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Abstract: In this paper, we introduce the concepts of Alexandrov L-fuzzy pre-proximities on
complete residuated lattices. Moreover, we investigate their relations among Alexandrov L-fuzzy
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1. Introduction

Pawlak [1,2] introduced the concept of rough set theory as a formal tool to deal with imprecision
and uncertainty in data analysis. Ward et al. [3] introduced the concept of the complete residuated
lattice, which is an algebraic structure for many-valued logic. It is an important mathematical tool for
studying algebraic structure. By using lower and upper approximation operators, information systems
and decision rules were investigated in complete residuated lattices [4-19]. Bélohlavek [4] developed

the notion of fuzzy contexts using Galois connections with R € LX*Y

on a complete residuated lattice.
El-Dardery [6] introduced L-fuzzy pre-proximity in view points of Sostak’s fuzzy topology [9] and
Kim'’s L-fuzzy proximities [13] on strictly two-sided, commutative quantales. Kim [10-15] investigated
the properties of Alexandrov L-fuzzy topologies, Alexandrov L-fuzzy quasi-uniformities, and L-fuzzy
approximate operators in complete residuated lattices.

In this paper, we introduce the concepts of Alexandrov L-fuzzy pre-proximities on complete
residuated lattices, which are a unified approach to the three spaces: Alexandrov L-fuzzy topologies,
L-fuzzy lower approximate operators, and L-fuzzy lower approximate operators as an extension
of Pawlak’s rough sets. Moreover, we investigate their relations among Alexandrov L-fuzzy
pre-proximities, Alexandrov L-fuzzy topologies, L-fuzzy lower approximate operators, and L-fuzzy
lower approximate operators. We give their examples.

2. Preliminaries
Definition 1 ([4,8-10]). Analgebra (L, A\, V,®, —, L, T) is a complete residuated lattice if:

(L1) (L, <,V, A, L, T) isacomplete lattice with the greatest element T and the least element 1 ;
(L2) (L, ®, T) is a commutative monoid;
(L3) xoy <zifandonlyifx <y — zforall x,y,z € L.

In this paper, we always assume that (L, <, ®, —,®,* ) is a complete residuated lattice with an
order-reversing involution *, which is defined by:

xdy=x"oy"), ¥F=x— 1
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unless otherwise specified. Forall« € L,

(@ = f)x) =a = fx), (@O f)(x) =a0f(x), ax(x) = a,

T ify=ux, 1 ify=ux,

Tx(y) = { and  Ti(y) = {

1, otherwise T, otherwise.

Lemma 1 ([4,7,8]). Let x,y,z,x;,y;,w € L. Then, the following hold.

) T =>x=xand L ©x= 1.

2) fy<z,thenxOy<xO0z,x®y<x®zx—-y<x—zandz—>x<y—x.

@) x <yifandonlyifx -y =T.

)(/\zyl) _szl and (V1yl) /\1}/;k

®) x_>(/\z]/z)_/\(x_>yl>

) (Vix )_>y /\(xz_>y)

7) x© (Viyi) = Vi(x ©y;).

) (Aixi) @y = Ni(xi @y).

9 (xOy) mz=x—>(y—z)=y— (x = 2).

(10) xOy=(x =y ) andx dy = x* — y.
) (x =2y (z—ow) < (xOz) = (YOw).

12) x 2y < (x0z) = (yOz)and (x - y) © (y = z) < x =z

13) (x—=y)o(z—w) < (xd®z) = (yPw).
)
)
)
)
)

(14) x =y =y* — x™.

(15) (xVy)o (zVw) < (xVz)V(yow) < (xdz)V(yoOw).
(16) Vixi = Viyi > Ni(x z—>yz)and/\1xl—>/\zyz>/\(xl—>yl)
17) (xoy) o0 (zew) < (x0z) & (yOw).

1) x—=y<y—z)—> (x—z)andx -y <(z—x) = (z—>y).

