

Article

Alexandrov L-Fuzzy Pre-Proximities

Yong Chan Kim † and Ju-Mok Oh *,†

Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 25457, Korea; yck@gwnu.ac.kr

- * Correspondence: jumokoh@gwnu.ac.kr; Tel.: +82-33-640-2823
- † These authors contributed equally to this work.

Received: 1 December 2018; Accepted: 11 January 2019; Published: 15 January 2019

Abstract: In this paper, we introduce the concepts of Alexandrov *L*-fuzzy pre-proximities on complete residuated lattices. Moreover, we investigate their relations among Alexandrov *L*-fuzzy pre-proximities, Alexandrov *L*-fuzzy topologies, *L*-fuzzy upper approximate operators, and *L*-fuzzy lower approximate operators. We give their examples.

Keywords: complete residuated lattice; Alexandrov *L*-fuzzy topologies; *L*-lower and *L*-upper approximation operators; Alexandrov *L*-fuzzy pre-proximities

1. Introduction

Pawlak [1,2] introduced the concept of rough set theory as a formal tool to deal with imprecision and uncertainty in data analysis. Ward et al. [3] introduced the concept of the complete residuated lattice, which is an algebraic structure for many-valued logic. It is an important mathematical tool for studying algebraic structure. By using lower and upper approximation operators, information systems and decision rules were investigated in complete residuated lattices [4–19]. Bělohlávek [4] developed the notion of fuzzy contexts using Galois connections with $R \in L^{X \times Y}$ on a complete residuated lattice. El-Dardery [6] introduced L-fuzzy pre-proximity in view points of Sostak's fuzzy topology [9] and Kim's L-fuzzy proximities [13] on strictly two-sided, commutative quantales. Kim [10–15] investigated the properties of Alexandrov L-fuzzy topologies, Alexandrov L-fuzzy quasi-uniformities, and L-fuzzy approximate operators in complete residuated lattices.

In this paper, we introduce the concepts of Alexandrov *L*-fuzzy pre-proximities on complete residuated lattices, which are a unified approach to the three spaces: Alexandrov *L*-fuzzy topologies, *L*-fuzzy lower approximate operators as an extension of Pawlak's rough sets. Moreover, we investigate their relations among Alexandrov *L*-fuzzy pre-proximities, Alexandrov *L*-fuzzy topologies, *L*-fuzzy lower approximate operators, and *L*-fuzzy lower approximate operators. We give their examples.

2. Preliminaries

Definition 1 ([4,8–10]). An algebra $(L, \land, \lor, \odot, \rightarrow, \bot, \top)$ is a complete residuated lattice if:

- (L1) $(L, \leq, \vee, \wedge, \perp, \top)$ is a complete lattice with the greatest element \top and the least element \perp ;
- (L2) (L, \odot, \top) is a commutative monoid;
- (L3) $x \odot y \le z$ if and only if $x \le y \to z$ for all $x, y, z \in L$.

In this paper, we always assume that $(L, \leq, \odot, \rightarrow, \oplus, *)$ is a complete residuated lattice with an order-reversing involution *, which is defined by:

$$x \oplus y = (x^* \odot y^*)^*, \ x^* = x \to \bot$$

Mathematics 2019, 7, 85 2 of 15

unless otherwise specified. For all $\alpha \in L$,

$$(\alpha \to f)(x) = \alpha \to f(x)$$
, $(\alpha \odot f)(x) = \alpha \odot f(x)$, $\alpha_X(x) = \alpha$,

$$\top_x(y) = \begin{cases} \top & \text{if } y = x, \\ \bot, & \text{otherwise} \end{cases}$$
 and $\top_x^*(y) = \begin{cases} \bot & \text{if } y = x, \\ \top, & \text{otherwise.} \end{cases}$

Lemma 1 ([4,7,8]). Let $x, y, z, x_i, y_i, w \in L$. Then, the following hold.

- (1) $\top \rightarrow x = x$ and $\bot \odot x = \bot$.
- (2) If $y \le z$, then $x \odot y \le x \odot z$, $x \oplus y \le x \oplus z$, $x \to y \le x \to z$, and $z \to x \le y \to x$.
- (3) $x \le y$ if and only if $x \to y = \top$.
- (4) $(\bigwedge_i y_i)^* = \bigvee_i y_i^*$ and $(\bigvee_i y_i)^* = \bigwedge_i y_i^*$.
- (5) $x \to (\bigwedge_i y_i) = \bigwedge_i (x \to y_i).$
- (6) $(\bigvee_i x_i) \to y = \bigwedge_i (x_i \to y)$.
- $(7) \ x \odot (\bigvee_i y_i) = \bigvee_i (x \odot y_i).$
- (8) $(\bigwedge_i x_i) \oplus y = \bigwedge_i (x_i \oplus y).$
- $(9) (x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z).$
- (10) $x \odot y = (x \to y^*)^*$ and $x \oplus y = x^* \to y$.
- $(11) (x \to y) \odot (z \to w) \le (x \odot z) \to (y \odot w).$
- (12) $x \to y \le (x \odot z) \to (y \odot z)$ and $(x \to y) \odot (y \to z) \le x \to z$.
- $(13) (x \to y) \odot (z \to w) \le (x \oplus z) \to (y \oplus w).$
- (14) $x \to y = y^* \to x^*$.
- $(15) (x \lor y) \odot (z \lor w) \le (x \lor z) \lor (y \odot w) \le (x \oplus z) \lor (y \odot w).$
- (16) $\bigvee_i x_i \to \bigvee_i y_i \ge \bigwedge_i (x_i \to y_i)$ and $\bigwedge_i x_i \to \bigwedge_i y_i \ge \bigwedge_i (x_i \to y_i)$.
- $(17) \ (x \odot y) \odot (z \oplus w) \leq (x \odot z) \oplus (y \odot w).$
- (18) $x \to y \le (y \to z) \to (x \to z)$ and $x \to y \le (z \to x) \to (z \to y)$.

Definition 2 ([4]). Let X be a set. A mapping $R: X \times X \to L$ is an L-partial order if:

- (E1) R(x,x) = T for all $x \in X$ (reflexive);
- (E2) $R(x,y) \odot R(y,z) \le R(x,z)$ for all $x,y,z \in X$ (transitive);
- (E3) if $R(x,y) = R(y,x) = \top$, then x = y (antisymmetric).

Definition 3 ([4]). Let X be a set. Define a mapping $S: L^X \times L^X \to L$ by:

$$S(f,g) = \bigwedge_{x \in X} (f(x) \to g(x))$$
 for all $f,g \in L^X$.

Lemma 2 ([4]). Let $f, g, h, k \in L^X$, and $\alpha \in L$. Then, the following hold.

- (1) S is an L-partial order on L^X .
- (2) f < g if and only if $S(f,g) > \top$.
- (3) If $f \le g$, then $S(h, f) \le S(h, g)$ and $S(f, h) \ge S(g, h)$.
- (4) $S(f,g) \odot S(k,h) \leq S(f \oplus k,g \oplus h)$ and $S(f,g) \odot S(k,h) \leq S(f \odot k,g \odot h)$.
- $(5) S(g,h) \leq S(f,g) \to S(f,h).$
- (6) $S(f,h) = \bigvee_{g \in L^X} (S(f,g) \odot S(g,h)).$

Definition 4 ([10]). A mapping $\mathcal{J}: L^X \to L^X$ is an L-lower approximation operator on X if:

- (J1) $\mathcal{J}(\top_X) = \top_X \text{ where } \top_X(x) = \top \text{ for all } x \in X;$
- (J2) $\mathcal{J}(f) \leq f$ for all $f \in L^{X}$;
- (J3) $\mathcal{J}(\bigwedge_{i\in\Gamma}f_i) = \bigwedge_{i\in\Gamma}\mathcal{J}(f_i)$ for all $\{f_i\}_{i\in\Gamma}\subseteq L^X$; (J4) $\mathcal{J}(\alpha\to f) = \alpha\to\mathcal{J}(f)$.

