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Abstract: For a graph G, the resistance distance rG(x, y) is defined to be the effective resistance between
vertices x and y, the multiplicative degree-Kirchhoff index R∗(G) = ∑{x,y}⊂V(G) dG(x)dG(y)rG(x, y),
where dG(x) is the degree of vertex x, and V(G) denotes the vertex set of G. L. Feng et al. obtained
the element in Cact(n; t) with first-minimum multiplicative degree-Kirchhoff index. In this paper,
we first give some transformations on R∗(G), and then, by these transformations, the second-minimum
multiplicative degree-Kirchhoff index and the corresponding extremal graph are determined, respectively.
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1. Introduction

Throughout this paper, we consider finite, undirected simple graphs. Let G = (V(G), E(G)) be a
graph with vertex set V(G) (or V) and edge set E(G). For a graph G, the distance between vertices x
and y, denoted by dG(x, y), is the length of a shortest path between them.

For distance, Harold Wiener in 1947 defined a famous index W(G) [1], named Wiener index,
where W(G) = ∑x,y∈V dG(x, y). It is the earliest and one of the most thoroughly studied distance-based
graph invariants. Later, Dobrynin and Kochetova [2] gave a modified version of the Wiener index
D+(G) = ∑x,y∈V(dG(x) + dG(y))dG(x, y). It is called degree distance and has attracted much attention
(see [3–6]). For a graph G, the degree distance D+(G) is the essential part of the molecular topological
index MTI(G) introduced by Schultz [7], which is defined as MTI(G) = ∑x∈V d2

G(x) + D+(G), where
∑x∈V d2

G(x) is the well-known first Zagreb index [8]. Klein et al. [9] discovered the relation between
degree distance and Wiener index for a tree G on n vertices:

D+(G) = 4W(G)− n(n− 1).

The Gutman index of a connected graph G is defined as D∗(G) = ∑x,y∈V dG(x)dG(y)dG(x, y).
It was introduced in [10] and has been studied extensively (see, e.g., [11,12]). For a tree G on n vertices,
Gutman [10] showed that

D∗(G) = 4W(G)− (n− 1)(2n− 1).

In 1993, Klein and Randić [13] introduced a distance function named resistance distance on a
graph. They viewed a graph G as an electrical network such that each edge of G is assumed to be
a unit resistor, and the resistance distance between the vertices x and y of the graph G, denoted by
rG(x, y), is then defined to be the effective resistance between the vertices x and y in G. The Kirchhoff
index K f (G) of G is defined as
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K f (G) = ∑
x,y∈V

rG(x, y).

The index has been widely studied in mathematical, physical and chemical aspects; for details on
the Kirchhoff index, the readers are referred to [14–18]. In 1996, Gutman and Mohar [19] obtained the
result by which a relationship is established between the Kirchhoff index and the Laplacian spectrum:
K f (G) = n ∑n−1

i=1
1
µi

, where µ1 ≥ µ2 ≥ . . . ≥ µn = 0 are the eigenvalues of the Laplacian matrix of a
connected graph G with n vertices.

Similarly, if the distance is replaced by resistance distance in the expression for the degree distance
and Gutman index, respectively, then one arrives at the following indices

R+(G) = ∑
x,y∈V

(dG(x) + dG(y))rG(x, y),

R∗(G) = ∑
x,y∈V

dG(x)dG(y)rG(x, y).

R+(G) and R∗(G) are called the additive degree-Kirchhoff index and multiplicative degree-
Kirchhoff index, respectively, and were introduced by Gutman et al. [20] and Chen et al. [21],
respectively. The indices have been well studied in both mathematical and chemical literature. In [22]
some properties of R+(G) are determined and the extremal graph of cacti with minimum R+-value
characterized. Bianchi et al. [23] studied some upper and lower bounds for G+(G) whose expressions
do not depend on the resistance distances. Feng et al. [24] characterized n-vertex unicyclic graphs
having maximum, second maximum, minimum, and second minimum multiplicative degree-Kirchhoff
index. Palacios [25] studied some interplay of the three Kirchhoff indices and found lower and upper
bounds for the additive degree-Kirchhoff index. Yang and Klein [26] derived a formula for R∗(G) of
subdivisions and triangulations of graphs. To simplify the calculation of R∗(G), the present authors [27]
also obtained a formula for R∗(G) with respect to the subgraph of G. For more work on the topological
indices, we refer the reader to [13,21,22,28–31].