Definition 2 ([4]). Let X be a set. A mapping R : X x X — L is an L-partial order if:

(E1) R(x,x) =T forall x € X (reflexive);
(E2) R(x,y) ® R(y,z) < R(x,z) forall x,y,z € X (transitive);
(E3) if R(x,y) = R(y,x) = T, then x = y (antisymmetric).

Definition 3 ([4]). Let X be a set. Define a mapping S : LX x LX — L by:

S(f,.8)= N\ (f(x) = g(x)) forall f,g € LX.

xeX

Lemma 2 ([4]). Let f,g,hk € LX, and « € L. Then, the following hold.

1) Sis an L-partial order on LX.

2) f <gifandonlyif S(f,g) > T.

(3) Iff < g thenS(h,f) < S(h,g)and S(f,h) > ( ).
(4) S(f,g) ©S(k,h) <S(f®k,g®h)and S(f,g) ® S(k,h) < S(f Ok, gOh).
5) S(g,h) < 5(f,8) = S(f,h).

6) S(f/h) = Vgerx(S(f,8) ©5(g,h))-

(

Definition 4 ([10]). A mapping J : LX — LX is an L-lower approximation operator on X if:

(J1) J(Tx) = Tx where Tx(x) =T forall x € X;
12 J(f) < f forall f € L,
(3) T (Nier fi) = Nier T (fi) for all { fi}tier € LX;
J4) J(a = f) =a = J(f).

20f15

The pair (X, J) is called an L-lower approximation space. An L-lower approximation space is called

topological if:
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(M) T(Tf)) = T(f) forall f € LX,

Definition 5 ([10]). A mapping H : LX — LX is an L-upper approximation operator on X if:

(Hl) H(Lx) = Lx where Lx(x) = L forall x € X;
(H2) H(f) > fforall f € LX;
(H3) H(Vier fi) = Vier H(fi) forall {fi}ier € L*;
(H4) H(a© f) = a O H(f).

The pair (X, H) is called an L-upper approximation space. An L-upper approximation space is called
topological if:

(T) H(H(f)) = H(f) forall f € LX.
Definition 6 ([10-12]). Let T be a subset of LX. T is an Alexandrov L-topology on X if:

(Ol) 1x, Tx et
(02) IfAj € Tforalli € 1, then N\ic; Ai,Vier € T
O3) IfActanda € L, thena ©® A,a - A€ T.

Definition 7 ([10]). A mapping T : LX — L is an Alexandrov L-fuzzy topology on X if:

(AT T(Llx)=T(Tx)="T;
(AT2) T(Ai fi) = N T(fi) and T(V; fi) = Ni T(fi) for all { fi}ier C L%;
(AT3) T(a® f) > T(f)and T(a — f) > T(f) foralla € Land f € LX.

The pair (X, T') is called an L-fuzzy topological space.

Theorem 1 ([10-12]). (1) Let J : LX — LX be an L-lower approximation operator. Define H 7 : LX — LX

by Hy(f) = T*(f*). Then, H 5 is an L-upper approximation operator.

(2) Let H : LX — LX be an L-upper approximation operator. Define Jp : LX — LX by Jo (f) = H* (f*).
Then, Jy is an L-lower approximation operator.

(3) Let T : LX — L be an Alexandrov L-fuzzy topology. Define T* : LX — L by T*(f) = T (f*). Then,
T* is an Alexandrov L-fuzzy topology.

(4) Let T C LX be an Alexandrov L-topology. Define T = {f | f* € t}. Then, T* is an Alexandrov
L-topology.

Theorem 2 ([10]). Let (X, H) be an L-upper approximation space. Define a mapping T : LX — L by
T (f) = S(H(f), f). Then, Ty is an Alexandrov L-fuzzy topology on X with T;;(f) = S(f, T (f)) where
Tn(f) =H*(f") forall f € LX.

Theorem 3 ([10]). Let (X, J) be an L-lower approximation space. Define a map Tz : LX — L by
T7(f) =S(f, T(f)). Then, Tz is an Alexandrov L-fuzzy topology on X.