The pair (X, \mathcal{J}) is called an L-lower approximation space. An L-lower approximation space is called topological if:

Mathematics 2019, 7, 85 3 of 15

(T) $\mathcal{J}(\mathcal{J}(f)) = \mathcal{J}(f)$ for all $f \in L^X$.

Definition 5 ([10]). A mapping $\mathcal{H}: L^X \to L^X$ is an L-upper approximation operator on X if:

- (H1) $\mathcal{H}(\perp_X) = \perp_X \text{ where } \perp_X(x) = \perp \text{ for all } x \in X;$
- (H2) $\mathcal{H}(f) \geq f$ for all $f \in L^X$;
- (H3) $\mathcal{H}(\bigvee_{i\in\Gamma}f_i)=\bigvee_{i\in\Gamma}\mathcal{H}(f_i)$ for all $\{f_i\}_{i\in\Gamma}\subseteq L^X$;
- (H4) $\mathcal{H}(\alpha \odot f) = \alpha \odot \mathcal{H}(f)$.

The pair (X, \mathcal{H}) is called an L-upper approximation space. An L-upper approximation space is called topological if:

(T) $\mathcal{H}(\mathcal{H}(f)) = \mathcal{H}(f)$ for all $f \in L^X$.

Definition 6 ([10–12]). Let τ be a subset of L^X . τ is an Alexandrov L-topology on X if:

- (O1) \perp_X , $\top_X \in \tau$;
- (O2) If $A_i \in \tau$ for all $i \in I$, then $\bigwedge_{i \in I} A_i, \bigvee_{i \in I} \in \tau$;
- (O3) If $A \in \tau$ and $\alpha \in L$, then $\alpha \odot A$, $\alpha \to A \in \tau$.

Definition 7 ([10]). A mapping $\mathcal{T}: L^X \to L$ is an Alexandrov L-fuzzy topology on X if:

- (AT1) $\mathcal{T}(\perp_X) = \mathcal{T}(\top_X) = \top$;
- (AT2) $\mathcal{T}(\bigwedge_i f_i) \geq \bigwedge_i \mathcal{T}(f_i)$ and $\mathcal{T}(\bigvee_i f_i) \geq \bigwedge_i \mathcal{T}(f_i)$ for all $\{f_i\}_{i \in \Gamma} \subseteq L^X$;
- (AT3) $\mathcal{T}(\alpha \odot f) \geq \mathcal{T}(f)$ and $\mathcal{T}(\alpha \to f) \geq \mathcal{T}(f)$ for all $\alpha \in L$ and $f \in L^X$.

The pair (X, \mathcal{T}) is called an L-fuzzy topological space.

Theorem 1 ([10–12]). (1) Let $\mathcal{J}: L^X \to L^X$ be an L-lower approximation operator. Define $\mathcal{H}_{\mathcal{J}}: L^X \to L^X$ by $\mathcal{H}_{\mathcal{J}}(f) = \mathcal{J}^*(f^*)$. Then, $\mathcal{H}_{\mathcal{J}}$ is an L-upper approximation operator.

- (2) Let $\mathcal{H}: L^X \to L^X$ be an L-upper approximation operator. Define $\mathcal{J}_{\mathcal{H}}: L^X \to L^X$ by $\mathcal{J}_{\mathcal{H}}(f) = \mathcal{H}^*(f^*)$. Then, $\mathcal{J}_{\mathcal{H}}$ is an L-lower approximation operator.
- (3) Let $\mathcal{T}: L^X \to L$ be an Alexandrov L-fuzzy topology. Define $\mathcal{T}^*: L^X \to L$ by $\mathcal{T}^*(f) = \mathcal{T}(f^*)$. Then, \mathcal{T}^* is an Alexandrov L-fuzzy topology.
- (4) Let $\tau \subset L^X$ be an Alexandrov L-topology. Define $\tau^* = \{f \mid f^* \in \tau\}$. Then, τ^* is an Alexandrov L-topology.

Theorem 2 ([10]). Let (X, \mathcal{H}) be an L-upper approximation space. Define a mapping $\mathcal{T}_{\mathcal{H}}: L^X \to L$ by $\mathcal{T}_{\mathcal{H}}(f) = S(\mathcal{H}(f), f)$. Then, $\mathcal{T}_{\mathcal{H}}$ is an Alexandrov L-fuzzy topology on X with $\mathcal{T}^*_{\mathcal{H}}(f) = S(f, \mathcal{J}_{\mathcal{H}}(f))$ where $\mathcal{J}_{\mathcal{H}}(f) = \mathcal{H}^*(f^*)$ for all $f \in L^X$.

Theorem 3 ([10]). Let (X, \mathcal{J}) be an L-lower approximation space. Define a map $\mathcal{T}_{\mathcal{J}}: L^X \to L$ by $\mathcal{T}_{\mathcal{J}}(f) = S(f, \mathcal{J}(f))$. Then, $\mathcal{T}_{\mathcal{J}}$ is an Alexandrov L-fuzzy topology on X.

3. The Relationships between Alexandrov L-Fuzzy Pre-Proximities and Alexandrov **Topological Structures**

Definition 8. A mapping $\delta: L^X \times L^X \to L$ is an Alexandrov L-fuzzy pre-proximity on X if:

- (P1) $\delta(\bot_X, \top_X) = \delta(\top_X, \bot_X) = \bot;$
- (P2) $\delta(f,g) \ge \bigvee_{x \in X} (f(x) \odot g(x));$
- (P3) If $f \leq f_1$ and $g \leq g_1$, then $\delta(f,g) \leq \delta(f_1,g_1)$; (P4) For all $f_i, f, g_i, g \in L^X$, $\delta(\bigvee_{i \in \Gamma} f_i, g) \leq \bigvee_{i \in \Gamma} \delta(f_i, g)$ and $\delta(f, \bigvee_{i \in \Gamma} g_i) \leq \bigvee_{i \in \Gamma} \delta(f, g_i)$; (P5) For all $\alpha \in L$ and $f, g \in L^X$, $\delta(\alpha \odot f, g) = \alpha \odot \delta(f, g) = \delta(f, \alpha \odot g)$.

An Alexandrov L-fuzzy pre-proximity δ on X is called an Alexandrov L-fuzzy quasi-proximity if:

Mathematics 2019, 7, 85 4 of 15

(P)
$$\delta(f,g) \ge \bigwedge_{h \in I^X} \delta(f,h) \oplus \delta(h^*,g)$$
.

Let δ_1 and δ_2 be two Alexandrov L-fuzzy pre-proximities on X. δ_1 is finer than δ_2 if $\delta_2(f,g) \geq \delta_1(f,g)$ for all $f,g \in L^X$.

Example 1. Let $R \in L^{X \times X}$. Define a mapping $\delta : L^X \times L^X \to L$ by $\delta(f,g) = \bigvee_{x,y \in X} (R(x,y) \odot f(x) \odot g(y))$.

(1) Assume that R is reflexive. Then:

$$\begin{array}{ll} (\text{P1}) & \delta(\bot_X, \top_X) = \delta(\top_X, \bot_X) = \bot; \\ (\text{P2}) & \delta(f,g) \geq \bigvee_{x \in X} (R(x,x) \odot f(x) \odot g(x)) = \bigvee_{x \in X} (f(x) \odot g(x)); \\ (\text{P3}) & \text{If } f \leq f_1 \text{ and } g \leq g_1, \text{ then } \delta(f,g) \leq \delta(f_1,g_1); \\ (\text{P4}) & \text{For all } f_i, f, g_i, g \in L^X, \delta(\bigvee_{i \in \Gamma} f_i, g) = \bigvee_{i \in \Gamma} \delta(f_i,g) \text{ and } \delta(f,\bigvee_{i \in \Gamma} g_i) = \bigvee_{i \in \Gamma} \delta(f,g_i). \\ (\text{P5}) & \text{For all } \alpha \in L \text{ and } f, g \in L^X, \end{array}$$

$$\delta(\alpha \odot f, g) = \bigvee_{x,y \in X} (R(x,y) \odot (\alpha \odot f(x) \odot g(y)))$$
$$= \alpha \odot \bigvee_{x,y \in X} (R(x,y) \odot (f(x) \odot g(y)))$$
$$= \alpha \odot \delta(f,g).$$

Hence, δ is an Alexandrov L-fuzzy pre-proximity on X.

