

Article The Extremal Cacti on Multiplicative Degree-Kirchhoff Index

Fangguo He¹ and Zhongxun Zhu^{2,*}

- ¹ College of Mathematics and Physics, Huanggang Normal University, Huanggang 438000, China; hfg0118@126.com
- ² College of Mathematics and Statistics, South Central University for Nationalities, Wuhan 430074, China
- * Correspondence: zzxun73@mail.scuec.edu.cn

Received: 22 November 2018; Accepted: 10 January 2019; Published: 15 January 2019

Abstract: For a graph *G*, the resistance distance $r_G(x, y)$ is defined to be the effective resistance between vertices *x* and *y*, the multiplicative degree-Kirchhoff index $R^*(G) = \sum_{\{x,y\} \subset V(G)} d_G(x) d_G(y) r_G(x, y)$, where $d_G(x)$ is the degree of vertex *x*, and V(G) denotes the vertex set of *G*. L. Feng et al. obtained the element in Cact(n;t) with first-minimum multiplicative degree-Kirchhoff index. In this paper, we first give some transformations on $R^*(G)$, and then, by these transformations, the second-minimum multiplicative degree-Kirchhoff index and the corresponding extremal graph are determined, respectively.

Keywords: resistance distance; multiplicative degree-Kirchhoff index; cactus

1. Introduction

Throughout this paper, we consider finite, undirected simple graphs. Let G = (V(G), E(G)) be a graph with vertex set V(G) (or V) and edge set E(G). For a graph G, the distance between vertices x and y, denoted by $d_G(x, y)$, is the length of a shortest path between them.

For distance, Harold Wiener in 1947 defined a famous index W(G) [1], named Wiener index, where $W(G) = \sum_{x,y \in V} d_G(x, y)$. It is the earliest and one of the most thoroughly studied distance-based graph invariants. Later, Dobrynin and Kochetova [2] gave a modified version of the Wiener index $D^+(G) = \sum_{x,y \in V} (d_G(x) + d_G(y)) d_G(x, y)$. It is called degree distance and has attracted much attention (see [3–6]). For a graph *G*, the degree distance $D^+(G)$ is the essential part of the molecular topological index MTI(G) introduced by Schultz [7], which is defined as $MTI(G) = \sum_{x \in V} d_G^2(x) + D^+(G)$, where $\sum_{x \in V} d_G^2(x)$ is the well-known first Zagreb index [8]. Klein et al. [9] discovered the relation between degree distance and Wiener index for a tree *G* on *n* vertices:

$$D^+(G) = 4W(G) - n(n-1).$$

The Gutman index of a connected graph *G* is defined as $D^*(G) = \sum_{x,y \in V} d_G(x)d_G(y)d_G(x,y)$. It was introduced in [10] and has been studied extensively (see, e.g., [11,12]). For a tree *G* on *n* vertices, Gutman [10] showed that

$$D^*(G) = 4W(G) - (n-1)(2n-1).$$

In 1993, Klein and Randić [13] introduced a distance function named resistance distance on a graph. They viewed a graph *G* as an electrical network such that each edge of *G* is assumed to be a unit resistor, and the resistance distance between the vertices *x* and *y* of the graph *G*, denoted by $r_G(x, y)$, is then defined to be the effective resistance between the vertices *x* and *y* in *G*. The Kirchhoff index Kf(G) of *G* is defined as

$$Kf(G) = \sum_{x,y \in V} r_G(x,y).$$

The index has been widely studied in mathematical, physical and chemical aspects; for details on the Kirchhoff index, the readers are referred to [14–18]. In 1996, Gutman and Mohar [19] obtained the result by which a relationship is established between the Kirchhoff index and the Laplacian spectrum: $Kf(G) = n \sum_{i=1}^{n-1} \frac{1}{\mu_i}$, where $\mu_1 \ge \mu_2 \ge ... \ge \mu_n = 0$ are the eigenvalues of the Laplacian matrix of a connected graph *G* with *n* vertices.

Similarly, if the distance is replaced by resistance distance in the expression for the degree distance and Gutman index, respectively, then one arrives at the following indices

$$R^{+}(G) = \sum_{x,y \in V} (d_G(x) + d_G(y)) r_G(x,y),$$

$$R^{*}(G) = \sum_{x,y \in V} d_G(x) d_G(y) r_G(x,y).$$

 $R^+(G)$ and $R^*(G)$ are called the additive degree-Kirchhoff index and multiplicative degree-Kirchhoff index, respectively, and were introduced by Gutman et al. [20] and Chen et al. [21], respectively. The indices have been well studied in both mathematical and chemical literature. In [22] some properties of $R^+(G)$ are determined and the extremal graph of cacti with minimum R^+ -value characterized. Bianchi et al. [23] studied some upper and lower bounds for $G^+(G)$ whose expressions do not depend on the resistance distances. Feng et al. [24] characterized *n*-vertex unicyclic graphs having maximum, second maximum, minimum, and second minimum multiplicative degree-Kirchhoff index. Palacios [25] studied some interplay of the three Kirchhoff indices and found lower and upper bounds for the additive degree-Kirchhoff index. Yang and Klein [26] derived a formula for $R^*(G)$ of subdivisions and triangulations of graphs. To simplify the calculation of $R^*(G)$, the present authors [27] also obtained a formula for $R^*(G)$ with respect to the subgraph of *G*. For more work on the topological indices, we refer the reader to [13,21,22,28–31].