In this paper, we study the multiplicative degree-Kirchhoff index of cacti. To state our results,
we introduce some notation and terminology. For graph-theoretical terms that are not defined here,
we refer to Bollobás’ book [32]. Let Pn, Cn and Sn be the path, the cycle and the star on n vertices,
respectively. We denote by G ∼= H if graph G is isomorphic to graph H. Let NG(x) = {y|yx ∈ E}.
Denote by dG(x) = |NG(x)| the degree of the vertex x of G. If E0 ⊂ E, we denote by G − E0

the subgraph of G obtained by deleting the edges in E0. If E1 is the subset of the edge set of the
complement of G, G + E1 denotes the graph obtained from G by adding the edges in E1. Similarly,
if W ⊂ V(G), we denote by G−W the subgraph of G obtained by deleting the vertices of W and the
edges incident with them and G[W] the subgraph of G induced by W. If E = {xy} and W = {x},
we write G− xy and G− x instead of G− {xy} and G− {x}, respectively.

A graph G is called a cactus if each block of G is either an edge or a cycle. Denote by Cact(n; t) the
set of cacti possessing n vertices and t cycles. Let G ∈ Cact(n; t), t ≥ 2, a cycle C = v1v2 · · · vkv1 of G is
said to be an end cycle if all vertices v1, · · · , vk−1 are of degree two, and the degree of vertex vk is greater
than two. The vertex vk ∈ V(C) is called the anchor of C. Let G0(n; t) be the graph shown in Figure 1.
In this paper, we first give some transformations on R∗(G), and then, by these transformations,
we determine the first-minimum and second-minimum multiplicative degree-Kirchhoff index in
Cact(n; t) and characterize the corresponding extremal graphs, respectively.
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Figure 1. The graph G0(n; t).

Now, we give some lemmas that are used in the proof of our main results.

Lemma 1. Ref. [13] Let u be a cut vertex of a connected graph G and x and y be vertices occurring in different
components which arise upon deletion of u, then rG(x, y) = rG(x, u) + rG(u, y).

Lemma 2. Ref. [27] Let G1 and G2 be connected graphs with disjoint vertex sets, with m1 and m2 edges,
respectively. Let u1 ∈ V(G1), u2 ∈ V(G2). Constructing the graph G by identifying the vertices u1 and u2,
and denote the so obtained vertex by u. Then,

R∗(G) = R∗(G1) + R∗(G2) + 2m2 ∑
x∈V(G1)

dG1(x)rG1(u, x) + 2m1 ∑
y∈V(G2)

dG2(y)rG2(u, y).

For completeness, we also give the proof in this paper.

Proof. Let V1 = V(G1) − u, V2 = V(G2) − u. Note that ∀x ∈ Vi, dG(x) = dGi (x) for i = 1, 2, and
dG(u) = dG1(u) + dG2(u). By the definition of R∗(G) and Lemma 1, we have

R∗(G) =
1
2 ∑

x,y∈V1

dG(x)dG(y)rG(x, y) +
1
2 ∑

x,y∈V2

dG(x)dG(y)rG(x, y) + ∑
x∈V1

dG(x)dG(u)rG(x, u) +

∑
y∈V2

dG(y)dG(u)rG(u, y) + ∑
x∈V1,y∈V2

dG(x)dG(y)rG(x, y)

= [R∗(G1)− ∑
x∈V1

dG1(x)dG1(u)rG1(x, u)] + [R∗(G2)− ∑
y∈V2

dG2(y)dG2(u)rG2(u, y)] +

∑
x∈V1

dG1(x)dG(u)rG(x, u) + ∑
y∈V2

dG2(y)dG(u)rG(u, y) +

∑
x∈V1,y∈V2

dG1(x)dG2(y)[rG1(x, u) + rG2(u, y)]
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Because dG(u) = dG1(u) + dG2(u) and rG(x, u) = rG1(x, u) for x ∈ V1, rG(u, y) = rG2(u, y) for
y ∈ V2, we have