(2) Assume that R is reflexive and transitive. Then, $\bigvee_{y \in X} (R(y,z) \odot R(x,y)) = R(x,z)$. For all $f,g,h \in L^X$, we have by Lemma 1 (17) that:

$$\begin{split} \delta(f,h) \oplus \delta(h^*,g) &= \Big(\bigvee_{x,y \in X} (R(x,y) \odot f(x) \odot h(y))\Big) \oplus \Big(\bigvee_{y,z \in X} (R(y,z) \odot h^*(y) \odot g(z))\Big) \\ &\geq \Big(\bigvee_{x,y,z \in X} (R(x,y) \odot f(x) \odot h(y)) \oplus (R(y,z) \odot h^*(y) \odot g(z))\Big) \\ &\geq \Big(\bigvee_{x,y,z \in X} (R(x,y) \odot R(y,z) \odot f(x) \odot g(z)) \odot (h(y) \oplus h^*(y))\Big) \\ &= \bigvee_{x,y,z \in X} (R(x,y) \odot R(y,z) \odot f(x) \odot g(z)) \\ &= \bigvee_{x,z \in X} (R(x,z) \odot f(x) \odot g(z)) = \delta(f,g). \end{split}$$

Thus, $\delta(f,g) \leq \bigwedge_{h \in L^X} (\delta(f,h) \oplus \delta(h^*,g)).$

Let
$$h(y) = \left(\bigvee_{x \in X} (R(x,y) \odot f(x)) \right)^*$$
. Then:

$$\begin{split} & \bigwedge_{h \in L^X} (\delta(f,h) \oplus \delta(h^*,g)) \\ &= \bigwedge_{h \in L^X} ((\bigvee_{x,y \in X} (R(x,y) \odot f(x) \odot h(y))) \oplus (\bigvee_{y,z \in X} (R(y,z) \odot h^*(y) \odot g(z)))) \\ & \leq (\bigvee_{y \in X} (h^*(y) \odot h(y))) \oplus (\bigvee_{y,z \in X} (R(y,z) \odot \bigvee_{x \in X} (R(x,y) \odot f(x) \odot g(z)))) \\ &= \bot \oplus (\bigvee_{x,z \in X} (\bigvee_{y \in X} (R(y,z) \odot R(x,y)) \odot f(x) \odot g(z))) \\ &= \bigvee_{x,z \in X} (R(x,z) \odot f(x) \odot g(z)) = \delta(f,g). \end{split}$$

Hence, δ is an Alexandrov L-fuzzy quasi-proximity on X.

Mathematics 2019, 7, 85 5 of 15

By taking $R(x,y) = \top_{X \times X}$, let:

$$\delta_1(f,g) = \bigvee_{x,y \in X} (\top_{X \times X}(x,y) \odot f(x) \odot g(y)) = \bigvee_{x,y \in X} (f(x) \odot g(y)).$$

Define $\triangle_{X\times X}\in L^{X\times X}$ by:

$$\triangle_{X\times X}(x,y) = \begin{cases} \top & if \ x = y, \\ \bot & otherwise. \end{cases}$$

By taking $R(x,y) = \triangle_{X\times X}$, let:

$$\delta_2(f,g) = \bigvee_{x,y \in X} (\triangle_{X \times X}(x,y) \odot (f(x) \odot g(y))) = \bigvee_{x \in X} (f(x) \odot g(x)).$$

Then, $\delta_2(f,g) \leq \delta(f,g) \leq \delta_1(f,g)$ for all $f,g \in L^X$.

Lemma 3. Let δ be an Alexandrov L-fuzzy pre-proximity on X. For all $\alpha \in L$ and $f,g,f_i,g_i \in L^X$, the following hold.

- (1) $\delta(\bigvee_{i\in\Gamma} f_i, g) = \bigvee_{i\in\Gamma} \delta(f_i, g)$ and $\delta(f, \bigvee_{i\in\Gamma} g_i) = \bigvee_{i\in\Gamma} \delta(f, g_i)$. (2) $\delta(\alpha \odot f, \alpha \to g) \le \delta(f, g)$ and $\delta(\alpha \to f, \alpha \odot g) \le \delta(f, g)$.

Proof. (1) It follows from (P3) and (P4).

(2) It follows from
$$\delta(\alpha \odot f, \alpha \to g) = \alpha \odot \delta(f, \alpha \to g) = \delta(f, \alpha \odot (\alpha \to g)) \le \delta(f, g)$$
.

Theorem 4. Let δ be an Alexandrov L-fuzzy pre-proximity on X. Define a mapping $\delta^s: L^X \times L^X \to L$ by $\delta^{s}(f,g) = \delta(g,f)$. Then, the following hold.

- (1) δ^s is an Alexandrov L-fuzzy pre-proximity on X.
- (2) $\delta(f,g) = \bigvee_{x,y \in X} (\delta(\top_x, \top_y) \odot (f(x) \odot g(y)).$
- (3) There exists a reflexive L-fuzzy relation $R_{\delta} \in L^{X \times X}$ such that:

$$\delta(f,g) = \bigvee_{x,y \in X} (R_{\delta}(x,y) \odot (f(x) \odot g(y))).$$

(4) There exists a reflexive L-fuzzy relation $R_{\delta^s} = R_{\delta}^{-1} \in L^{X \times X}$ such that:

$$\delta^s(f,g) = \bigvee_{x,y \in X} (R_\delta^{-1}(x,y) \odot (f(x) \odot g(y))).$$

Proof. (1) It is easily proven.

(2) Since $f = \bigvee_{x \in X} (f(x) \odot \top_x)$ and $g = \bigvee_{y \in X} (g(y) \odot \top_y)$, we have:

$$\begin{split} \delta(f,g) &= \delta(\bigvee_{x \in X} (f(x) \odot \top_x), \bigvee_{y \in X} (g(y) \odot \top_y)) \\ &= \bigvee_{x \in X} \Big(f(x) \odot \delta(\top_x, \bigvee_{y \in X} (g(y) \odot \top_y)) \Big) \\ &= \bigvee_{x,y \in X} \Big(f(x) \odot g(y) \odot \delta(\top_x, \top_y) \Big). \end{split}$$

Mathematics 2019, 7, 85 6 of 15

(3) Let $R_{\delta}(x, y) = \delta(\top_x, \top_y)$ in the equation in (2). By (P2),

$$R_{\delta}(x,x) = \delta(\top_x, \top_x) \ge \bigvee_{x \in X} (\top_x(x) \odot \top_x(x)) = \top.$$

Moreover, $\delta(f,g) = \bigvee_{x,y \in X} (R_{\delta}(x,y) \odot f(x) \odot g(y)).$

(4) Since $R_{\delta^s}(x,y) = \delta^s(\top_x, \top_y) = \delta(\top_y, \top_x) = R_{\delta}^{-1}(x,y)$ by (2), we have:

$$\begin{split} \delta^s(f,g) &= \delta(g,f) \\ &= \bigvee_{x,y \in X} \left(R_\delta(x,y) \odot (g(x) \odot f(y)) \right) \\ &= \bigvee_{x,y \in X} \left(R_\delta^{-1}(y,x) \odot (f(y) \odot g(x)) \right). \end{split}$$

Theorem 5. Let δ be an Alexandrov L-fuzzy pre-proximity on X. Define a mapping $\mathcal{T}_{\delta}: L^X \to L$ by $\mathcal{T}_{\delta}(f) = \delta^*(f, f^*)$. Then, \mathcal{T}_{δ} is an Alexandrov L-fuzzy topology on X such that $\mathcal{T}_{\delta}^* = \mathcal{T}_{\delta^s}$. If $\delta_1 \leq \delta_2$, then $\mathcal{T}_{\delta_1} \geq \mathcal{T}_{\delta_2}$.