In this paper, we study the multiplicative degree-Kirchhoff index of cacti. To state our results, we introduce some notation and terminology. For graph-theoretical terms that are not defined here, we refer to Bollobás' book [32]. Let P_n , C_n and S_n be the path, the cycle and the star on n vertices, respectively. We denote by $G \cong H$ if graph G is isomorphic to graph H. Let $N_G(x) = \{y | yx \in E\}$. Denote by $d_G(x) = |N_G(x)|$ the degree of the vertex x of G. If $E_0 \subset E$, we denote by $G - E_0$ the subgraph of G obtained by deleting the edges in E_0 . If E_1 is the subset of the edge set of the complement of G, $G + E_1$ denotes the graph of G obtained by deleting the vertices of W and the edges incident with them and G[W] the subgraph of G induced by W. If $E = \{xy\}$ and $W = \{x\}$, we write G - xy and G - x instead of $G - \{xy\}$ and $G - \{x\}$, respectively.

A graph *G* is called a cactus if each block of *G* is either an edge or a cycle. Denote by Cact(n;t) the set of cacti possessing *n* vertices and *t* cycles. Let $G \in Cact(n;t)$, $t \ge 2$, a cycle $C = v_1v_2 \cdots v_kv_1$ of *G* is said to be an end cycle if all vertices v_1, \cdots, v_{k-1} are of degree two, and the degree of vertex v_k is greater than two. The vertex $v_k \in V(C)$ is called the anchor of *C*. Let $G^0(n;t)$ be the graph shown in Figure 1. In this paper, we first give some transformations on $R^*(G)$, and then, by these transformations, we determine the first-minimum and second-minimum multiplicative degree-Kirchhoff index in Cact(n;t) and characterize the corresponding extremal graphs, respectively.

Figure 1. The graph $G^0(n; t)$.

Now, we give some lemmas that are used in the proof of our main results.

Lemma 1. *Ref.* [13] *Let u be a cut vertex of a connected graph G and x and y be vertices occurring in different components which arise upon deletion of u, then* $r_G(x, y) = r_G(x, u) + r_G(u, y)$.

Lemma 2. Ref. [27] Let G_1 and G_2 be connected graphs with disjoint vertex sets, with m_1 and m_2 edges, respectively. Let $u_1 \in V(G_1), u_2 \in V(G_2)$. Constructing the graph G by identifying the vertices u_1 and u_2 , and denote the so obtained vertex by u. Then,

$$R^{*}(G) = R^{*}(G_{1}) + R^{*}(G_{2}) + 2m_{2} \sum_{x \in V(G_{1})} d_{G_{1}}(x)r_{G_{1}}(u,x) + 2m_{1} \sum_{y \in V(G_{2})} d_{G_{2}}(y)r_{G_{2}}(u,y).$$

For completeness, we also give the proof in this paper.

Proof. Let $V_1 = V(G_1) - u$, $V_2 = V(G_2) - u$. Note that $\forall x \in V_i, d_G(x) = d_{G_i}(x)$ for i = 1, 2, and $d_G(u) = d_{G_1}(u) + d_{G_2}(u)$. By the definition of $R^*(G)$ and Lemma 1, we have

$$\begin{split} R^*(G) &= \frac{1}{2} \sum_{x,y \in V_1} d_G(x) d_G(y) r_G(x,y) + \frac{1}{2} \sum_{x,y \in V_2} d_G(x) d_G(y) r_G(x,y) + \sum_{x \in V_1} d_G(x) d_G(u) r_G(x,u) + \\ &\sum_{y \in V_2} d_G(y) d_G(u) r_G(u,y) + \sum_{x \in V_1, y \in V_2} d_G(x) d_G(y) r_G(x,y) \\ &= [R^*(G_1) - \sum_{x \in V_1} d_{G_1}(x) d_{G_1}(u) r_{G_1}(x,u)] + [R^*(G_2) - \sum_{y \in V_2} d_{G_2}(y) d_{G_2}(u) r_{G_2}(u,y)] + \\ &\sum_{x \in V_1} d_{G_1}(x) d_G(u) r_G(x,u) + \sum_{y \in V_2} d_{G_2}(y) d_G(u) r_G(u,y) + \\ &\sum_{x \in V_1, y \in V_2} d_{G_1}(x) d_{G_2}(y) [r_{G_1}(x,u) + r_{G_2}(u,y)] \end{split}$$

Because $d_G(u) = d_{G_1}(u) + d_{G_2}(u)$ and $r_G(x, u) = r_{G_1}(x, u)$ for $x \in V_1$, $r_G(u, y) = r_{G_2}(u, y)$ for $y \in V_2$, we have

$$\begin{split} R^*(G) &= \left[R^*(G_1) + d_{G_2}(u) \sum_{x \in V_1} d_{G_1}(x) r_{G_1}(x, u) \right] + \left[R^*(G_2) + d_{G_1}(u) \sum_{y \in V_2} d_{G_2}(y) r_{G_2}(u, y) \right] + \\ &\sum_{y \in V_2} \sum_{x \in V_1} d_{G_1}(x) d_{G_2}(y) r_{G_1}(x, u) + \sum_{x \in V_1} \sum_{y \in V_2} d_{G_1}(x) d_{G_2}(y) r_{G_2}(u, y) \\ &= \left[R^*(G_1) + d_{G_2}(u) \sum_{x \in V_1} d_{G_1}(x) r_{G_1}(x, u) \right] + \left[R^*(G_2) + d_{G_1}(u) \sum_{y \in V_2} d_{G_2}(y) r_{G_2}(u, y) \right] + \\ &\sum_{y \in V_2} d_{G_2}(y) \cdot \sum_{x \in V_1} d_{G_1}(x) r_{G_1}(x, u) + \sum_{x \in V_1} d_{G_1}(x) \cdot \sum_{y \in V_2} d_{G_2}(y) r_{G_2}(u, y) \\ &= \left[R^*(G_1) + d_{G_2}(u) \sum_{x \in V_1} d_{G_1}(x) r_{G_1}(x, u) \right] + \left[R^*(G_2) + d_{G_1}(u) \sum_{y \in V_2} d_{G_2}(y) r_{G_2}(u, y) \right] + \\ &\left[2m_2 - d_{G_2}(u) \right] \sum_{x \in V_1} d_{G_1}(x) r_{G_1}(x, u) + \left[2m_1 - d_{G_1}(u) \right] \sum_{y \in V_2} d_{G_2}(y) r_{G_2}(u, y) \\ &= R^*(G_1) + R^*(G_2) + 2m_2 \sum_{x \in V(G_1)} d_{G_1}(x) r_{G_1}(u, x) + 2m_1 \sum_{y \in V(G_2)} d_{G_2}(y) r_{G_2}(u, y), \end{split}$$