3. The Relationships between Alexandrov L-Fuzzy Pre-Proximities and Alexandrov
Topological Structures

Definition 8. A mapping & : LX x LX — L is an Alexandrov L-fuzzy pre-proximity on X if:

(Pl) 0(lx, Tx) =0(Tx, Lx)=L;
(P2) 6(f,8) = Vxex(f(x) © g(x));

P3) If f< frandg < gl, then 6(f,¢) < 6(f1,$1);
)
)

(P4) Forall i, f,8i,8 € L, 6(Vier fi,8) < Vier 0(fi,8) and 6(f, Vier 8i) < Vier 6(f, &:);
(P5) Foralla € Land f,g € LX,6(a® f,8) =a®6(f,g) =(f,a®g).

An Alexandrov L-fuzzy pre-proximity 6 on X is called an Alexandrov L-fuzzy quasi-proximity if:
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) 6(f,8) = Aperx 6(f, h) ®5(h*,g).

Let 61 and &, be two Alexandrov L-fuzzy pre-proximities on X. 61 is finer than 5, if 6,(f, ) > 61(f, &)
forall f,g € LX.

Example 1. Let R € LX*X. Define a mapping 6 : LX x LX — Lby 5(f,g) = Viyex(R(x,y) © f(x) © g(y)).
(1) Assume that R is reflexive. Then:

(P1) 6(Lx, Tx) =0(Tx, Lx)

(P2) 8(F,8) > Veex (RU6 ) ® £(x)
P3) Iff < frand g < 81/ then o(f, g

(P4) Forall'f;, f,gi,g € LX OV orfirg) = Vie
(P5) Foralla € Land f,g € L%,

s(aof,8) =\ Rxy) o @ef(x)0gy))

xyeX

=a® \ (R(x,y) @ (f(x) ©g(y)))

x,yeX
=a©(f,8)

\)/xeX(f( x) ©g(x));
r6(fi,8) and 6(f, Vier &) = Vier 0(f, &i)-

Hence, 6 is an Alexandrov L-fuzzy pre-proximity on X.
(2) Assume that R is reflexive and transitive. Then, \/,cx (R(y,z) © R(x,y)) = R(x,z). Forall f,g,h € L%,
we have by Lemma 1 (17) that:

sfmesn,g) =V Ry ofxonm)e( V Ryzon @y oge))

xyeX y,ze€X

>V Ry ©fx) 0 hy) © (R(y,2) 0 1 (y) 0 5(2))

x,yzeX
>V Ry 0Rm,2) 0 f(x) 0g() @ (hy) @1 (1))
x,y,ze€X
=V (Rxy) OR(y,2) 0 f(x) 0g(2)
xy,zeX
=V (R(x,2) @ f(x) ©0g(2)) = 3(£,g).
x,zeX

Thus, 8(£,8) < Anerx (8(£,1) & (1", 2).
Let h(y) = (Vaex(R(oy) © f(x))) . Then:

N 6(f,m)&é(h",g))

helX
= AV Rxy)ofxony)) eV (Ryz)oh*(y) ©gz))
helX xyeX yzeX
<(Vmmory)e(V Ry.2)e V(Rxy) o flx)0g(2))
yeX yzeX xeX
=L@V (V(Ry2)0RMxY) O f(x)©g(2)))
x,zeX yeX
= V (R(x,2) © f(x) 0g(2)) = (f. ).
x,zeX

Hence, 6 is an Alexandrov L-fuzzy quasi-proximity on X.
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By taking R(x,y) = Txxx, let:

a(f£,8) =V (Txxx(xy) 0 f(x)0gy) =V (f(x)©gW)).

xyeX x,yeX

Define Nxxx € LX*X by:
T ifx=y,

1 otherwise.

Axxx(x,y) = {
By taking R(x,y) = Axxx, let:

5(f.8) =V (Lxxx(xy) © (f(x) ©8(y)) = V (f(x) ©g(x)).

xyeX xeX

Then, &(f,8) < 6(f,8) < 61(f,g) forall f,g € LX.

Lemma 3. Let & be an Alexandrov L-fuzzy pre-proximity on X. Forall « € Land f,g, f;i,gi € L%, the
following hold.