Proof. (AT1) $\mathcal{T}_{\delta}(\top_X) = \delta^*(\top_X, \top_X^*) = \top$ and $\mathcal{T}_{\delta}(\bot_X) = \delta^*(\bot_X, \bot_X^*) = \top$. (AT2) By (P3) and (P4), we have:

$$\mathcal{T}_{\delta}(\bigwedge_{i} f_{i}) = \delta^{*}(\bigwedge_{i} f_{i}, \bigvee_{i} f_{i}^{*}) \geq \delta^{*}(f_{i}, \bigvee_{i} f_{i}^{*}) = \bigwedge_{i} \delta^{*}(f_{i}, f_{i}^{*}) = \bigwedge_{i} \mathcal{T}_{\delta}(f_{i})$$

and:

$$\mathcal{T}_{\delta}(\bigvee_{i} f_{i}) = \delta^{*}(\bigvee_{i} f_{i}, \bigwedge_{i} f_{i}^{*}) \geq \delta^{*}(\bigvee_{i} f_{i}, f_{i}^{*}) = \bigwedge_{i} \delta^{*}(f_{i}, f_{i}^{*}) = \bigwedge_{i} \mathcal{T}_{\delta}(f_{i}).$$

(AT3) By Lemma 3 (2), we have:

$$\mathcal{T}_{\delta}(\alpha \odot f) = \delta^{*}(\alpha \odot f, \alpha \to f^{*}) = \alpha \to \delta^{*}(f, \alpha \to f^{*}) = \delta^{*}(f, \alpha \odot (\alpha \to f^{*}))$$

$$\geq \delta^{*}(f, f^{*}) = \mathcal{T}_{\delta}(f), \mathcal{T}_{\delta}(\alpha \to f) = \delta^{*}(\alpha \to f, \alpha \odot f^{*}) \geq \delta^{*}(f, f^{*}) = \mathcal{T}_{\delta}(f).$$

Then, \mathcal{T}_{δ} is an Alexandrov *L*-fuzzy topology on *X*. Moreover,

$$\mathcal{T}_{\delta}^*(f) = \mathcal{T}_{\delta}(f^*) = \delta^*(f^*, f) = \delta^{s*}(f, f^*) = \mathcal{T}_{\delta^s}(f).$$

Example 2. Let $R \in L^{X \times X}$ be a reflexive fuzzy relation. Define a mapping $\delta : L^X \times L^X \to L$ by $\delta(f,g) = \bigvee_{x,y \in X} (R(x,y) \odot f(x) \odot g(y))$. Then:

$$\mathcal{T}_{\delta}(f) = \delta^{*}(f, f^{*}) = \left(\bigvee_{x, y \in X} (R(x, y) \odot f(x) \odot f^{*}(y))\right)^{*}$$
$$= \bigwedge_{x, y \in X} (R(x, y) \to (f(x) \to f(y)).$$

If
$$R = \top_{X \times X}$$
, then $\mathcal{T}_{\delta}(f) = \bigwedge_{x,y \in X} (f(x) \to f(y))$.
If $R = \triangle_{X \times X}$, then $\mathcal{T}_{\delta}(f) = \bigwedge_{x \in X} (f(x) \to f(x)) = \top$.

Mathematics 2019, 7, 85 7 of 15

From the following two theorems, we obtain the *L*-lower approximation operator and the *L*-lower approximation operator induced by an Alexandrov L-fuzzy pre-proximity.

Theorem 6. Let δ be an Alexandrov L-fuzzy pre-proximity on X. Define a mapping $\mathcal{H}_{\delta}: L^X \to L^X$ by $\mathcal{H}_{\delta}(f)(x) = \delta(f, T_x)$. Then, the following hold.

- (1) \mathcal{H}_{δ} is an L-upper approximation operator on X.
- (2) $\delta(\top_x, \top_x) = \top$.
- (3) There exists a reflexive L-fuzzy relation $R_{\delta} \in L^{X \times X}$ such that:

$$\mathcal{H}_{\delta}(f)(x) = \bigvee_{y \in X} (R_{\delta}(y, x) \odot f(y)).$$

Moreover, there exists a reflexive L-fuzzy relation $R_{\delta^s} = R_{\delta}^{-1} \in L^{X \times X}$ such that:

$$\mathcal{H}_{\delta^{\mathrm{s}}}(f)(x) = \bigvee_{y \in X} (R_{\delta}(x, y) \odot f(y)).$$

- (4) $\bigvee_{y \in X} (\delta(\top_x, \top_y) \odot \delta(\top_y, \top_z)) \leq \delta(\top_x, \top_z)$ if and only if \mathcal{H}_{δ} is a topological L-upper approximation operator on X.
- (5) $\dot{\mathcal{T}}_{\mathcal{H}_{\delta}}(f) = \delta^*(f, f^*) = \mathcal{T}_{\delta}(f) \text{ for all } f \in L^X.$ (6) $\delta(f, g) = \bigvee_{x \in X} (\mathcal{H}_{\delta}(f)(x) \odot g(x)) \text{ for all } f, g \in L^X.$

Proof. (1) (H1) Since $\delta(\bot_X, \top_x) \leq \delta(\bot_X, \top_X) = \bot$, we have $\mathcal{H}_{\delta}(\bot_X)(x) = \delta(\bot_X, \top_x) = \bot$.

- (H2) $\mathcal{H}_{\delta}(f)(x) = \delta(f, \top_x) \ge \bigvee_{x \in X} (f(x) \odot \top_x(x)) = f(x).$
- (H3) From Lemma 3, we obtain:

$$\mathcal{H}_{\delta}(\bigvee_{i \in \Gamma} f_i)(x) = \delta(\bigvee_{i \in \Gamma} f_i, \top_x) = \bigvee_{i \in \Gamma} \delta(f_i, \top_x)$$
$$= \bigvee_{i \in \Gamma} \mathcal{H}_{\delta}(f_i)(x).$$

- (H4) By (P4), $\mathcal{H}_{\delta}(\alpha \odot f)(x) = \delta(\alpha \odot f, \top_x) = \alpha \odot \delta(f, \top_x) = \alpha \odot \mathcal{H}_{\delta}(f)$. Hence, \mathcal{H}_{δ} is an L-upper approximation operator on X.
 - (2) $\delta(\top_x, \top_x) \ge \bigvee_{x \in X} (\top_x(x) \odot \top_x(x)) = \top$.
 - (3) We obtain $\mathcal{H}_{\delta}(f)(x) = \delta(f, \top_x) = \delta(\bigvee_{y \in X} (f(y) \odot \top_y), \top_x) = \bigvee_{y \in X} (f(y) \odot \delta(\top_y, \top_x)).$ Put $R_{\delta}(x,y) = \delta(\top_x, \top_y)$. By (2), R_{δ} is reflexive. Then, $\mathcal{H}_{\delta}(f)(x) = \bigvee_{y \in X} (f(y) \odot R_{\delta}(y,x))$. Moreover, $R_{\delta^s}(x,y) = \delta^s(\top_x, \top_y) = \delta(\top_y, \top_x) = R_{\delta}(y,x) = R_{\delta}^{-1}(x,y)$ such that:

$$\begin{split} \mathcal{H}_{\delta^s}(f)(x) &= \bigvee_{y \in X} (f(y) \odot \delta^{s*}(\top_y, \top_x)) \\ &= \bigvee_{y \in X} (f(y) \odot \delta(\top_x, \top_y)) = \bigvee_{y \in X} (f(y) \odot R_\delta(x, y)). \end{split}$$