since $r_{G_i}(u, u) = 0$ for i = 1, 2. \Box

Lemma 3. Ref. [27] Let $G \in \mathcal{U}_n$, then $R^*(G) \ge R^*(G^0(n;1))$, where \mathcal{U}_n is the class of unicyclic graphs. The equality holds if and only if $T \cong G^0(n;1)$.

2. Transformations

In this section, we give some transformations that decrease $R^*(G)$.

Transformation 1. Let u_1u_2 be a cut-edge of G, but not an pendent edge, G_1 , G_2 be the connected components of $G - u_1u_2$, where $u_1 \in V(G_1)$, $u_2 \in V(G_2)$. Constructing the graph G' from G by deleting u_1u_2 and identifying the vertices u_1 , u_2 , denote the so obtained vertex by u, adding an pendent edge uv (as shown in Figure 2).

Figure 2. The graphs G and G' in Transformation 1.

Lemma 4. Let G, G' be the graphs described in Transformation 1, then $R^*(G) > R^*(G')$.

Proof. Let $|V(G_1)| = n_1$, $|V(G_2)| = n_2$ and $|E(G_1)| = m_1$, $|E(G_2)| = m_2$, where $m_1, m_2 \ge 1$. Let *H* be the graph obtained by attaching to the vertex u_1 of G_1 the pendent vertex u_2 , then $|V(H)| = n_1 + 1$, $|E(H)| = m_1 + 1$. By Lemma 2, we have

$$\begin{array}{lll} R^*(G) &=& R^*(H) + R^*(G_2) + 2m_2 \sum_{x \in V(H)} d_H(x) r_H(u_2, x) + 2(m_1 + 1) \sum_{y \in V(G_2)} d_{G_2}(y) r_{G_2}(u_2, y), \\ R^*(G') &=& R^*(H) + R^*(G_2) + 2m_2 \sum_{x \in V(H)} d_H(x) r_H(u, x) + 2(m_1 + 1) \sum_{y \in V(G_2)} d_{G_2}(y) r_{G_2}(u, y). \end{array}$$

Note that $r_{G_2}(u_2, y) = r_{G_2}(u, y)$, then

$$\begin{aligned} R^*(G) - R^*(G') &= & 2m_2 [\sum_{x \in V(H)} d_H(x) r_H(u_2, x) - \sum_{x \in V(H)} d_H(x) r_H(u, x)] \\ &= & 2m_2 \{ \sum_{x \in V(G_1)} d_H(x) [r_H(u_1, x) + 1] - [\sum_{x \in V(G_1)} d_H(x) r_H(u, x) + 1] \} \\ &= & 2m_2 [2(m_1 + 1) - 1 - 1] = 4m_1 m_2 > 0, \end{aligned}$$

so $R^*(G) > R^*(G')$. \Box

Let \mathscr{G}_n be the class of connected graphs on *n* vertices. By Transformation 1 and Lemma 4, we have the following result.

Corollary 1. Let G_0 be a graph with the smallest multiplicative degree-Kirchhoff index in \mathcal{G}_n , then all cut-edges are pendent edges.

Transformation 2. For $G \in Cact(n;t)$, let C_k be a cycle with $k(\geq 4)$ vertices, contained in G. Let there be a unique vertex $u \in C_h$ which is adjacent to a vertex in V(G) - V(C). Assuming that $uv, vw \in E(C)$, construct a new graph $G^* = G - vw + uw$ (as shown in Figure 3).

Figure 3. The graphs G and G^* in Transformation 2.

For $u \in V(C_k)$, by direct calculation, we have

$$R^*(C_k) = \frac{k^3 - k}{3}$$
(1)

$$\sum_{y \in V(C_k)} r_{C_k}(u, y) = \frac{k^2 - 1}{6}$$
(2)

Lemma 5. Let G, G^* be the graphs described in Transformation 2, then $R^*(G) > R^*(G^*)$.

Proof. Let *S* be the graph obtained by attaching to the vertex *u* of C_{k-1} the pendent vertex *v*. By Lemma 1, we have

$$\begin{split} R^*(G) &= R^*(H) + R^*(C_k) + 2k \sum_{x \in V(H)} d_H(x) r_H(u, x) + 2|E(H)| \sum_{y \in V(C_k)} d_{C_k}(y) r_{C_k}(u, y) \\ R^*(G^*) &= R^*(H) + R^*(S) + 2k \sum_{x \in V(H)} d_H(x) r_H(u, x) + 2|E(H)| \sum_{y \in V(S)} d_S(y) r_S(u, y). \end{split}$$

Further by Equations (1) and (2), then

$$\begin{aligned} R^*(G) - R^*(G^*) &= [R^*(C_k) - R^*(S)] + 2|E(H)| [\sum_{y \in V(C_k)} d_{C_k}(y) r_{C_k}(u, y) - \sum_{y \in V(S)} d_S(y) r_S(u, y)] \\ &= [\frac{k^3 - k}{3} - (\frac{(k-1)(k^2 + 2)}{3} + 2k - 1)] + 2|E(H)| \cdot \frac{2k - 4}{3} \\ &\geq \frac{k^2 - 5k + 3}{3} + \frac{4k - 8}{3} = \frac{k^2 - k - 5}{3} > 0, \end{aligned}$$

since $k \ge 4$, $|E(H)| \ge 1$. \Box

Transformation 3. Let $G \in Cact(n;t)$, $t \ge 2$, be a cactus without cut edges. Let C be an end cycle of G and u be its anchor. Let v be a vertex of C different from u. The graphs G_1 and G_2 are constructed by adding r pendent edges to the vertices u and v of G respectively (as shown in Figure 4).