(1) 6(Vier fi,8) = Vier 6(fi,8) and 5(f, Vier &) = Vier 6(f, &i)-
@) 6 f,a—g) <6(f,g)and é(a — f,a ©g) < (f,8).

Proof. (1) It follows from (P3) and (P4).
(2) Itfollows fromé(a ® f,a = ¢) =a O (f,a = g) =d(f,a® (a = g)) < (f,9)-
O

Theorem 4. Let 6 be an Alexandrov L-fuzzy pre-proximity on X. Define a mapping &° : LX x LX — L by
3(f,g) = 6(g, f). Then, the following hold.

(1) ¢6° is an Alexandrov L-fuzzy pre-proximity on X.

(2) 6(f,8) = Vayex(6(Tx, Ty) © (f(x) © g(y)).
(3) There exists a reflexive L-fuzzy relation Rs € LX*X such that:

5(f,8) =\ (Rs(x,y) © (f(x) ©g(¥)))-

x,yeX

4) There exists a reflexive L-fuzzy relation Rgs = R; 1 € LX*X such that:
( Yy 5 5

&(f.8) =V R (xy) o (f(x) ©8(y)))-

x,yeX

Proof. (1) It is easily proven.
() Since f = Vaex(f(x) © T+) and g = Vyex(8(y) © Ty), we have:

6(f,8) =3\ (f()©Tx), V (8(y) © Ty))

xeX yeX
=V (f@es(Ty Vg o T)))
xeX yex

=V (f®ogm) os(TyTy).

x,yeX
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(3) Let Rs(x,y) = 6(Tx, Ty) in the equation in (2). By (P2),

Rs(x,x) =6(T2, Ta) > \/ (Tx(x) © Ta(x)) =T.
xeX

Moreover, §(f, &) = Vayex(Rs(x,y) © f(x) ©g(y))-
(4) Since Rss (x,y) = 6°(Tx, Ty) =0(Ty, Tx) = Rgl(x,y) by (2), we have:
5(f,8) = (g f)
=V Rs(xy) 0 @x) e f(y)

x,yeX

=V (R0 e (fy ogx).

xyeX

O

Theorem 5. Let § be an Alexandrov L-fuzzy pre-proximity on X. Define a mapping T; : LX — L by

Ts(f) = 6*(f, f*). Then, Ts is an Alexandrov L-fuzzy topology on X such that Ty* = Tss. If 61 < &,
then Ts, > Ts,.

Proof. (AT1) 75(Tx) =0*(Tx, T%) = Tand T5(Lx) =6*(Lx, L%) =T.
(AT2) By (P3) and (P4), we have:

TR =8 (NN F) 286\ ) = N6 i f7) = ATolf)
and:
TV ) =V N = 8V fuf) = N& (i ) = NTo).
(AT3) By Lemma 3 (2), we have:

Ts(@of) =8O fia = f) =a =0 (fa = f) =6 (f,a© (a = f7))
> (f f) =Ts(f), Tsla = f) = 8" (a = f,a© f*) 2 5°(f, f*) = T5(f)-

Then, 75 is an Alexandrov L-fuzzy topology on X. Moreover,

Ts'(f) = Ts(f) = 6°(f*, f) = & (f, f7) = T (f)-
O

Example 2. Let R € LX*X be a reflexive fuzzy relation. Define a mapping & : LX x LX — L by 6(f,g) =
Viyex(R(x,y) © f(x) © g(y)). Then:

T =5 F) =V Ry of0)of )

x,yeX

= N\ Rxy) = (fx) = fv)-

x,yeX

IfR = Txxx, then Ts(f) = Ny yex(f(x) = f(y)).
IfR = Axxx, then Ts(f) = Neex(f(x) = f(x)) = T.



Mathematics 2019, 7, 85 7 of 15

From the following two theorems, we obtain the L-lower approximation operator and the L-lower
approximation operator induced by an Alexandrov L-fuzzy pre-proximity.

Theorem 6. Let § be an Alexandrov L-fuzzy pre-proximity on X. Define a mapping Hs : LX — LX by
Hs(f)(x) = 6(f, Tx). Then, the following hold.