Mathematics 2019, 7, 85 8 of 15

(4) Since $\mathcal{H}_{\delta}(f) = \bigvee_{y \in X} (\mathcal{H}_{\delta}(f)(y) \odot \top_{y})$, we have:

$$\begin{split} \mathcal{H}_{\delta}(\mathcal{H}_{\delta}(f))(x) &= \delta(\mathcal{H}_{\delta}(f), \top_{x}) = \delta(\bigvee_{y \in X} (\mathcal{H}_{\delta}(f)(y) \odot \top_{y}), \top_{x}) \\ &= \bigvee_{y \in X} (\mathcal{H}_{\delta}(f)(y) \odot \delta(\top_{y}, \top_{x})) = \bigvee_{y \in X} (\delta(f, \top_{y}) \odot \delta(\top_{y}, \top_{x})) \\ &= \bigvee_{y \in X} (\delta(\bigvee_{z \in X} (f(z) \odot \top_{z}), \top_{y}) \odot \delta(\top_{y}, \top_{x})) \\ &= \bigvee_{y \in X} (\bigvee_{z \in X} (f(z) \odot \delta(\top_{z}, \top_{y})) \odot \delta(\top_{y}, \top_{x})) \\ &= \bigvee_{y \in X} (f(z) \odot \bigvee_{y \in X} (\delta(\top_{z}, \top_{y}) \odot \delta(\top_{y}, \top_{x}))) \\ &\leq \bigvee_{z \in X} (f(z) \odot \delta(\top_{z}, \top_{x})) = \delta(\bigvee_{z \in X} (f(z) \odot \top_{z}), \top_{x}) \\ &= \delta(f, \top_{x}) = \mathcal{H}_{\delta}(f)(x). \end{split}$$

Conversely, since $\mathcal{H}_{\delta}(\mathcal{H}_{\delta}(\top_z))(x) \leq \mathcal{H}_{\delta}(\top_z)(x)$, for $\mathcal{H}_{\delta}(\top_z) = \bigvee_{y \in X} (\mathcal{H}_{\delta}(\top_z)(y) \odot \top_y)$, we have:

$$\begin{split} \mathcal{H}_{\delta}(\mathcal{H}_{\delta}(\top_{z}))(x) &= \mathcal{H}_{\delta}(\bigvee_{y \in X} (\mathcal{H}_{\delta}(\top_{z})(y) \odot \top_{y}))(x) \\ &= \bigvee_{y \in X} (\mathcal{H}_{\delta}(\top_{z})(y) \odot \mathcal{H}_{\delta}(\top_{y})(x)) \leq \mathcal{H}_{\delta}(\top_{z})(x). \end{split}$$

(5) For all $f \in L^X$, we have:

$$\mathcal{T}_{\mathcal{H}_{\delta}}(f) = S(\mathcal{H}_{\delta}(f), f) = \bigwedge_{x \in X} (\mathcal{H}_{\delta}(f)(x) \to f(x))$$

$$= \bigwedge_{x \in X} (\delta(f, \top_{x}) \to f(x)) = \bigwedge_{x \in X} (f^{*}(x) \to \delta^{*}(f, \top_{x}))$$

$$= \bigwedge_{x \in X} \delta^{*}(f, f^{*}(x) \odot \top_{x}) = \delta^{*}(f, \bigvee_{x \in X} (f^{*}(x) \odot \top_{x}))$$

$$= \delta^{*}(f, f^{*}) = \mathcal{T}_{\delta}(f).$$

(6)

$$\begin{split} \bigvee_{x \in X} (\mathcal{H}_{\delta}(f)(x) \odot g(x)) &= \bigvee_{x \in X} (\delta(f, \top_{x}) \odot g(x)) \\ &= \delta(f, \bigvee_{x \in X} (\top_{x} \odot g(x))) = \delta(f, g). \end{split}$$

Theorem 7. Let δ be an Alexandrov L-fuzzy pre-proximity on X. Define a mapping $\mathcal{J}_{\delta}: L^X \to L^X$ by $\mathcal{J}_{\delta}(f)(x) = \delta^*(\top_x, f^*)$. Then, the following hold.

- (1) \mathcal{J}_{δ} is an L-lower approximation operator on X.
- (2) There exists a reflexive L-fuzzy relation $R_{\delta} \in L^{X \times X}$ such that:

$$\mathcal{J}_{\delta}(f)(x) = \bigwedge_{y \in X} (R_{\delta}(x, y) \to f(y)).$$

Mathematics 2019, 7, 85 9 of 15

Moreover, there exists a reflexive L-fuzzy relation $R_{\delta^s} = R_{\delta}^{-1} \in L^{X \times X}$ such that:

$$\mathcal{J}_{\delta^s}(f)(x) = \bigwedge_{y \in X} (R_{\delta}(y, x) \to f(y)).$$

- (3) For all $f \in L^X$, $\bigvee_{y \in X} (\delta(\top_x, \top_y) \odot \delta(\top_y, \top_z)) \leq \delta(\top_x, \top_z)$ if and only if $\mathcal{J}_{\delta}(\mathcal{J}_{\delta}(f)) \geq \mathcal{J}_{\delta}(f)$. (4) $\mathcal{T}_{\mathcal{J}_{\delta}}(f) = \delta^*(f, f^*) = \mathcal{T}_{\delta}(f)$ for all $f \in L^X$. (5) $\mathcal{J}_{\delta^s}(f) = \delta(f^*, \top_x^*) = \mathcal{H}_{\delta}^*(f^*)$ for all $f \in L^X$ and $\mathcal{T}_{\mathcal{J}_{\delta}}^* = \mathcal{T}_{\delta^s} = \mathcal{T}_{\mathcal{J}_{\delta^s}}$. (6) $\delta(f, g) = S(f, \mathcal{J}_{\delta}(g))$ for all $f, g \in L^X$.

Proof. (1) (J1) Since $\delta^*(\top_x, \top_X^*) \ge \delta^*(\top_X, \bot_X) = \top$, we have $\mathcal{J}_{\delta}(\top_X)(x) = \delta^*(\top_x, \top_X^*) = \top$.

(J2) Note that:

$$\mathcal{J}_{\delta}(f)(x) = \delta^*(\top_x, f^*) \le (\bigvee_{x \in X} (\top_x(x) \odot f^*(x)))^* = f(x).$$

(J3) By Lemma 3, we obtain:

$$\mathcal{J}_{\delta}(\bigwedge_{i\in\Gamma}f_i)(x) = \delta^*(\top_x, \bigvee_{i\in\Gamma}f_i^*) = \bigwedge_{i\in\Gamma}\delta^*(\top_x, f_i^*) = \bigwedge_{i\in\Gamma}\mathcal{J}_{\delta}(f_i)(x).$$

(J4) By (P4), we have:

$$\mathcal{J}_{\delta}(\alpha \to f)(x) = \delta^*(\top_x, \alpha \odot f^*) = \alpha \to \delta^*(\top_x, f^*) = \alpha \to \mathcal{J}_{\delta}(f).$$

(2) For $f^* = \bigvee_{y \in X} (f^*(y) \odot \top_y)$, we have:

$$\begin{split} \mathcal{J}_{\delta}(f)(x) &= \delta^*(\top_x, f^*) = \delta^*(\top_x, \bigvee_{y \in X} (f^*(y) \odot \top_y)) \\ &= \bigwedge_{y \in X} (f^*(y) \to \delta^*(\top_x, \top_y)) = \bigwedge_{y \in X} (\delta(\top_x, \top_y) \to f(y)). \end{split}$$

Let $R_{\delta}(x,y) = \delta(\top_x, \top_y)$. By (2), R_{δ} is reflexive and $\mathcal{J}_{\delta}(f)(x) = \bigwedge_{y \in X} (R_{\delta}(x,y) \to f(y))$. Moreover, $R_{\delta^s}(x,y) = \delta^{s*}(\top_x, \top_y) = \delta^*(\top_y, \top_x) = R_{\delta}(y,x) = R_{\delta}^{-1}(x,y)$ such that:

$$\mathcal{J}_{\delta^{s}}(f)(x) = \bigwedge_{y \in X} (\delta^{s*}(\top_{x}, \top_{y}) \to f(y)) = \bigwedge_{y \in X} (\delta^{*}(\top_{y}, \top_{x}) \to f(y)) = \bigwedge_{y \in X} (R_{\delta}(y, x) \to f(y)).$$