Figure 4. The graphs *G*, *G*₁ and *G*₃ in Transformation 3.

Lemma 6. Let G, G_1, G_2 be the graphs described in Transformation 3, then $R^*(G_2) > R^*(G_1)$.

Proof. Let $H = G[V(G) - V(C)], H_1 = G[V(G_1) \setminus (V(G) - u)]$ and $H_2 = G[V(G_2) \setminus (V(G) - v)]$, then $H_1 \cong H_2 \cong K_{1,r}$. By Lemma 2, we have

$$\begin{aligned} R^*(G_1) &= R^*(G) + R^*(K_{1,r}) + 2r \sum_{x \in V(G)} d_G(x) r_G(u, x) + 2|E(G)| \sum_{y \in V(K_{1,r})} d_{K_{1,r}}(y) r_{K_{1,r}}(u, y), \\ R^*(G_2) &= R^*(G) + R^*(K_{1,r}) + 2r \sum_{x \in V(G)} d_G(x) r_G(v, x) + 2|E(G)| \sum_{y \in V(K_{1,r})} d_{K_{1,r}}(y) r_{K_{1,r}}(v, y). \end{aligned}$$

Note that $r_G(u, u) = r_G(v, v) = 0$, $V(G) = V(H) \cup \{V(C) - u\} \cup \{u\}$ and $r_G(v, x) = r_G(x, u) + r_G(v, u)$ for $x \in V(H)$, then

$$\begin{aligned} R^*(G_2) - R^*(G_1) &= 2r [\sum_{x \in V(G)} d_G(x) r_G(v, x) - \sum_{x \in V(G)} d_G(x) r_G(u, x)] \\ &= 2r \{ [\sum_{x \in V(H)} d_G(x) (r_G(x, u) + r_G(v, u)) + \sum_{x \in V(C) - u} d_G(x) r_G(v, x) + d_G(u) r_G(v, u)] \\ &- [\sum_{x \in V(H)} d_G(x) r_G(u, x) + \sum_{x \in V(C) - u} d_G(x) r_G(u, x)] \} \end{aligned}$$

Considering that $d_G(u) = d_H(u) + d_C(u)$ and $\sum_{x \in V(C)-u} d_G(x) r_G(u, x) = \sum_{x \in V(C)-u} d_G(x) r_G(v, x) + d_C(u) r_G(v, u)$], we obtain

$$R^*(G_2) - R^*(G_1) = 2r[\sum_{x \in V(H)} d_G(x)r_G(v,u) + d_G(u)r_G(v,u)] > 0.$$

This completes the proof. \Box

Transformation 4. Let $C = v_1 v_2 v_3 v_1$ be a cycle of the graph G, C is called a pendant triangle if $d_G(v_1) = d_G(v_2) = 2$ and $d_G(v_3) > 2$. Suppose that G is a cactus graph and $u, v \in V(G)$ are two vertices, such that $ux_i y_i u$ (i = 1, 2, ..., s) and $vp_j q_j v$ (j = 1, 2, ..., t) are pendant triangles with the anchor u and v, respectively. We form two new graphs A and B according to the following transformation.

$$A = G - \bigcup_{i=1}^{s} \{ux_i, uy_i\} + \bigcup_{i=1}^{s} \{vx_i, vy_i\}, B = G - \bigcup_{i=1}^{t} \{vp_i, vq_i\} + \bigcup_{i=1}^{t} \{up_i, uq_i\}.$$

Lemma 7. Let G, A, B be the graphs described in Transformation 4, then either $R^*(G) > R^*(A)$ or $R^*(G) > R^*(B)$.

Proof. Let $M = \{x_1, y_1, ..., x_s, y_s\}$, $N = \{p_1, q_1, ..., p_t, q_t\}$ and $H = V(G) - M - N - \{u, v\}$. Because of $V(G) = M \cup N \cup H \cup \{u, v\}$, by Lemma 2, we have

$$\begin{split} R^*(G) &= \left[\sum_{\{x,y\}\subset M} + \sum_{\{x,y\}\subset N} + \sum_{\{x,y\}\subset H} \left] d_G(x) d_G(y) r_G(x,y) + \sum_{x\in H,y\in M} d_G(x) d_G(y) r_G(x,y) + \right. \\ &\sum_{x\in H,y\in N} d_G(x) d_G(y) r_G(x,y) + \sum_{x\in M,y\in N} d_G(x) d_G(y) r_G(x,y) + d_G(u) d_G(v) r_G(u,v) \\ &+ \sum_{x\in H} d_G(x) d_G(u) r_G(x,u) + \sum_{x\in H} d_G(x) d_G(v) r_G(x,v) + \sum_{x\in M} d_G(x) d_G(u) r_G(x,u) + \left. \sum_{x\in M} d_G(x) d_G(v) r_G(x,v) + \sum_{x\in N} d_G(x) d_G(v) r_G(x,v) + \sum_{x\in N} d_G(x) d_G(v) r_G(x,v) + \left. \sum_{x\in N} d_G(v) d_G(v) r_G(x,v) + \left. \sum_{x\in N} d_G(v) d_G(v) r_G(v,v) + \left. \sum_{x\in N$$