(1) Hs is an L-upper approximation operator on X.
(2 6(Ty, Tx)=T.
(3) There exists a reflexive L-fuzzy relation Rs € LX*X such that:

Hs(f)(x) = V (Rs(y,x) © f(y))-

yeX

Moreover, there exists a reflexive L-fuzzy relation Rgs = Rgl € LX*X such that:

Mo (H)(x) =V (Rs(x,y) © f(y))-
yeX
@) Vyex(0(Tx, Ty) ©0(Ty, T2)) < 6(Tx, Tz) if and only if Hs is a topological L-upper approximation
operator on X.
(5) To,(f) = 6°(f. f*) = Ts(f) forall f € LX.
(6) 6(f,8) = Vrex(Ms(f)(x) ©g(x)) forall f,g € L*.

Proof. (1) (H1)Sinced(Llx, Tx) <dé(Llx, Tx)= 1, wehave Hs(Lx)(x) =6(Lx, Tx)= L.
(H2) Hs(f)(x) =0(f, Tx) =2 Vaeex(f(x) © Tx(x)) = f(x).

(H3) From Lemma 3, we obtain:

Hs(\ fi)(x) =6(\ fi. Tx) = \ 6(fi, )

iel iel iel
=\ Hs(fi)(x).
iel
(H4) By (P4), Hs(e © f)(x) = 6(a O f, Tx) = a ©(f, Tx) = a © Hs(f). Hence, H; is an L-upper
approximation operator on X.

(@) (Tx, Tx) = Viex(Tx(x) © Tx(x)) = T.

(3) We obtain Hs(f)(x) = o(f, Tx) = 6(Vyex(f(¥) © Ty), T2) = Vyex(f(y) ©6(Ty, Tx)).
Put R;(x,y) = 0(Tx, Ty). By (2), Ry is reflexive. Then, H;(f)(x) = Vyex(f(y) © Rs(y, x))-
Moreover, Rys(x,y) = 0°(Tx, Ty) =0(Ty, Tx) = Rs(y, x) = Rgl(x,y) such that:

Hos(F)(x) =V (f(y) ©67(Ty, T))

yeX

= VW oi(TxTy) =V (fy) © Rs(x,)).

yeX yeX
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(4) Since Hs(f) = Vyex(Hs(f)(y) © Ty), we have:

Hs(Hs(f))(x) = 0(Hs(f), Tx) = 6(\ (Hs(/)(y) © Ty), Tx)

yeX
=V (Hs(N) W) ©6(Ty, Tx)) = \ (6(f, Ty) ©6(Ty, Tx))
yeX yeX
= V(6 (f2)OT:), Ty) ©8(Ty, Tx))
yeX zeX
=V (V(f(2)©(TTy)©8(Ty, Tx))
yeX zeX
=V (f(2)© V (6(T2 Ty) ©6(Ty, Tx)))
zeX yeX
< \/ Q(S TZ Tx)) _5(\/(f(z)®Tz)/Tx)
zeX zeX

=0(f, Tx) = Hs(f)(x).

Conversely, since Hs(Hs(T2))(x) < Hs(T2)(x), for Hs(Tz) = Vyex(Hs(T2)(y) © Ty),

we have:

Hs(Hs(T2))(x) = Hs(\ (Hs(T2)(y) © Ty)) (x)
yeX

o \/ (Hs(T2)(y) © Hs(Ty)(x)) < Hs(T2)(x).
yeX

(5) Forall f € LX, we have:

T, (f) = S(Ms(f), ) = )\ (Hs(F)(x) = f(2))

xeX
= NG, Ty) = f(x)) = N (f(x) = 8°(f, Tx))
xeX xeX
:/\5*(f,f x)©® Ty) —5*f\/ xX)® Ty))
xeX xeX

= (f, f7) = Ts(f)-

(6)
V (Hs(f)(x) ©g(x)) =\ (6(f, Tx) @ g(x))
xeX xeX
=46(f, V (Tx@g(x))) = (£, 8)-
xeX
O

Theorem 7. Let 6 be an Alexandrov L-fuzzy pre-proximity on X. Define a mapping J5 : LX — LX by
Ts(f)(x) = 6*(Tx, f*). Then, the following hold.