(3) Since $\mathcal{J}_{\delta}(f) = \bigwedge_{y \in X} (\mathcal{J}_{\delta}^{*}(f)(y) \to \top_{y}^{*})$, we have:

$$\mathcal{J}_{\delta}(\mathcal{J}_{\delta}(f))(x) = \delta^{*}(\top_{x}, \mathcal{J}_{\delta}^{*}(f))
= \delta^{*}(\top_{x}, \bigvee_{y \in X} (\mathcal{J}_{\delta}^{*}(f)(y) \odot \top_{y})) = \bigwedge_{y \in X} (\mathcal{J}_{\delta}^{*}(f)(y) \to \delta^{*}(\top_{x}, \top_{y}))
= \bigwedge_{y \in X} (\delta(\top_{y}, \bigvee_{z \in X} (f^{*}(z) \odot \top_{z})) \to \delta^{*}(\top_{x}, \top_{y}))
= \bigwedge_{y \in X} (\bigvee_{z \in X} (f^{*}(z) \odot \delta(\top_{y}, \top_{z})) \to \delta^{*}(\top_{x}, \top_{y}))
= \left(\bigvee_{z \in X} (f^{*}(z) \odot \bigvee_{y \in X} (\delta(\top_{y}, \top_{z}) \odot \delta(\top_{x}, \top_{y})))\right)^{*}
\geq \left(\bigvee_{y \in X} (f^{*}(z) \odot \delta(\top_{x}, \top_{z}))\right)^{*}
= \left(\delta(\top_{x}, \bigvee_{y \in X} (f^{*}(z) \odot \top_{z}))\right)^{*} = \delta^{*}(\top_{x}, f^{*}) = \mathcal{J}_{\delta}(f)(x).$$

10 of 15 Mathematics 2019, 7, 85

Conversely, since $\mathcal{J}_{\delta}(\top_{y}^{*})(x) = \delta^{*}(\top_{x}, \top_{y})$ and $\mathcal{J}_{\delta}(\top_{z}^{*}) = \bigwedge_{y \in X} (\mathcal{J}_{\delta}^{*}(\top_{z}^{*})(y) \rightarrow \top_{y}^{*})$, we have that $\mathcal{J}_{\delta}(\mathcal{J}_{\delta}(\top_{z}^{*}))(x) = \bigwedge_{y \in X}(\mathcal{J}_{\delta}^{*}(\top_{z}^{*})(y) \to \mathcal{J}_{\delta}(\top_{y}^{*})(x) \geq \mathcal{J}_{\delta}(\top_{z}^{*})(x)$ if and only if $\bigvee_{y \in X} (\mathcal{J}^*_{\delta}(\top^*_z)(y) \odot \mathcal{J}^*_{\delta}(\top^*_y)(x) \leq \mathcal{J}^*_{\delta}(\top^*_z)(x) \text{ if and only if } \bigvee_{y \in X} (\delta(\top_y, \top_z) \odot \delta(\top_x, \top_y) \leq \mathcal{J}^*_{\delta}(\top^*_z)(x) = 0$ $\delta(\top_x, \top_z)$.

(4) For $f = \bigvee_{x \in X} (f(x) \odot \top_x)$, we have:

$$\mathcal{T}_{\mathcal{J}_{\delta}}(f) = S(f, \mathcal{J}_{\delta}(f)) = \bigwedge_{x \in X} (f(x) \to \delta^{*}(\top_{x}, f^{*})) = \bigwedge_{x \in X} \delta^{*}(f(x) \odot \top_{x}, f^{*}))$$
$$= \delta^{*}(\bigvee_{x \in X} (f(x) \odot \top_{x}), f^{*}) = \delta^{*}(f, f^{*}) = \mathcal{T}_{\delta}(f).$$

(5) For all $f \in L^X$, we have:

$$\mathcal{J}_{\delta^{s}}(f)(x) = \delta^{s*}(\top_{x}, f^{*}) = \delta^{*}(f^{*}, \top_{x}) = \mathcal{H}_{\delta}^{*}(f^{*}),$$

$$\mathcal{T}_{\mathcal{T}_{s}}^{*}(f) = \mathcal{T}_{\mathcal{J}_{s}}(f^{*}) = \delta^{*}(f^{*}, f) = \mathcal{T}_{\delta^{s}}(f) = \mathcal{T}_{\mathcal{J}_{ss}}(f).$$

(6) For all $f, g \in L^X$, we have:

$$S(f, \mathcal{J}_{\delta}(g)) = \bigwedge_{x \in X} (f(x) \to \mathcal{J}_{\delta}(g))) = \bigwedge_{x \in X} (f(x) \to \delta^*(\top_x, g^*))$$
$$= \delta^*(\bigvee_{x \in X} (f(x) \odot \top_x), g^*) = \delta^*(f, g^*).$$

From the following theorem, we obtain the Alexandrov L-fuzzy pre-proximity induced by an L-upper approximation operator.

Theorem 8. Let (X, \mathcal{H}) be an L-upper approximation space. Define a mapping $\delta_{\mathcal{H}}: L^X \times L^X \to L$ by:

$$\delta_{\mathcal{H}}(f,g) = \bigvee_{y \in X} (\mathcal{H}(f)(y) \odot g(y)).$$

Then, the following hold.

(1) $\delta_{\mathcal{H}}$ is an Alexandrov L-fuzzy proximity such that:

$$\delta_{\mathcal{H}}(f,g) = \bigvee_{x,y \in X} (\mathcal{H}(\top_y)(x) \odot (f(y) \odot g(x))).$$

- (2) $\delta_{\mathcal{H}}(f,g) \leq \bigwedge_{h \in L^X} (\delta_{\mathcal{H}}(f,h) \oplus \delta_{\mathcal{H}}(h^*,g))$. Moreover, the equality holds if \mathcal{H} is topological.
- (3) If \mathcal{H} is topological, then $\delta_{\mathcal{H}}$ is an Alexandrov L-fuzzy quasi-proximity on X.
- (4) $\mathcal{H} = \mathcal{H}_{\delta_{\mathcal{H}}}$.
- (5) $\mathcal{T}_{\mathcal{H}}(f) = \delta_{\mathcal{H}}(f, f) = \mathcal{T}_{\delta_{\mathcal{H}}}(f)$ for all $f \in L^X$. (6) If δ is an Alexandrov L-fuzzy pre-proximity on X, then $\delta_{\mathcal{H}_{\delta}}(f, g) = \delta(f, g)$ for all $f, g \in L^X$.

(1) (P1) Since $\mathcal{H}(\bot_X) = \bot_X$ and $\mathcal{H}(\top_X) = \top_X$, we have:

$$\delta_{\mathcal{H}}(\top_X, \bot_X) = \bigvee_{y \in X} (\mathcal{H}(\top_X)(y) \odot \bot_X(y)) = \bot,$$

$$\delta_{\mathcal{H}}(\bot_X, \top_X) = \bigvee_{y \in X} (\mathcal{H}(\bot_X)(y) \odot \top_X(y)) = \top.$$

(P2) Since $\mathcal{H}(f) \geq f$, we have:

$$\delta_{\mathcal{H}}(f,g) = \bigvee_{y \in X} (\mathcal{H}(f)(y) \odot g(y)) \ge \bigvee_{x \in X} (f(x) \odot g(x)).$$

(P3) If $f \leq f_1$ and $g \leq g_1$, then $\mathcal{H}(f) \leq \mathcal{H}(f_1)$. Thus,

$$\delta_{\mathcal{H}}(f,g) = \bigvee_{y \in X} (\mathcal{H}(f)(y) \odot g(y)) \leq \bigvee_{y \in X} (\mathcal{H}(f_1)(y) \odot g_1(y)) = \delta_{\mathcal{H}}(f_1,g_1).$$