and analogously

$$\begin{split} R^*(A) &= \sum_{\{x,y\}\subset M} + \sum_{\{x,y\}\subset N} + \sum_{\{x,y\}\subset H}]d_A(x)d_A(y)r_A(x,y) + \sum_{x\in H,y\in M} d_A(x)d_A(y)r_A(x,y) + \\ &\sum_{x\in H,y\in N} d_A(x)d_A(y)r_A(x,y) + \sum_{x\in M,y\in N} d_A(x)d_A(y)r_A(x,y) + d_A(u)d_A(v)r_A(u,v) \\ &+ \sum_{x\in H} d_A(x)d_A(u)r_A(x,u) + \sum_{x\in H} d_A(x)d_A(v)r_A(x,v) + \sum_{x\in M} d_A(x)d_A(u)r_A(x,u) + \\ &\sum_{x\in M} d_G(x)d_A(v)r_A(x,v) + \sum_{x\in N} d_A(x)d_A(u)r_A(x,u) + \sum_{x\in N} d_A(x)d_A(v)r_A(x,v). \end{split}$$

Note that $d_G(x) = d_A(x)$ for $x \in V(G) - \{u, v\}$ and $r_G(x, y) = r_A(x, y)$ for $x, y \in M$ or $x, y \in N$ or $x, y \in H$, then

$$a_{0} = \left[\sum_{\{x,y\}\subset M} + \sum_{\{x,y\}\subset N} + \sum_{\{x,y\}\subset H} d_{G}(x)d_{G}(y)r_{G}(x,y), \\ b_{0} = \left[\sum_{\{x,y\}\subset M} + \sum_{\{x,y\}\subset N} + \sum_{\{x,y\}\subset H} d_{A}(x)d_{A}(y)r_{A}(x,y), \\ a_{0} - b_{0} = 0\right]$$

$$(3)$$

Considering that $r(u, y) = \frac{2}{3}$ for $y \in M$ and r(x, y) = r(x, u) + r(u, y), we get

$$a_{1} = \sum_{x \in H, y \in M} d_{G}(x) d_{G}(y) r_{G}(x, y) = \sum_{x \in H, y \in M} d_{G}(x) d_{G}(y) [r_{G}(x, u) + \frac{2}{3}],$$

$$b_{1} = \sum_{x \in H, y \in M} d_{A}(x) d_{A}(y) r_{A}(x, y) = \sum_{x \in H, y \in M} d_{G}(x) d_{G}(y) [r_{G}(x, v) + \frac{2}{3}],$$

$$a_{1} - b_{1} = \sum_{x \in H, y \in M} d_{G}(x) d_{G}(y) [r_{G}(x, u) - r_{G}(x, v)]$$
(4)

and analogously,

$$a_{2} = \sum_{x \in H, y \in N} d_{G}(x) d_{G}(y) r_{G}(x, y) = \sum_{x \in H, y \in N} d_{G}(x) d_{G}(y) [r_{G}(x, v) + \frac{2}{3}],$$

$$b_{2} = \sum_{x \in H, y \in N} d_{A}(x) d_{A}(y) r_{A}(x, y) = \sum_{x \in H, y \in N} d_{G}(x) d_{G}(y) [r_{G}(x, v) + \frac{2}{3}],$$

$$a_{2} - b_{2} = 0$$
(5)

Because $r_G(x,y) = r_G(x,u) + r_G(u,v) + r_G(v,y) = r_G(u,v) + \frac{4}{3}$ for $x \in M, y \in N$, then

$$a_{3} = \sum_{x \in M, y \in N} d_{G}(x) d_{G}(y) r_{G}(x, y) = \sum_{x \in M, y \in N} d_{G}(x) d_{G}(y) [r_{G}(u, v) + \frac{4}{3}],$$

$$b_{3} = \sum_{x \in M, y \in N} d_{A}(x) d_{A}(y) r_{A}(x, y) = \frac{4}{3} \sum_{x \in M, y \in N} d_{G}(x) d_{G}(y),$$

$$a_{3} - b_{3} = \sum_{x \in M, y \in N} d_{G}(x) d_{G}(y) r_{G}(u, v)$$
(6)

$$a_{4} = d_{G}(u)d_{G}(v)r_{G}(u,v),$$

$$b_{4} = d_{A}(u)d_{A}(v)r_{A}(u,v) = [d_{G}(u) - 2s][d_{G}(v) + 2s]r_{G}(u,v),$$

$$a_{4} - b_{4} = 4s^{2}r_{G}(u,v) + 2sd_{G}(v)r_{G}(u,v) - 2sd_{G}(u)r_{G}(u,v)$$

$$a_{5} = \sum_{x \in H} d_{G}(x)d_{G}(u)r_{G}(x,u),$$

$$b_{5} = \sum_{x \in H} d_{A}(x)d_{A}(u)r_{A}(x,u) = \sum_{x \in H} d_{G}(x)[d_{G}(u) - 2s]r_{G}(x,u),$$

$$a_{5} - b_{5} = \sum_{x \in H} 2sd_{G}(x)r_{G}(x,u)$$

$$a_{6} = \sum_{x \in H} d_{G}(x)d_{G}(v)r_{G}(x,v),$$

$$b_{6} = \sum_{x \in H} d_{A}(x)d_{A}(v)r_{A}(x,v) = \sum_{x \in H} d_{G}(x)[d_{G}(v) + 2s]r_{G}(x,v),$$

$$a_{6} - b_{6} = -\sum_{x \in H} 2sd_{G}(x)r_{G}(x,v)$$

$$a_{7} = \sum_{x \in M} d_{G}(x)d_{G}(u)r_{G}(x,u) = \frac{2}{3}\sum_{x \in M} d_{G}(x)[d_{G}(u) - 2s][r_{G}(u,v) + \frac{2}{3}],$$

$$a_{7} - b_{7} = \sum_{x \in M} [(2s - d_{G}(u))d_{G}(x)r_{G}(u,v) + \frac{4}{3}sd_{G}(x)]$$
(7)