1) Jjs is an L-lower approximation operator on X.
2) There exists a reflexive L-fuzzy relation Rs € L*X*X such that:

Ts()(x) = N\ (Rs(x,y) = f(y))-

yeX

(
(
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Moreover, there exists a reflexive L-fuzzy relation Rgs = R;l € LX*X such that:

Tss (f)(x) = N\ Rs(y,x) = f(y))-
yeX

(3) Forall f € L%, Vyex(5(Txr Ty)©(Ty, T2)) <(Tx, T2) ifand only if T5(T5(f)) > Ts(f).

)

4) T7,(f) = & (f. f*) = T5(f) forall f € LX.

(5) Ts(f) = o(f*, T3) = Hy(f*) forall f € LX and T = Tgs = T,
)

©) o(f.8) = S(f, Ts(g)) forall f,g € LX.

Proof. (1) (J1)Since 6*(Ty, T%) > 0*(Tx, Lx) = T,wehave J5(Tx)(x) =0*(Tx, T%) =T.
(J2) Note that:

Ts(F)(x) = 6" (To, ) < (V (Tx(x) © f7(2)))" = f(x).

xeX

(J3) By Lemma 3, we obtain:
Ts(N\ fi)(x) =6 (T, \/ 1) = N 6" (T, f7) = N\ Ts(fi)(x)
iel iel iel iel

(J4) By (P4), we have:
Ts(a = f)(x) = 0" (T, a© f7) =a = 0" (Tx, f7) = & = Ts(f).
2) For f* = V,ex(f*(y) © Ty), we have:

Ts(f)(x) =" (Ta, f7) = 6"(Tx, \ (f*(v) © Ty))

yeX

= AN(F@) =8 (Tx Ty) = A\ (6(Tx, Ty) = f(y)).

yeX yEX

Let Rs(x,y) = 6(Ty, Ty). By (2), R is reflexive and j,;(f)( ) = /\ygx(R(;(x,y) — f(y)).
Moreover, Rss(x,y) = 6 (T, Ty) = 6*(Ty, Tx) = Rs(y, x) = (x y) such that:

Jo(f)(x) = N\ (@ (Tx, Ty) = f) = N (0" (Ty, T2) = fF(1) = A (Rs(y, %) = f(y))

yeX yeX yeX

(3) Since J5(f) = Ayex(J5 (f)(y) = Tj), we have:

Js(T5(f))(x) = 6" (T, T5 (f))
=" (T, V(TZ (N0 Ty) = AN (ITF () =0 (Tx Ty))

yeX yeX
= (5(Ty/ \/ (f*(z) ©T2)) _>5*(Tx/—|—y))
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Conversely, since J5(Ty)(x) = 6°(Tx, Ty) and J5(T7) = Ayex(T5(THWY) — Ty,
we have that jg(jg(T*))(X) = Nyex(T5(TH)(y) — Ts(Ty)(x) = T5(TZ)(x) if and only if
\/(yEX(j(s*)(T*)( y) © J5 (Ty)(x) < J5(T2)(x) if and only if Vyex(6(Ty, Tz) ©6(Tx, Ty) <
6(Tx, T2).

4) For f = V,ex(f(x) ® Tyx), we have:

T7(f) =S(f. Ts(f)) = N\ (f(x) = " (Tx, f)) = N\ 6" (f(x) © Tx f7))

xeX xeX

=0\ (f(x) © Tx), f5) = 6*(f, f*) = T5(f)-

xeX
(5) Forall f € LX, we have:
Tos(f)(x) =0 (T, f7) = 67 (f7, Tx) = H5(f7),
T7,(f) =Tg,(f*) =0"(f" f) = Tss(f) = T (f)-

(6) Forall f,g € LX, we have:

S(f. Ts5(8)) = N\ (f(x) = T5(8))) = N\ (f(x) = 6"(Tx,8"))

xeX xeX

=0 (V (f(x) © Tx),8") = 5" (f,8").

xeX

O

From the following theorem, we obtain the Alexandrov L-fuzzy pre-proximity induced by an
L-upper approximation operator.