(P4) Note that:

$$\delta_{\mathcal{H}}(\bigvee_{i \in \Gamma} f_i, g) = \bigvee_{x \in X} (\mathcal{H}(\bigvee_{i \in \Gamma} f_i)(x) \odot g(x))$$

$$= \bigvee_{x \in X} (\bigvee_{i \in \Gamma} \mathcal{H}(f_i)(x) \odot g(x)) = \bigvee_{i \in \Gamma} \delta_{\mathcal{H}}(f_i, g),$$

$$\delta_{\mathcal{H}}(f, \bigvee_{i \in \Gamma} g_i) = \bigvee_{x \in X} (f(x) \odot \bigvee_{i \in \Gamma} g_i(x)) = \bigvee_{i \in \Gamma} \delta_{\mathcal{H}}(f, g_i)$$

and:

$$\delta_{\mathcal{H}}(\alpha \odot f, g) = \bigvee_{x \in X} (\mathcal{H}(\alpha \odot f)(x) \odot g(x))$$
$$= \bigvee_{x \in X} (\alpha \odot \mathcal{H}(f)(x) \odot g(x)) = \alpha \odot \delta_{\mathcal{H}}(f, g).$$

Hence, $\delta_{\mathcal{H}}$ is an Alexandrov *L*-fuzzy pre-proximity. For $f = \bigvee (f(y) \odot \top_y)$, we have:

$$\begin{split} \delta_{\mathcal{H}}(f,g) &= \bigvee_{x \in X} (\mathcal{H}(f)(x) \odot g(x)) = \bigvee_{x \in X} (\mathcal{H}(\bigvee (f(y) \odot \top_y))(x) \odot g(x)) \\ &= \bigvee_{x \in X} (\bigvee_{y \in X} (f(y) \odot \mathcal{H}(\top_y)(x)) \odot g(x)) \\ &= \bigvee_{x,y \in X} (\mathcal{H}(\top_y)(x) \odot (f(y) \odot g(x))). \end{split}$$

(2) For each $f, g, h \in L^X$, we have:

$$\delta_{\mathcal{H}}(f,h) \oplus \delta_{\mathcal{H}}(h^{*},g)$$

$$= \left(\bigvee_{x \in X} (\mathcal{H}(f)(x) \odot h(x))\right) \oplus \left(\bigvee_{x \in X} (\mathcal{H}(h^{*})(x) \odot g(x))\right)$$

$$\geq \bigvee_{x \in X} ((\mathcal{H}(f)(x) \odot h(x)) \oplus (\mathcal{H}(h^{*})(x) \odot g(x)))$$

$$\geq \bigvee_{x \in X} ((\mathcal{H}(f)(x) \odot f(x)) \odot (h(x) \oplus \mathcal{H}(h^{*})(x))) \quad \text{by Lemma 1 (17)}$$

$$= \bigvee_{x \in X} ((\mathcal{H}(f)(x) \odot f(x)) \odot (h^{*}(x) \to \mathcal{H}(h^{*})(x)))$$

$$= \delta_{\mathcal{H}}(f,g).$$

Hence, $\delta_{\mathcal{H}}(f,g) \leq \bigwedge_{h \in L^X} (\delta_{\mathcal{H}}(f,h) \oplus \delta_{\mathcal{H}}(h^*,g)).$

Mathematics 2019, 7, 85 12 of 15

If \mathcal{H} is topological, then:

$$\begin{split} & \bigwedge_{h \in L^X} (\delta_{\mathcal{H}}(f,h) \oplus \delta_{\mathcal{H}}(h^*,g)) \\ &= \bigwedge_{h \in L^X} ((\bigvee_{x \in X} (\mathcal{H}(f(x)) \odot h(x))) \oplus (\bigvee_{x \in X} (\mathcal{H}(h^*)(x) \odot g(x)))) \\ & (\text{put } h^* = \mathcal{H}(f),) \\ & \leq (\bigvee_{x \in X} (\mathcal{H}(f(x)) \odot \mathcal{H}^*(f(x))) \oplus (\bigvee_{x \in X} (\mathcal{H}(\mathcal{H}(f))(x) \odot g(x)))) \\ &= (\bigvee_{x \in X} (\mathcal{H}(\mathcal{H}(f))(x) \odot g(x)))) = \delta_{\mathcal{H}}(f,g). \end{split}$$

- (3) It follows by (2).
- (4) For all $f \in L^X$, we have:

$$\mathcal{H}_{\delta_{\mathcal{H}}}(f) = \delta_{\mathcal{H}}(f, \top_{x}) = \bigvee_{y \in X} (\mathcal{H}(f)(y) \odot \top_{x}(y)) = \mathcal{H}(f)(x).$$

(5) For all $f \in L^X$, we have:

$$\mathcal{T}_{\delta_{\mathcal{H}}}(f) = \delta_{\mathcal{H}}^*(f, f^*) = \left(\bigvee_{x \in X} (\mathcal{H}(f)(x) \odot f^*(x))\right)^* = \mathcal{T}_{\mathcal{H}}(f).$$

(6) For all $f, g \in L^X$, we have:

$$\delta_{\mathcal{H}_{\delta}}(f,g) = \bigvee_{y \in X} (\mathcal{H}_{\delta}(f)(y) \odot g(y)) = \bigvee_{y \in X} (\delta(f, \top_{y}) \odot g(y))$$
$$= \delta(f, \bigvee_{y \in X} (\top_{y} \odot g(y))) = \delta(f,g).$$

By the above theorem, we obtain the Alexandrov L-fuzzy pre-proximity induced by an L-lower approximation operator in a sense $\mathcal{H}_{\mathcal{J}}(f) = \mathcal{J}^*(f^*)$ for all $f \in L^X$.

Corollary 1. Let (X, \mathcal{J}) be an L-lower approximation space. Define a mapping $\delta_{\mathcal{J}}: L^X \times L^X \to L$ by:

$$\delta_{\mathcal{J}}(f,g) = \bigvee_{y \in X} (\mathcal{J}^*(f^*)(y) \odot g(y)).$$

Then, the following hold.

(1) $\delta_{\mathcal{J}}$ is an Alexandrov L-fuzzy proximity such that:

$$\delta_{\mathcal{J}}(f,g) = \bigvee_{x,y \in X} (\mathcal{J}^*(\top_y^*)(x) \odot (f(y) \odot g(x))).$$

- (2) $\delta_{\mathcal{J}}(f,g) \leq \bigwedge_{h \in L^X} (\delta_{\mathcal{J}}(f,h) \oplus \delta_{\mathcal{J}}(h^*,g))$. Moreover, the equality holds if \mathcal{J} is topological.
- (3) If \mathcal{J} is topological, then $\delta_{\mathcal{J}}$ is an Alexandrov L-fuzzy quasi-proximity on X.

- (4) $\mathcal{J} = \mathcal{J}_{\delta_{\mathcal{J}}}$. (5) $\mathcal{T}_{\mathcal{J}}(f) = \delta_{\mathcal{J}}(f, f) = \mathcal{T}_{\delta_{\mathcal{J}}}(f)$ for all $f \in L^{X}$. (6) If δ is an Alexandrov L-fuzzy pre-proximity on X, then $\delta_{\mathcal{J}_{\delta}}(f, g) = \delta(f, g)$ for all $f, g \in L^{X}$.

Example 3. Let $([0,1], \odot, \rightarrow, *, 0, 1)$ be a complete residuated lattice [4,8–10] where:

$$x \odot y = \max\{0, x + y - 1\}, \ x \rightarrow y = \min\{1 - x + y, 1\}$$

$$x \oplus y = \min\{x + y, 1\}, \ x^* = 1 - x.$$

Let $X = \{x, y, z\}$. Consider the reflexive and transitive *L*-fuzzy relation $R \in [0, 1]^{X \times X}$ defined by:

$$\begin{pmatrix}
1 & 0.7 & 0.8 \\
0.5 & 1 & 0.4 \\
0.6 & 0.7 & 1
\end{pmatrix}$$