R∗(G) = [R∗(G1) + dG2(u) ∑
x∈V1

dG1(x)rG1(x, u)] + [R∗(G2) + dG1(u) ∑
y∈V2

dG2(y)rG2(u, y)] +

∑
y∈V2

∑
x∈V1

dG1(x)dG2(y)rG1(x, u) + ∑
x∈V1

∑
y∈V2

dG1(x)dG2(y)rG2(u, y)

= [R∗(G1) + dG2(u) ∑
x∈V1

dG1(x)rG1(x, u)] + [R∗(G2) + dG1(u) ∑
y∈V2

dG2(y)rG2(u, y)] +

∑
y∈V2

dG2(y) · ∑
x∈V1

dG1(x)rG1(x, u) + ∑
x∈V1

dG1(x) · ∑
y∈V2

dG2(y)rG2(u, y)

= [R∗(G1) + dG2(u) ∑
x∈V1

dG1(x)rG1(x, u)] + [R∗(G2) + dG1(u) ∑
y∈V2

dG2(y)rG2(u, y)] +

[2m2 − dG2(u)] ∑
x∈V1

dG1(x)rG1(x, u) + [2m1 − dG1(u)] ∑
y∈V2

dG2(y)rG2(u, y)

= R∗(G1) + R∗(G2) + 2m2 ∑
x∈V(G1)

dG1(x)rG1(u, x) + 2m1 ∑
y∈V(G2)

dG2(y)rG2(u, y),

since rGi (u, u) = 0 for i = 1, 2.

Lemma 3. Ref. [27] Let G ∈ Un, then R∗(G) ≥ R∗(G0(n; 1)), where Un is the class of unicyclic graphs.
The equality holds if and only if T ∼= G0(n; 1).

2. Transformations

In this section, we give some transformations that decrease R∗(G).

Transformation 1. Let u1u2 be a cut-edge of G, but not an pendent edge, G1, G2 be the connected components
of G − u1u2, where u1 ∈ V(G1), u2 ∈ V(G2). Constructing the graph G′ from G by deleting u1u2 and
identifying the vertices u1, u2, denote the so obtained vertex by u, adding an pendent edge uv (as shown in
Figure 2).

G 'G

1
G

1
G

2
G

2
G

1
u

2
u

u

v

Figure 2. The graphs G and G′ in Transformation 1.

Lemma 4. Let G, G′ be the graphs described in Transformation 1, then R∗(G) > R∗(G′).

Proof. Let |V(G1)| = n1, |V(G2)| = n2 and |E(G1)| = m1, |E(G2)| = m2, where m1, m2 ≥ 1. Let
H be the graph obtained by attaching to the vertex u1 of G1 the pendent vertex u2, then |V(H)| =
n1 + 1, |E(H)| = m1 + 1. By Lemma 2, we have

R∗(G) = R∗(H) + R∗(G2) + 2m2 ∑
x∈V(H)

dH(x)rH(u2, x) + 2(m1 + 1) ∑
y∈V(G2)

dG2(y)rG2(u2, y),

R∗(G′) = R∗(H) + R∗(G2) + 2m2 ∑
x∈V(H)

dH(x)rH(u, x) + 2(m1 + 1) ∑
y∈V(G2)

dG2(y)rG2(u, y).
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Note that rG2(u2, y) = rG2(u, y), then

R∗(G)− R∗(G′) = 2m2[ ∑
x∈V(H)

dH(x)rH(u2, x)− ∑
x∈V(H)

dH(x)rH(u, x)]

= 2m2
{

∑
x∈V(G1)

dH(x)[rH(u1, x) + 1]− [ ∑
x∈V(G1)

dH(x)rH(u, x) + 1]
}

= 2m2[2(m1 + 1)− 1− 1] = 4m1m2 > 0,

so R∗(G) > R∗(G′).