Theorem 8. Let (X, H) be an L-upper approximation space. Define a mapping 63 : LX x LX — L by:

ou(f,8) =\ (H(f)y) ©g)).

yeX
Then, the following hold.

(1) 69 is an Alexandrov L-fuzzy proximity such that:

Su(f,8) ="\ (H(Ty)(x) © (f(y) ©8(x)))-

xyeX

(2) oy (f 2) < Aperx 6y (f, h) @ 6y (h*,g)). Moreover, the equality holds if H is topological.
is topological, then §y is an Alexandrov L-fuzzy quasi-proximity on X.
oy

) = oulff) = oy (f) forall f € LX,
6 If is an Alexandrov L-fuzzy pre-proximity on X, then 6y,,(f,8) = 6(f,g) forall f,g € L.

@
=
im

Proof. (1) (P1)Since H(Lx) = Lx and H(Tx) = Tx, we have:

u(Tx, Lx) =V (H(Tx)(y) © Lx(y)) = L,
yeX

u(lx, Tx) =V (H(Lx)(y) © Tx(y) = T.
yeX

(P2) Since H(f) > f, we have:

u(f.g) =\ H( ) ogw) = V (f(x) ©gx)).

yeX xeX
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(P3) If f < f1and g < g1, then H(f) < H(f1). Thus,

ou(f,8) =V (H(H W) 0sw) < V (H(A)Y) ©a1y)) = oulfi,81)-

yeX yeX

(P4) Note that:

ou(\ fug) =\ (H(V fi)(x) ©g(x))

iel xeX iel
=V (VHA ) 08(x) =V oulfig),
xeX iel iel
ou(f,\V &)=\ (f(x) © V&%) =\ oulf, &)
iel xeX iel iel

and:

Su(a@ f,g) =\ (H(ao f)(x) ©g(x))

xeX

=V (@0H(f)(x) ©g(x)) = « ©5u(f,3)-

xeX

Hence, d3, is an Alexandrov L-fuzzy pre-proximity. For f = \/(f(y) ® T,), we have:

ou(f,8) =\ (H(F)(x) ©g(x)) = \/ (H(V (f(y) © Ty))(x) © g(x))

xeX xeX

=V (V (f) 0 H(Ty)(x)) ©g(x))

xeX yeX

=V (H(Ty) ) o (fy) ©g(x)).

xyeX
(2) Foreach f,g,h € LX, we have:
on(f 1) ® oy (H",8)

= (\/ (H(f) () Gh(X))> ® <\/ (H (1) (x) ®g(X)))

> \;j(%(f )(x) ©h(x)) & (’H(Zfix) ©8(x)))

> x\E/X((H(f)(X) ® f(x)) ® (h(x) ® H(h*)(x))) by Lemma 1 (17)
= X\G/X((H(f)(x) © f(x)) © (h*(x) = H(1")(x)))

=Z%@

Hence, 63(f,8) < Anerx(0n(f, 1) ® Sy (h*,8))-

110f15
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If H is topological, then:

N (6 (f,h) ® oy (17, g))

helX
= N\ (VHS@)ohrx) @ (V (H(h)(x) ©g(x))))
helX xeX xeX

(puth* =H(f),)
< (VHF@)oH (f() & (V (HH())(x) ©g(x))))

xeX xeX
= (V (H(H()(x) ©g(x)))) = ou(f,8)-
xeX

(3) It follows by (2).
(4) Forall f € LX, we have:

My, (f) = ou(f, Tx) = \V (H(N) () © Tx(y)) = H()(x).

yeX

(5) Forall f € LX, we have:

xeX

To (f) = 03 (£, f7) = < V (H(f)(x) ®f*(X))> = Tu(f)-
(6) Forall f,g € LX, we have:

6, (f.8) =V Hs()y) ©8w)) = \V (6(f, Ty) ©8(y))

yeX yeX

=o(f, V (Tyo8W)) =4(f.9)-
yeX
m

By the above theorem, we obtain the Alexandrov L-fuzzy pre-proximity induced by an L-lower
approximation operator in a sense H 7 (f) = J*(f*) forall f € LX.