(1) By Example 1, we obtain two Alexandrov *L*-fuzzy quasi-proximities δ , δ^s : $[0,1]^X \times [0,1]^X \rightarrow [0,1]$ where:

$$\delta(f,g) = \bigvee_{x,y \in X} (R(x,y) \odot (f(x) \odot g(y)),$$

$$\delta^{s}(f,g) = \bigvee_{x,y \in X} (R(y,x) \odot (f(x) \odot g(y)).$$

(2) By Theorem 5, we obtain two Alexandrov *L*-fuzzy topologies \mathcal{T}_{δ} , \mathcal{T}_{δ^s} : $[0,1]^X \times [0,1]^X \rightarrow [0,1]$ where:

$$\mathcal{T}_{\delta}(f) = \delta^{*}(f, f^{*}) = \left(\bigvee_{x,y \in X} (R(x, y) \odot (f(x) \odot f^{*}(y))\right)^{*}$$
$$= \bigwedge_{x,y \in X} (R(x, y) \to (f(x) \odot f^{*}(y))^{*})$$
$$= \bigwedge_{x,y \in X} (R(x, y) \to (f(x) \to f(y)),$$

$$\mathcal{T}_{\delta^{\mathrm{s}}}(f) = \delta^{*}(f^{*}, f) = \bigwedge_{x,y \in X} (R(y, x) \to (f(x) \to f(y)).$$

(3) From Theorem 6 (4), since R is a reflexive and transitive L-fuzzy relation, we obtain two topological L-upper approximation operators \mathcal{H}_{δ} , $\mathcal{H}_{\delta^s}:[0,1]^X \to [0,1]^X$ where:

$$\mathcal{H}_{\delta}(f)(x) = \delta(f, T_x) = \bigvee_{y \in X} (R(y, x) \odot f(y)),$$

$$\mathcal{H}_{\delta^{\mathrm{s}}}(f)(x) = \bigvee_{y \in X} (R(x,y) \odot f(y)).$$

(4) By Theorem 6 (4), we obtain two topological *L*-lower approximation operators \mathcal{J}_{δ} , \mathcal{J}_{δ^s} : $[0,1]^X \rightarrow [0,1]^X$ where:

$$\mathcal{J}_{\delta}(f)(x) = \delta^*(\top_x, f^*) = \bigwedge_{y \in X} (R(x, y) \to f(y)),$$

$$\mathcal{J}_{\delta^s}(f)(x) = \delta^*(f^*, \top_x) = \bigwedge_{y \in X} (R(y, x) \to f(y)).$$

(5) From Theorem 8, since \mathcal{H}_{δ} and \mathcal{H}_{δ^s} are topological L-upper approximation operators, we obtain two Alexandrov L-fuzzy quasi-proximities $\delta_{\mathcal{H}_{\delta}}$, $\delta_{\mathcal{H}_{\delta^s}}$: $[0,1]^X \times [0,1]^X \to [0,1]$ where:

$$\begin{split} \delta_{\mathcal{H}_{\delta}}(f,g) &= \bigvee_{y \in X} (\mathcal{H}_{\delta}(f)(y) \odot (y)) = \bigvee_{x,y \in X} (R(x,y) \odot f(x)) \odot g(y)) = \delta(f,g). \\ \delta_{\mathcal{H}_{\delta^{s}}}(f,g) &= \bigvee_{x,y \in X} (R(y,x) \odot (f(x) \odot g(y))) = \delta^{s}(f,g). \end{split}$$

(6) By Corollary 1, since \mathcal{J}_{δ} and \mathcal{J}_{δ^s} are topological L-lower approximation operators, we obtain Alexandrov L-fuzzy quasi-proximities $\delta_{\mathcal{J}_{\delta}}$, $\delta_{\mathcal{J}_{\delta^s}}$: $[0,1]^X \times [0,1]^X \to [0,1]$ as:

$$\begin{split} \delta_{\mathcal{J}_{\delta}}(f,g) &= \bigvee_{y \in X} (\mathcal{J}_{\delta}^*(f^*)(y) \odot (y)) \\ &= \bigvee_{y \in X} ((\bigwedge_{x \in X} (R(y,x) \rightarrow f^*(x)))^* \odot g(y)) \\ &= \bigvee_{x,y \in X} (R(y,x) \odot f(x) \odot g(y)) = \delta^s(f,g). \\ \delta_{\mathcal{J}_{\delta^s}}(f,g) &= \bigvee_{y \in X} (\mathcal{J}_{\delta^s}^*(f^*)(y) \odot (y)) \\ &= \bigvee_{y \in X} ((\bigwedge_{x \in X} (R(x,y) \rightarrow f^*(x)))^* \odot g(y)) \\ &= \bigvee_{x,y \in X} (R(x,y) \odot f(x) \odot g(y)) = \delta(f,g). \end{split}$$

Author Contributions: All authors have contributed equally to this work.

Funding: This research was funded by Gangneung-Wonju National University.

Acknowledgments: The author would like to thank the editors and the anonymous reviewers for their valuable comments and suggestions which lead to a number of improvements of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [CrossRef]
- 2. Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991.
- 3. Ward, M.; Dilworth, R.P. Residuated lattices. Trans. Am. Math. Soc. 1939, 45, 335–354. [CrossRef]
- 4. Bělohlávek, R. Fuzzy Relational Systems; Kluwer Academic Publishers: New York, NY, USA, 2002.
- 5. Čimoka D.; Šostak, A.P. L-fuzzy syntopogenous structures, Part I: Fundamentals and application to L-fuzzy topologies, L-fuzzy proximities and L-fuzzy uniformities. *Fuzzy Sets Syst.* **2013**, 232, 74–97. [CrossRef]
- 6. El-Dardery, M.; Ramadan, A.A.; Kim, Y.C. *L*-fuzzy topogenous orders and *L*-fuzzy topologies. *J. Intell. Fuzzy Syst.* **2013**, *24*, 601–609.
- 7. Hájek, P. Metamathematices of Fuzzy Logic; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998.
- 8. Höhle, U.; Klement, E.P. *Non-Classical Logic and Their Applications to Fuzzy Subsets*; Kluwer Academic Publishers: Boston, MA, USA, 1995.
- 9. Höhle, U.; Rodabaugh, S.E. *Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory*; The Handbooks of Fuzzy Sets Series; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999.
- 10. Kim, Y.C. Join preserving maps, fuzzy preorders and Alexandrov fuzzy topologies. *Int. J. Pure Appl. Math.* **2014**, 92, 703–718. [CrossRef]
- 11. Kim, Y.C. Join-meet preserving maps and Alexandrov fuzzy topologies. *J. Intell. Fuzzy Syst.* **2015**, 28, 457–467.
- 12. Kim, Y.C. Join-meet preserving maps and fuzzy preorders. J. Intell. Fuzzy Syst. 2015, 28, 1089–1097.
- 13. Kim, Y.C.; Kim, Y.S. *L*-approximation spaces and *L*-fuzzy quasi-uniform spaces. *Inf. Sci.* **2009**, 179, 2028–2048. [CrossRef]
- 14. Kim, Y.C.; Min, K.C. L-fuzzy proximities and L-fuzzy topologies. Inf. Sci. 2005, 173, 93–113. [CrossRef]
- 15. Oh, J.M.; Kim, Y.C. The relations between Alexandrov *L*-fuzzy pre-uniformities and approximation operators. *J. Intell. Fuzzy Syst.* **2017**, 33, 215–228. [CrossRef]
- 16. Radzikowska, A.M.; Kerre, E.E. A comparative study of fuzzy rough sets. *Fuzzy Sets Syst.* **2002**, *126*, 137–155. [CrossRef]

17. Ramadan, A.A.; Elkordy, E.H.; Kim, Y.C. Perfect *L*-fuzzy topogenous spaces, *L*-fuzzy quasi-proximities and *L*-fuzzy quasi-uniform spaces. *J. Intell. Fuzzy Syst.* **2015**, *28*, 2591–2604. [CrossRef]

- 18. Ramadan, A.A.; Elkordy, E.H.; Kim, Y.C. Relationships between *L*-fuzzy quasi-uniform structures and *L*-fuzzy topologies. *J. Intell. Fuzzy Syst.* **2015**, *28*, 2319–2327. [CrossRef]
- 19. Rodabaugh, S.E.; Klement, E.P. *Topological and Algebraic Structures in Fuzzy Sets*; The Handbook of Recent Developments in the Mathematics of Fuzzy Sets; Kluwer Academic Publishers: Boston, MA, USA; London, UK, 2003.

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).