Let Gn be the class of connected graphs on n vertices. By Transformation 1 and Lemma 4, we have
the following result.

Corollary 1. Let G0 be a graph with the smallest multiplicative degree-Kirchhoff index in Gn, then all cut-edges
are pendent edges.

Transformation 2. For G ∈ Cact(n; t), let Ck be a cycle with k(≥ 4) vertices, contained in G. Let there be a
unique vertex u ∈ Ch which is adjacent to a vertex in V(G)−V(C). Assuming that uv, vw ∈ E(C), construct
a new graph G∗ = G− vw + uw (as shown in Figure 3).

k
C

1k
C

 H H

u

u

v

G *G

Figure 3. The graphs G and G∗ in Transformation 2.

For u ∈ V(Ck), by direct calculation, we have

R∗(Ck) =
k3 − k

3
(1)

∑
y∈V(Ck)

rCk (u, y) =
k2 − 1

6
(2)

Lemma 5. Let G, G∗ be the graphs described in Transformation 2, then R∗(G) > R∗(G∗).

Proof. Let S be the graph obtained by attaching to the vertex u of Ck−1 the pendent vertex v.
By Lemma 1, we have

R∗(G) = R∗(H) + R∗(Ck) + 2k ∑
x∈V(H)

dH(x)rH(u, x) + 2|E(H)| ∑
y∈V(Ck)

dCk (y)rCk (u, y),

R∗(G∗) = R∗(H) + R∗(S) + 2k ∑
x∈V(H)

dH(x)rH(u, x) + 2|E(H)| ∑
y∈V(S)

dS(y)rS(u, y).

Further by Equations (1) and (2), then

R∗(G)− R∗(G∗) = [R∗(Ck)− R∗(S)] + 2|E(H)|[ ∑
y∈V(Ck)

dCk (y)rCk (u, y)− ∑
y∈V(S)

dS(y)rS(u, y)]

= [
k3 − k

3
− (

(k− 1)(k2 + 2)
3

+ 2k− 1)] + 2|E(H)| · 2k− 4
3

≥ k2 − 5k + 3
3

+
4k− 8

3
=

k2 − k− 5
3

> 0,

since k ≥ 4, |E(H)| ≥ 1.
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Transformation 3. Let G ∈ Cact(n; t), t ≥ 2, be a cactus without cut edges. Let C be an end cycle of G and u
be its anchor. Let v be a vertex of C different from u. The graphs G1 and G2 are constructed by adding r pendent
edges to the vertices u and v of G respectively (as shown in Figure 4).

u u uv vv1
v

2
v

1
v

2
v

r
v

r
v

 !
G 1

G
2
G

C C C

Figure 4. The graphs G, G1 and G3 in Transformation 3.

Lemma 6. Let G, G1, G2 be the graphs described in Transformation 3, then R∗(G2) > R∗(G1).

Proof. Let H = G[V(G) − V(C)], H1 = G[V(G1) \ (V(G) − u)] and H2 = G[V(G2) \ (V(G) − v)],
then H1

∼= H2 ∼= K1,r. By Lemma 2, we have

R∗(G1) = R∗(G) + R∗(K1,r) + 2r ∑
x∈V(G)

dG(x)rG(u, x) + 2|E(G)| ∑
y∈V(K1,r)

dK1,r (y)rK1,r (u, y),

R∗(G2) = R∗(G) + R∗(K1,r) + 2r ∑
x∈V(G)

dG(x)rG(v, x) + 2|E(G)| ∑
y∈V(K1,r)

dK1,r (y)rK1,r (v, y).