Corollary 1. Let (X, J) be an L-lower approximation space. Define a mapping 6.7 : LX x LX — L by:

67(f.8) =\ (T (f)y) ©8y)).

yeX

Then, the following hold.

(1) 07 is an Alexandrov L-fuzzy proximity such that:

57(f.8) =V (T(THE) © (fly) ©8(x))).

x,yeX

07(f,8) < Nyerx(87(f, h) ®65(h*,g)). Moreover, the equality holds if J is topological.

)

(3) If J is topological, then 6 7 is an Alexandrov L-fuzzy quasi-proximity on X.
(4) J = Ts,-

() T7(f) =67 (f, f) =T, (f) forall f € LX.

(6)

If 6 is an Alexandrov L-fuzzy pre-proximity on X, then 5 7.(f,g) = 6(f,§) forall f, g € L,
Example 3. Let ([0,1], ®, —,*,0,1) be a complete residuated lattice [4,8-10] where:

x®y=max{0,x+y—1}, x > y=min{l —x+y,1}
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x@y=min{x+y,1}, x* =1—x.

Let X = {x,y,z}. Consider the reflexive and transitive L-fuzzy relation R € [0,1]X*X defined by:

1 07 038
05 1 04
06 07 1

(1) By Example 1, we obtain two Alexandrov L-fuzzy quasi-proximities d,5° : [0,1]X x [0,1]X —

[0, 1] where:
5(f,8) =V (R(xy) o (f(x) ©8y)),
xyeX
#(f,.8) =V (R(y,x) © (f(x) ©g(y))-
x,yeX

(2) By Theorem 5, we obtain two Alexandrov L-fuzzy topologies 75, 75 : [0,1]X x [0,1]%X —
[0, 1] where:

T =50 f) =V Ry o (F@of )

x,yeX

= N\ Rxy) = (fx)©fy))

x,yeX

= N\ R(xy) = (fx) = f(v)),

x,yeX

Tos(f) =6"(f. /)= N\ R(yx) = (f(x) = f())-

xyeX

(38) From Theorem 6 (4), since R is a reflexive and transitive L-fuzzy relation, we obtain two
topological L-upper approximation operators Hs, Hys : [0,1]%X — [0, 1]X where:

Hs(f)(x) =0(f, Tx) = \V (R(y,x) © f(y)),

yeX

He(f)(x) = V (R(x,y) © f(y)).

yeX

(4) By Theorem 6 (4), we obtain two topological L-lower approximation operators 75, J5 : [0,1]% —
[0,1]%X where:
Js(f)(x) =" (T f) = N\ R(x,y) = f(v)),

yeX

Tos(f)(x) =6"(f", Tx) = N\ (R(y,x) = f(y)).

yeX

(5) From Theorem 8, since Hs and H s are topological L-upper approximation operators, we obtain
two Alexandrov L-fuzzy quasi-proximities &y, 63, : [0,1]% x [0,1]X — [0,1] where:

o, (f,8) =V Hs(Hl o W) =V (Rx,y) ©f(x)) ©8(y)) = (f,8)-

yeX x,yeX

Sy (£.8) =V (R(y,0) 0 (f(x) ©8(y))) = &(f.8)-

xyeX
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(6) By Corollary 1, since [J; and Jjs are topological L-lower approximation operators, we obtain

Alexandrov L-fuzzy quasi-proximities 67,87, : [0,1]% x [0,1]X — [0,1] as:

87,(f,8) = V (T (f) ) © v))

yeX

= V(A Ry x) = f(x) 0gy)
yeX xeX

=V Ry,x) 0 f(x) ©8(y) = &(f,8)-
xyeX

87:(f.8) = V (T5(f)w) © ()

yeX

= V(A Ry = f(x) 0gy)
yeX xeX

=V R(xy) 0 f(x) ©8y) = 8(f,9)-
x,yeX
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