Because $r_G(x, v) = r_G(u, v) + \frac{2}{3}$ for $x \in M$. After the transformation, the degree of the vertex v increases by 2*s*, and $r_A(x, v) = \frac{2}{3}$ for $x \in M$.

$$a_{8} = \sum_{x \in M} d_{G}(x)d_{G}(v)r_{G}(x,v) = \sum_{x \in M} d_{G}(x)d_{G}(v)[r_{G}(u,v) + \frac{2}{3}],$$

$$b_{8} = \sum_{x \in M} d_{G}(x)d_{A}(v)r_{A}(x,v) = \frac{2}{3}\sum_{x \in M} d_{G}(x)[d_{G}(v) + 2s],$$

$$a_{8} - b_{8} = \sum_{x \in M} [d_{G}(x)d_{G}(v)r_{G}(u,v) - \frac{4}{3}sd_{G}(x)]$$
(11)

$$a_{9} = \sum_{x \in N} d_{G}(x)d_{G}(u)r_{G}(x,u) = \sum_{x \in N} d_{G}(x)d_{G}(u)[r_{G}(v,u) + \frac{2}{3}],$$

$$b_{9} = \sum_{x \in N} d_{A}(x)d_{A}(u)r_{A}(x,u) = \sum_{x \in N} d_{G}(x)[d_{G}(u) - 2s][r_{G}(v,u) + \frac{2}{3}],$$

$$a_{9} - b_{9} = \sum_{x \in N} 2sd_{G}(x)[r_{G}(v,u) + \frac{2}{3}]$$

$$a_{10} = \sum_{x \in N} d_{G}(x)d_{G}(v)r_{G}(x,v) = \frac{2}{3}\sum_{x \in N} d_{G}(x)d_{G}(v),$$

$$b_{10} = \sum_{x \in N} d_{A}(x)d_{A}(v)r_{A}(x,v) = \frac{2}{3}\sum_{x \in N} d_{G}(x)[d_{G}(v) + 2s],$$

$$a_{10} - b_{10} = -\frac{4}{3}\sum_{x \in N} sd_{G}(x)$$
(12)
(13)

By Equations (3)–(13), we have

$$\begin{aligned} R^*(G) - R^*(A) &= 4s \sum_{x \in H} d_G(x) [r_G(x, u) - r_G(x, v)] + 24str_G(u, v) + 6sr_G(u, v) [d_G(v) - d_G(u)] + \\ & 12s^2 r_G(u, v) + \sum_{x \in H} 2sd_G(x) [r_G(x, u) - r_G(x, v)]. \end{aligned}$$

Similarly, we have

$$\begin{aligned} R^*(G) - R^*(B) &= 4t \sum_{x \in H} d_G(x) [r_G(x, v) - r_G(x, u)] + 24str_G(u, v) + 6tr_G(u, v) [d_G(u) - d_G(v)] + \\ &\quad 12t^2 r_G(u, v) + 2t \sum_{x \in H} d_G(x) [r_G(x, v) - r_G(x, u)]. \end{aligned}$$

If $R^*(G) - R^*(A) \le 0$, then

$$\begin{aligned} &4\sum_{x\in H} d_G(x)[r_G(x,u)-r_G(x,v)]+6r_G(u,v)[d_G(v)-d_G(u)]+\sum_{x\in H} 2d_G(x)[r_G(x,u)-r_G(x,v)]\\ &\leq -(24tr_G(u,v)+12sr_G(u,v)). \end{aligned}$$

Further, we have

$$R^*(G) - R^*(B) \geq t(24tr_G(u, v) + 12sr_G(u, v)) + 24str_G(u, v) + 12t^2r_G(u, v) > 0.$$

This completes the proof. \Box

Transformation 5. Let u be a vertex of G such that there are s pendent vertices u_1, u_2, \ldots, u_s attached to u, and v be another vertex of G such that there are t pendent vertices v_1, v_2, \ldots, v_t attached to v. Let

$$G_3 = G - \{uu_1, uu_2, \dots, uu_s\} + \{vu_1, vu_2, \dots, vu_s\},\$$

$$G_4 = G - \{vv_1, vv_2, \dots, vv_t\} + \{uv_1, uv_2, \dots, uv_t\}.$$

Similar to the proof of Lemma 7, we can prove the following result.

Lemma 8. Let G, G_3 and G_4 be graphs as described in Transformation 5, then either $R^*(G) > R^*(G_3)$ or $R^*(G) > R^*(G_4)$.

3. Main Results

In this section, we determine the elements in Cact(n; t) with first-minimum and second-minimum multiplicative degree-Kirchhoff index by the transformations that we have obtained. Note that the first-minimum multiplicative degree-Kirchhoff index has been obtained in [33]; for completeness, we also give the following proof.

Theorem 1. Ref. [33] Let $G \in Cact(n;t)$, then $R^*(G) \ge 16t^2 - 8t + (n - 2t - 1)^2 + (n - 2t - 1)(n - 2t - 2) + \frac{34}{3}t(n - 2t - 1)$. The equality holds if and only if $G \cong G^0(n, t)$.

Proof. Let \tilde{G} be the unique graph having the minimum multiplicative degree-Kirchhoff index in *Cact*(*n*;*t*).

Case 1. If t = 1, Cact(n; t) is the class of unicyclic graphs. By Lemma 3, we know the results hold.