Note that rG(u, u) = rG(v, v) = 0, V(G) = V(H) ∪ {V(C)− u} ∪ {u} and rG(v, x) = rG(x, u) +
rG(v, u) for x ∈ V(H), then

R∗(G2)− R∗(G1) = 2r[ ∑
x∈V(G)

dG(x)rG(v, x)− ∑
x∈V(G)

dG(x)rG(u, x)]

= 2r{[ ∑
x∈V(H)

dG(x)(rG(x, u) + rG(v, u)) + ∑
x∈V(C)−u

dG(x)rG(v, x) + dG(u)rG(v, u)]

−[ ∑
x∈V(H)

dG(x)rG(u, x) + ∑
x∈V(C)−u

dG(x)rG(u, x)]}

Considering that dG(u) = dH(u) + dC(u) and ∑x∈V(C)−u dG(x)rG(u, x) =

∑x∈V(C)−u dG(x)rG(v, x) + dC(u)rG(v, u)], we obtain

R∗(G2)− R∗(G1) = 2r[ ∑
x∈V(H)

dG(x)rG(v, u) + dG(u)rG(v, u)] > 0.

This completes the proof.

Transformation 4. Let C = v1v2v3v1 be a cycle of the graph G, C is called a pendant triangle if dG(v1) =

dG(v2) = 2 and dG(v3) > 2. Suppose that G is a cactus graph and u, v ∈ V(G) are two vertices, such that
uxiyiu (i = 1, 2, . . . , s) and vpjqjv (j = 1, 2, . . . , t) are pendant triangles with the anchor u and v, respectively.
We form two new graphs A and B according to the following transformation.

A = G−∪s
i=1{uxi, uyi}+ ∪s

i=1{vxi, vyi},
B = G−∪t

i=1{vpi, vqi}+ ∪t
i=1{upi, uqi}.

Lemma 7. Let G, A, B be the graphs described in Transformation 4, then either R∗(G) > R∗(A) or R∗(G) >

R∗(B).
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Proof. Let M = {x1, y1, . . . , xs, ys}, N = {p1, q1, . . . , pt, qt} and H = V(G)−M− N− {u, v}. Because
of V(G) = M ∪ N ∪ H ∪ {u, v}, by Lemma 2, we have

R∗(G) = [ ∑
{x,y}⊂M

+ ∑
{x,y}⊂N

+ ∑
{x,y}⊂H

]dG(x)dG(y)rG(x, y) + ∑
x∈H,y∈M

dG(x)dG(y)rG(x, y) +

∑
x∈H,y∈N

dG(x)dG(y)rG(x, y) + ∑
x∈M,y∈N

dG(x)dG(y)rG(x, y) + dG(u)dG(v)rG(u, v)

+ ∑
x∈H

dG(x)dG(u)rG(x, u) + ∑
x∈H

dG(x)dG(v)rG(x, v) + ∑
x∈M

dG(x)dG(u)rG(x, u) +

∑
x∈M

dG(x)dG(v)rG(x, v) + ∑
x∈N

dG(x)dG(u)rG(x, u) + ∑
x∈N

dG(x)dG(v)rG(x, v).

and analogously

R∗(A) = [ ∑
{x,y}⊂M

+ ∑
{x,y}⊂N

+ ∑
{x,y}⊂H

]dA(x)dA(y)rA(x, y) + ∑
x∈H,y∈M

dA(x)dA(y)rA(x, y) +

∑
x∈H,y∈N

dA(x)dA(y)rA(x, y) + ∑
x∈M,y∈N

dA(x)dA(y)rA(x, y) + dA(u)dA(v)rA(u, v)

+ ∑
x∈H

dA(x)dA(u)rA(x, u) + ∑
x∈H

dA(x)dA(v)rA(x, v) + ∑
x∈M

dA(x)dA(u)rA(x, u) +

∑
x∈M

dG(x)dA(v)rA(x, v) + ∑
x∈N

dA(x)dA(u)rA(x, u) + ∑
x∈N

dA(x)dA(v)rA(x, v).

