23])
L :/ (u-V)u- Ayudx < / lug| |Vul |[VVyuldx. (12)
R3 R3

By appealing to Lemma 1, (8), and the Young inequality, it follows that

ho< Cllugllpes [Vull 2, [V V5ullp2
3 3
< Cllusllps [Vulls * V0] 2 IV V] 2
1-3 1 1+2
< Clusllpae [ Vall1s * |Aul|%, V'V 5ull,2
2 22y vaks 1 >
< Cllusllpd IVl =2 aul %2 + 7 [V Va2,

where we have used the following Gagliardo-Nirenberg inequality in Lorentz spaces :

1-3 3 .
1l 25,2 < ClIgll2 " [IVOllfe with 3 <s < oco.
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To estimate the term I, of (9), first observe that by applying integration by parts and V- u =0,
we derive

3 2
L = /]R3 (u : V)Q . Ahedx = Z Z /R»" uiaiejaikejdx

i,j=1k=1
3 2 3 2
= - Z Z/ akuiaiejakejdx— Z Z/ uiakaiejakejdx
ij=1k=1"% ij=1k=1"R
|
= - O14;0:0:0,0,dx,
ij=1k=1"% SR
where we have used
3 2 3 2 3 2 .
— Z Z/ uiakaiejakejdx = Z 2/ aiui(akej)de+ Z Z/ M,‘a,‘ake]‘akejdx
i,j=1k=1"% ij=1k=1"% ij=1k=1"F
Ly
- 1;9;0,0:9,0:dx,
i=1k=1"F s

so that

3 2 .
Z Z / uiakait‘)jakejdx =0.
ij=1k=1"F

It follows from Holder’s inequality, (8) and Young’s inequality that

I

3 2
-y 2/ akuiaie‘ake-dxg/ V1] | V6] | V6] dx
ij—1k=1"R e R

1 2 2
< —
< 2/Ra (10 + V46]) V6] dx
< ClVOI s (IVRll 26 , ViUl + VBl 26, [[VO]]12)
L2 LP-2
27% 3 27% 3
< CUVOll e (IVRull 2 © IV VRull 2 + VO] 2 © [V VRO]})

2
< CUVOI LS (1VnulEz + V48l E2) + 5 [V V3blIE + 4 11V V|2

Finally, we we want to estimate I3. It follows from integration by parts and Cauchy inequality that

L= — [ (6es) Byudx = [ V) (6es)- Vyudx
2| Vyull2 +2( V462

IN

Inserting all the estimates into (12), Gronwall’s type argument using

2 2p

T =P T* 2P
1< sup exp ( / ||ve<<o>||§i;d¢>5exp ( / |v0<¢>||zﬁ;d¢>§1,
A€[T,1] A 0

due to (7) leads to, for every 7 € [T, ]

2

t 20 2-2, : N 75 2 2
) < C+C [ sl B2 IVully, T sul? dr+C [0 (1Vuulf+ [ 9401F)dw

IN

LB
C+Ti(t) + To(b). (13)
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Next, we analyze the right-hand side of (13) one by one. First, due to (10) and the definition of
J?, we have

L) < c<sup I7u(o)l “)/ Jus (Ol 22 [ V() s Ao |57 de

Te([l1]
3 1

32 i—wz gt T/t -

785 ([ a@Ee ) ([ 1vueiba)” ([ 1suoli)’

1

L 1 % a=2 1 2
2 (/ ||M3 ||£tl;000 dT) €4ja—2 (t)
1

e
13
730 (/’Hug HLzJOdT) .

Finally, we deal with the term 7,(t). Applying Holder and Young inequalities, one has

1

‘H
Nl

IN IN
N\W

NS

= Ce

2

L) < Csup (Vo) + [V40(0I) [ V617 e
Te(T 1]
< CnL2(1).

Hence, choosing 7 small enough such that C < 1 and inserting the above estimates of 7 (t) and
T, (t) into (13), we derive that forall T < t < T* :

3a 10

)
Crcetgi (/n% Iﬁde B

IN

L2(1)

3a-10
(a=2)

C+Ce4j% (/1+Hu3 |Lii45d)4 ,

IN

which leads to L
L2(t) < C+Ced Ji(t). (14)

Now, we will establish the bounds of H' —norm of the velocity magnetic field and micro-rotational
velocity. In order to do it, taking the inner product of (1); with —Au, (1), with —Ab and (1); with —Af
in L2(R3), respectively. Then, integration by parts gives the following identity:

1d
S IVl + [V0I3:) + 18wl + a0l
= '/Ra(u-V)u-Audx%—/Ra(u-V)Q-Ade—/RS(Geg) - Audx.