Case 2. If t = 2, Cact(n; t) is the class of bicyclic graphs. By Lemma 4, we conclude that \tilde{G} contains two cycles attached to a common vertex u, and all cut-edges are all pendent edges (if any). Further, by Lemmas 8 and 6, all pendent edges (if any) are also attached to u. Finally, by Lemma 5, the two cycles must be triangles, that is, $\tilde{G} \cong G^0(n, 2)$. This obtains the desirable results.

Case 3. If $t \ge 3$, by Lemma 4, we conclude that all cut-edges are all pendent edges (if any) in \tilde{G} . Further, by Lemmas 8 and 6, \tilde{G} has at least two end cycles. Repeated by Lemmas 5–8, we arrive at the conclusion $\tilde{G} \cong G^0(n, t)$

By direct calculation, we have

$$R^*(G^0(n;t)) = 16t^2 - 8t + (n - 2t - 1)^2 + (n - 2t - 1)(n - 2t - 2) + \frac{34}{3}t(n - 2t - 1).$$

This completes the proof. \Box

Theorem 2. Let $G \in Cact(n;t) \setminus G^0(n;t)$, then $R^*(G) \ge [16t^2 + \frac{34t-22}{3}] + [(n-2t-2)^2 + (n-2t-2)(n-2t-3)] + \frac{(16t+14)(n-2t-2)}{3} + 2(3t+1)(n-2t-2)$. The equality holds if and only if $G \cong G_3^0$.

Proof. By Lemmas 4–8 and Theorem 1, one can conclude that *G*, which has the second-minimum multiplicative degree-Kirchhoff index in Cact(n;t) must be one of the graphs G_1^0, G_2^0, G_3^0 , as shown in Figure 5. By Lemma 2, we have

$$\begin{split} R^*(G_1^0) &= [16t^2 - 8t] + [2 + 4(n - 2t - 2) + 7(n - 2t - 3) + (n - 2t - 2)(n - 2t - 3) + (n - 2t - 3)(n - 2t - 4)] + \frac{16}{3}t(n - 2t - 1) + 6t(n - 2t + 1), \\ R^*(G_2^0) &= [16t^2 + \frac{34}{3}t - 7] + [(n - 2t - 2)^2 + (n - 2t - 2)(n - 2t - 3)] + \frac{(16t + 14)(n - 2t - 2)}{3} + 2(3t + 1)(n - 2t - 2), \\ R^*(G_3^0) &= [16t^2 + \frac{34t - 22}{3}] + [(n - 2t - 2)^2 + (n - 2t - 2)(n - 2t - 3)] + \frac{(16t + 14)(n - 2t - 2)}{3} + 2(3t + 1)(n - 2t - 2). \end{split}$$

Then,

$$R^*(G_1^0) - R^*(G_3^0) = \frac{4n + 4t + 5}{3}$$
$$R^*(G_2^0) - R^*(G_3^0) = \frac{1}{3}.$$

This completes the proof. \Box

Figure 5. The graphs G_1^0, G_2^0, G_3^0

By Theorems 1 and 2, we have

Corollary 2. Among all graphs in Cact(n;t), $G^0(n;t)$ and G_3^0 are the graphs with first-minimum and second-minimum multiplicative degree-Kirchhoff index.

According to the above discussion, we find that the extremal cacti for the index $R^*(G)$ are the same as the extremal cacti for the Kirchhoff index, the multiplicative degree-Kirchhoff index, the Wiener index and the other indices [22,29,34,35]. Based on the known results for these indices, we guess the element of Cact(n;t) with maximum multiplicative degree-Kirchhoff index is isomorphic to the graph $C_{n,t}$ (as shown in Figure 6).

Figure 6. The graphs $C_{n,t}$.

Conjecture 1. Let $C_{n,t}$ be the graph depicted in Figure 6, where $k = \lfloor \frac{t}{2} \rfloor$. Then, $C_{n,t}$ is the unique element of *Cact*(*n*; *t*) having maximum multiplicative degree-Kirchhoff index.

In particular, for Cat(n;t), if t = 1;0, Cat(n;1) and Cat(n;0) are the set of unicyclic graphs and trees, respectively. For $G \in Cat(n;1)$, the graphs having maximum and minimum multiplicative degree-Kirchhoff index are given in [13], that is

$$R^*(G^0(n,1)) \le R^*(G) \le R^*(U_3^n).$$

where U_3^n consists of a cycle of size 3 to which a path with n - 3 vertices is attached. For $G \in Cat(n; 0)$, it is easy to get the result

$$R^*(S_n) \le R^*(G) \le R^*(P_n).$$

4. Conclusions

In this paper, we give some transformations on the multiplicative degree-Kirchhoff index. As applications, the second-minimum multiplicative degree-Kirchhoff index on Cat(n; t) and the corresponding extremal graph are determined. We guess $C_{n,t}$ is the graph of Cat(n; t) with maximum $R^*(G)$ value. For solving the problem, our approach would need to be modified; it would be interesting to continue studying the extremal graphs.