Note that dG(x) = dA(x) for x ∈ V(G)− {u, v} and rG(x, y) = rA(x, y) for x, y ∈ M or x, y ∈ N
or x, y ∈ H, then

a0 = [ ∑
{x,y}⊂M

+ ∑
{x,y}⊂N

+ ∑
{x,y}⊂H

]dG(x)dG(y)rG(x, y),

b0 = [ ∑
{x,y}⊂M

+ ∑
{x,y}⊂N

+ ∑
{x,y}⊂H

]dA(x)dA(y)rA(x, y),

a0 − b0 = 0

(3)

Considering that r(u, y) = 2
3 for y ∈ M and r(x, y) = r(x, u) + r(u, y), we get

a1 = ∑
x∈H,y∈M

dG(x)dG(y)rG(x, y) = ∑
x∈H,y∈M

dG(x)dG(y)[rG(x, u) + 2
3 ],

b1 = ∑
x∈H,y∈M

dA(x)dA(y)rA(x, y) = ∑
x∈H,y∈M

dG(x)dG(y)[rG(x, v) + 2
3 ],

a1 − b1 = ∑
x∈H,y∈M

dG(x)dG(y)[rG(x, u)− rG(x, v)]

(4)

and analogously,

a2 = ∑
x∈H,y∈N

dG(x)dG(y)rG(x, y) = ∑
x∈H,y∈N

dG(x)dG(y)[rG(x, v) + 2
3 ],

b2 = ∑
x∈H,y∈N

dA(x)dA(y)rA(x, y) = ∑
x∈H,y∈N

dG(x)dG(y)[rG(x, v) + 2
3 ],

a2 − b2 = 0

(5)

Because rG(x, y) = rG(x, u) + rG(u, v) + rG(v, y) = rG(u, v) + 4
3 for x ∈ M, y ∈ N, then

a3 = ∑
x∈M,y∈N

dG(x)dG(y)rG(x, y) = ∑
x∈M,y∈N

dG(x)dG(y)[rG(u, v) + 4
3 ],

b3 = ∑
x∈M,y∈N

dA(x)dA(y)rA(x, y) = 4
3 ∑

x∈M,y∈N
dG(x)dG(y),

a3 − b3 = ∑
x∈M,y∈N

dG(x)dG(y)rG(u, v)

(6)
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a4 = dG(u)dG(v)rG(u, v),

b4 = dA(u)dA(v)rA(u, v) = [dG(u)− 2s][dG(v) + 2s]rG(u, v),

a4 − b4 = 4s2rG(u, v) + 2sdG(v)rG(u, v)− 2sdG(u)rG(u, v)

(7)

a5 = ∑
x∈H

dG(x)dG(u)rG(x, u),

b5 = ∑
x∈H

dA(x)dA(u)rA(x, u) = ∑
x∈H

dG(x)[dG(u)− 2s]rG(x, u),

a5 − b5 = ∑
x∈H

2sdG(x)rG(x, u)

(8)

a6 = ∑
x∈H

dG(x)dG(v)rG(x, v),

b6 = ∑
x∈H

dA(x)dA(v)rA(x, v) = ∑
x∈H

dG(x)[dG(v) + 2s]rG(x, v),

a6 − b6 = − ∑
x∈H

2sdG(x)rG(x, v)

(9)

a7 = ∑
x∈M

dG(x)dG(u)rG(x, u) = 2
3 ∑

x∈M
dG(x)dG(u),

b7 = ∑
x∈M

dA(x)dA(u)rA(x, u) = ∑
x∈M

dG(x)[dG(u)− 2s][rG(u, v) + 2
3 ],

a7 − b7 = ∑
x∈M

[(2s− dG(u))dG(x)rG(u, v) + 4
3 sdG(x)]

(10)

Because rG(x, v) = rG(u, v) + 2
3 for x ∈ M. After the transformation, the degree of the vertex v

increases by 2s, and rA(x, v) = 2
3 for x ∈ M.

a8 = ∑
x∈M

dG(x)dG(v)rG(x, v) = ∑
x∈M

dG(x)dG(v)[rG(u, v) + 2
3 ],

b8 = ∑
x∈M

dG(x)dA(v)rA(x, v) = 2
3 ∑

x∈M
dG(x)[dG(v) + 2s],

a8 − b8 = ∑
x∈M

[dG(x)dG(v)rG(u, v)− 4
3 sdG(x)]

(11)

a9 = ∑
x∈N

dG(x)dG(u)rG(x, u) = ∑
x∈N

dG(x)dG(u)[rG(v, u) + 2
3 ],

b9 = ∑
x∈N

dA(x)dA(u)rA(x, u) = ∑
x∈N

dG(x)[dG(u)− 2s][rG(v, u) + 2
3 ],

a9 − b9 = ∑
x∈N

2sdG(x)[rG(v, u) + 2
3 ]