Integrating by parts and using the divergence-free condition, one can easily deduce that (see e.g.,
Reference [27])

/ (u-V)u-Audx < C/ V] [Vu|* dx.
R3 R3
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We now treat the [ps(u - V)6 - A@dx-term. By integration by parts, we have

2 3
/3(u.v)9.A9dx - 22/ Ditty - Oy - 9,0 dx — Z/ Bty - 946; - D36;dx
¥ i=1jk=1 jk=1
2 3
_ —ZZ/ Bitt - Dy - 9,0dx — 22/ Bty - 040; - D30
i=1jk=1 k=1j=1

83143 . 836] . 830]-dx

.
Il

|
MM »—\Mw
%\

3
2/ Ditt - Oy - 9,0dx — ZZ/ Dty - Oy - Dadx
i k=

k=1j=1

Il
MR
.

3
2/ ditt; - 30; - D0jdx

mN

Therefore, we have
Ry + R3] < /Ra V| | V6] dx,

and
1
Rol < [Vl V6] V6] dx < 5 [/ 1946] ([l +]70)dx

where the last inequality is obtained by using Cauchy inequality.
Putting all the inequalities above into (15) yields

2 1 2 2
/R3(u-V)6-A6dx§/RS\th\\V6| dx+§/R3|vhe|(|w| +VOP)dx

Finally, we deal with the term — [p3(6e3) - Audx. By integration by parts and Cauchy inequality,
we have

— [ (6es) - Audx < S(IVulf + [ V] )

Combining the above estimates, by Holder’s inequality, Nirenberg-Gagliardo’s interpolation
inequality and (8), we obtain

1d(
2dt

C/RS (1+ [Vt + V0] (IVu + | VO2)dx

IVulf2 + 1V6]I52) + || Aulz + | A8] 2

IN

IN

C(L+ (| Vaullz + V8l 2) (V|4 + [ VO][74)

IN

1 3 1 3
CA+ [ Vaull 2 + IVl 2) IVl L2 [[Vullfe + VOl 22 VO]l o)

IN

1 1 1 1
CA+[IVpul 2 + IVibll2) IV ull L [V Vul 2 [ Aullf + VOl L2 Vi VO 12 | A6]] )
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Integrating this last inequality in time, we deduce that for all T € [T, ¢]

T < 14| Vu(D)[|72 + | V(D)2 + C Sl[lp](l\wu(f)llp + Vi (1) 2)
Te(lt

([ roueia) ([ 19vameia) ([ o)’

+C sup ([[Vpu(T)[lp2 + (| Vib(7) ] 12)
e[t

([ 1veia)’ ([Ivmie)’ ([ s e)

1+ | V() |22 + | VO(T)||2 + 2CL(E)et L(£) T2 (1)
= 14 | Vu(D)|3 + V() |32 + Ced L2(1) TE (1), (16)

IA

Inserting (14) into (16) and taking € small enough, then it is easy to see that forall ' < t < T%,
there holds . )
T2(t) <1+ | Vu(D)|22 + | VO(T)||72 + Cet T2 (£) + Ce2 J2(t) < oo,

which proves
2 2
sup ([|Vu(t)[lz2 + [[VO(#)[[12) < +oo.
r<t<T*
This implies that (u,60) € L*(0, T; H'(R?)). Thus, according to the regularity results in [2], (u, 0)
is smooth on [0, T]. Then we complete the proof of Theorem 1. []

4. Conclusions

It should be noted that the condition (7) is somewhat stronger than in Reference [6], since it is
wort emphasizing that there are no assumptions on the two components velocity field (11, up). In other
words, our result demonstrates that the two components velocity field (11, uy) plays a less dominant
role than the one component velocity field does in the regularity theory of solutions to the Boussinesq
equations. In a certain sense, our result is consistent with the numerical simulations of Alzmann et al.
in Reference [36].
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