Author Contributions: Investigation, Z.Z.; Methodology, F.H.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [CrossRef] [PubMed]
- 2. Dobrynin, A.A.; Kochetova, A.A. Degree distance of a graph: A degree analogue of the Wiener index. *J. Chem. Inf. Comput. Sci.* **1994**, *34*, 1082–1086. [CrossRef]
- 3. Ali, P.; Mukwembi, S.; Munyira, S. Degree distance and vertex–connectivity. *Discret. Appl. Math.* **2013**, *161*, 2802–2811. [CrossRef]
- 4. Dankelmannn, P.; Gutman, I.; Mukwembi, S.; Swart, H.C. On the degree distance of a graph. *Discret. Appl. Math.* **2009**, 157, 2773–2777. [CrossRef]
- 5. Li, S.C.; Song, Y.B.; Zhang, H.H. On the degree distance of unicyclic graphs with given matching number. *Graphs Comb.* **2015**, *31*, 2261–2274. [CrossRef]
- 6. Tomescu, I. Ordering connected graphs having small degree distances. *Discret. Appl. Math.* **2010**, *158*, 1714–1717. [CrossRef]
- Schultz, H.P. Topological organic chemistry. 1. Graph theory and topological indices of alkanes. J. Chem. Inf. Comput. Sci. 1989, 29, 227–228. [CrossRef]
- Gutman, I.; Das, K.C. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 2004, 50, 83–92.
- 9. Klein, D.J.; Mihalić, Z.; Plavšić, D.; Trinajstić, N. Molecular topological index: A relation with the Wiener index. *J. Chem. Inf. Comput. Sci.* **1992**, *32*, 304–305. [CrossRef]

- 10. Gutman, I. Selected properties of the Schultz molecular topological index. *J. Chem. Inf. Comput. Sci.* **1994**, *34*, 1087–1089. [CrossRef]
- 11. Agnes, V.S. Degree distance and Gutman index of corona product of graphs. Trans. Comb. 2015, 4, 11–23.
- 12. Knor, M.; Potočnik, P.; Škrekovski, R. Relationship between the edge Wiener index and the Gutman index of a graph. *Discret. Appl. Math.* **2014**, *167*, 197–201. [CrossRef]
- 13. Klein, D.J.; Randić, M. Resistance distance. J. Math. Chem. 1993, 12, 81–95. [CrossRef]
- 14. Arauz, C. The Kirchhoff indexes of some composite networks. *Discret. Appl. Math.* **2012**, *160*, 1429–1440. [CrossRef]
- 15. Feng, L.; Yu, G.; Xu, K.; Jiang, Z. A note on the Kirchhoff index of bicyclic graphs. Ars Comb. 2014, 114, 33-40.
- Yang, Y.; Jiang, X. Unicyclic graphs with extremal Kirchhoff index. *MATCH Commun. Math. Comput. Chem.* 2008, 60, 107–120.
- 17. Zhang, H.; Jiang, X.; Yang, Y. Bicyclic graphs with extremal Kirchhoff index. *MATCH Commun. Math. Comput. Chem.* **2009**, *61*, 697–712.
- 18. Zhou, B.; Trinajstić, N. On resistance–distance and kirchhoff index. *J. Math. Chem.* **2009**, *46*, 283–289. [CrossRef]
- 19. Gutman, I.; Mohar, B. The quasi—Wiener and the Kirchhoff indices coincide. *J. Chem. Inf. Comput. Sci.* **1996**, 36, 982–985. [CrossRef]
- 20. Gutman, I.; Feng, L.; Yu, G. Degree resistance distance of unicyclic graphs. Trans. Comb. 2012, 1, 27–40.
- 21. Chen, H.; Zhang, F. Resistance distance and the normalized Laplacian spectrum. *Discret. Appl. Math.* 2007, 155, 654–661. [CrossRef]
- 22. Du, J.; Su, G.; Tu, J.; Gutman, I. The degree resistance distance of cacti. *Discret. Appl. Math.* **2015**, *188*, 16–24. [CrossRef]
- 23. Bianchi, M.; Cornaro, A.; Palacios, J.L.; Torriero, A. New upper and lower bounds for the additive degree-Kirchhoff index. *Croat. Chem. Acta* 2013, *86*, 363–370. [CrossRef]
- 24. Feng, L.H.; Gutman, I.; Yu, G.H. Degree Kirchhoff index of unicyclic graphs. *MATCH Commun. Math. Comput. Chem.* **2013**, *69*, 629–648.
- 25. Palacios, J.L. Some interplay of the three Kirchhoffian indices. *MATCH Commun. Math. Comput. Chem.* **2016**, 75, 199–206. [CrossRef]
- 26. Yang, Y.; Klein, D.J. Resistance distance-based graph invariants of subdivisions and triangulations of graphs. *Discret. Appl. Math.* **2015**, *181*, 260–274. [CrossRef]
- 27. Zhu, Z.; Hong, Y. Some transformations on multiplicative degree-Kirchhoff index of graphs and their applications. 2019, submitted.
- 28. Bianchi, M.; Cornaro, A.; Palacios, J.L.; Renom, J.M.; Torriero, A. Revisiting Bounds for the Multiplicative Degree-Kirchhoff Index. *MATCH Commun. Math. Comput. Chem.* **2016**, *75*, 227–231.
- 29. Liu, J.; Wanga, W.; Zhang, Y.; Pan, X. On degree resistance distance of cacti. *Discret. Appl. Math.* **2016**, 203, 217–225. [CrossRef]
- 30. Palacios, J.L.; Renom, J.M. Another look at the degree-Kirchhoff index. *Int. J. Quantum Chem.* **2011**, *111*, 3453–3455. [CrossRef]
- 31. Shang, Y.L. Further Results on Distance Estrada Index of Random Graphs. *Bull. Malaysian Math. Sci. Soc.* **2018**, *21*, 537–544. [CrossRef]
- 32. Bollobás, B. Modern Graph Theory; Springer: Berlin, Germany, 1998.
- 33. Feng, L.; Liu, N.; Yu, G.; Li, S. The degree-Kirchhoff index of fully loaded unicyclic graphs and cacti. *Util. Math.* **2014**, *95*, 149–159.
- 34. He, F.; Zhu, Z. Cacti with maximum eccentricity resistance-distance sum. *Discret. Appl. Math.* 2017, 219, 117–125. [CrossRef]
- 35. Liu, H.Q.; Lu, M. A Unified Approach to Extremal Cacti for Different Indices. *MATCH Commun. Math. Comput. Chem.* **2007**, *58*, 183–194.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).