(12)

a10 = ∑
x∈N

dG(x)dG(v)rG(x, v) = 2
3 ∑

x∈N
dG(x)dG(v),

b10 = ∑
x∈N

dA(x)dA(v)rA(x, v) = 2
3 ∑

x∈N
dG(x)[dG(v) + 2s],

a10 − b10 = − 4
3 ∑

x∈N
sdG(x)

(13)

By Equations (3)–(13), we have

R∗(G)− R∗(A) = 4s ∑
x∈H

dG(x)[rG(x, u)− rG(x, v)] + 24strG(u, v) + 6srG(u, v)[dG(v)− dG(u)] +

12s2rG(u, v) + ∑
x∈H

2sdG(x)[rG(x, u)− rG(x, v)].
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Similarly, we have

R∗(G)− R∗(B) = 4t ∑
x∈H

dG(x)[rG(x, v)− rG(x, u)] + 24strG(u, v) + 6trG(u, v)[dG(u)− dG(v)] +

12t2rG(u, v) + 2t ∑
x∈H

dG(x)[rG(x, v)− rG(x, u)].

If R∗(G)− R∗(A) ≤ 0, then

4 ∑
x∈H

dG(x)[rG(x, u)− rG(x, v)] + 6rG(u, v)[dG(v)− dG(u)] + ∑
x∈H

2dG(x)[rG(x, u)− rG(x, v)]

≤ −(24trG(u, v) + 12srG(u, v)).

Further, we have

R∗(G)− R∗(B) ≥ t(24trG(u, v) + 12srG(u, v)) + 24strG(u, v) + 12t2rG(u, v) > 0.

This completes the proof.

Transformation 5. Let u be a vertex of G such that there are s pendent vertices u1, u2, . . . , us attached to u,
and v be another vertex of G such that there are t pendent vertices v1, v2, . . . , vt attached to v. Let

G3 = G− {uu1, uu2, . . . , uus}+ {vu1, vu2, . . . , vus},
G4 = G− {vv1, vv2, . . . , vvt}+ {uv1, uv2, . . . , uvt}.

Similar to the proof of Lemma 7, we can prove the following result.

Lemma 8. Let G, G3 and G4 be graphs as described in Transformation 5, then either R∗(G) > R∗(G3) or
R∗(G) > R∗(G4).

3. Main Results

In this section, we determine the elements in Cact(n; t) with first-minimum and second-minimum
multiplicative degree-Kirchhoff index by the transformations that we have obtained. Note that the
first-minimum multiplicative degree-Kirchhoff index has been obtained in [33]; for completeness,
we also give the following proof.

Theorem 1. Ref. [33] Let G ∈ Cact(n; t), then R∗(G) ≥ 16t2 − 8t + (n− 2t− 1)2 + (n− 2t− 1)(n−
2t− 2) + 34

3 t(n− 2t− 1). The equality holds if and only if G ∼= G0(n, t).

Proof. Let G̃ be the unique graph having the minimum multiplicative degree-Kirchhoff index in
Cact(n; t).

Case 1. If t = 1, Cact(n; t) is the class of unicyclic graphs. By Lemma 3, we know the results hold.
Case 2. If t = 2, Cact(n; t) is the class of bicyclic graphs. By Lemma 4, we conclude that G̃ contains

two cycles attached to a common vertex u, and all cut-edges are all pendent edges (if any). Further, by
Lemmas 8 and 6, all pendent edges (if any) are also attached to u. Finally, by Lemma 5, the two cycles
must be triangles, that is, G̃ ∼= G0(n, 2). This obtains the desirable results.

Case 3. If t ≥ 3, by Lemma 4, we conclude that all cut-edges are all pendent edges (if any) in G̃.
Further, by Lemmas 8 and 6, G̃ has at least two end cycles. Repeated by Lemmas 5–8, we arrive at the
conclusion G̃ ∼= G0(n, t)

By direct calculation, we have

R∗(G0(n; t)) = 16t2 − 8t + (n− 2t− 1)2 + (n− 2t− 1)(n− 2t− 2) +
34
3

t(n− 2t− 1).
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This completes the proof.

Theorem 2. Let G ∈ Cact(n; t) \ G0(n; t), then R∗(G) ≥ [16t2 + 34t−22
3 ] + [(n− 2t− 2)2 + (n− 2t−

2)(n− 2t− 3)] + (16t+14)(n−2t−2)
3 + 2(3t + 1)(n− 2t− 2). The equality holds if and only if G ∼= G0

3 .

Proof. By Lemmas 4–8 and Theorem 1, one can conclude that G, which has the second-minimum
multiplicative degree-Kirchhoff index in Cact(n; t) must be one of the graphs G0

1 , G0
2 , G0

3 , as shown in
Figure 5. By Lemma 2, we have

R∗(G0
1) = [16t2 − 8t] + [2 + 4(n− 2t− 2) + 7(n− 2t− 3) + (n− 2t− 2)(n− 2t− 3) +

(n− 2t− 3)(n− 2t− 4)] +
16
3

t(n− 2t− 1) + 6t(n− 2t + 1),

R∗(G0
2) = [16t2 +

34
3

t− 7] + [(n− 2t− 2)2 + (n− 2t− 2)(n− 2t− 3)] +
(16t + 14)(n− 2t− 2)

3
+2(3t + 1)(n− 2t− 2),

R∗(G0
3) = [16t2 +

34t− 22
3

] + [(n− 2t− 2)2 + (n− 2t− 2)(n− 2t− 3)] +
(16t + 14)(n− 2t− 2)

3
+2(3t + 1)(n− 2t− 2).

Then,

R∗(G0
1)− R∗(G0

3) =
4n + 4t + 5

3
,

R∗(G0
2)− R∗(G0

3) =
1
3

.

This completes the proof.   t ! 2 3n t" "

0

1
G

   1t " ! 2 2n t" "    1t " ! 2 2n t" "

0

2
G

0

3
G

Figure 5. The graphs G0
1 , G0

2 , G0
3 .

By Theorems 1 and 2, we have

Corollary 2. Among all graphs in Cact(n; t), G0(n; t) and G0
3 are the graphs with first-minimum and

second-minimum multiplicative degree-Kirchhoff index.

According to the above discussion, we find that the extremal cacti for the index R∗(G) are the same
as the extremal cacti for the Kirchhoff index, the multiplicative degree-Kirchhoff index, the Wiener
index and the other indices [22,29,34,35]. Based on the known results for these indices, we guess the
element of Cact(n; t) with maximum multiplicative degree-Kirchhoff index is isomorphic to the graph
Cn,t (as shown in Figure 6).
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k

Cn,t

t-k

Figure 6. The graphs Cn,t.

Conjecture 1. Let Cn,t be the graph depicted in Figure 6, where k = b t
2c. Then, Cn,t is the unique element of

Cact(n; t) having maximum multiplicative degree-Kirchhoff index.

In particular, for Cat(n; t), if t = 1; 0, Cat(n; 1) and Cat(n; 0) are the set of unicyclic graphs and
trees, respectively. For G ∈ Cat(n; 1), the graphs having maximum and minimum multiplicative
degree-Kirchhoff index are given in [13], that is

R∗(G0(n, 1)) ≤ R∗(G) ≤ R∗(Un
3 ).

where Un
3 consists of a cycle of size 3 to which a path with n− 3 vertices is attached. For G ∈ Cat(n; 0),

it is easy to get the result
R∗(Sn) ≤ R∗(G) ≤ R∗(Pn).

4. Conclusions

In this paper, we give some transformations on the multiplicative degree-Kirchhoff index.
As applications, the second-minimum multiplicative degree-Kirchhoff index on Cat(n; t) and the
corresponding extremal graph are determined. We guess Cn,t is the graph of Cat(n; t) with maximum
R∗(G) value. For solving the problem, our approach would need to be modified; it would be interesting
to continue studying the extremal graphs.
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