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Abstract: When facing a multi-period defined contribution (DC) pension plan investment problem
during the accumulation phase, the risk aversion attitude of a mean-variance investor may depend
on state variables. In this paper, we propose a state-dependent risk aversion model which is a linear
function of the current wealth level after contribution. This risk aversion model is reasonable from
both the dimensional analysis and the economic point of view. Moreover, we incorporate the wage
income factor into our model. In the field of dynamic investment analysis, most studies have irrational
situations in their models because of the lack of the positiveness for the wealth process. In view of
it, we further improve the work of Wang and Chen by completely eliminating the irrationality of
the model. Due to the time-inconsistency of the resulting stochastic control problem, we derive the
explicit expressions of the equilibrium control and the corresponding equilibrium value function by
adopting the game theoretic framework developed in Björk and Murgoci. Further, two special cases
are discussed. Finally, using a more realistic risk aversion coefficient, we provide a series of empirical
tests based on the real data from the American market and compare our results with the relevant
results in the literature.

Keywords: DC pension plan; state-dependent risk aversion; mean-variance optimization; stochastic
control; extended Bellman equation
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1. Introduction

Due to the issue of the aging population and the impact of the unstable economic environment
on benefits, defined contribution pension plans have become the prevailing form of pension schemes
worldwide in recent years. Another reason for this dominating trend is that the defined contribution
plan helps ease the pressure on the public financial system by shifting the investment risk from the
sponsor to the retiree (Devolder et al. [1]). In DC pension plans, the plan members continuously
contribute a fixed percentage of his stochastic wage income to the pension account, and then the
contributions are invested in the financial market. Thus, only the contributions to the account are
guaranteed, while the benefits from the investment returns fluctuate. Moreover, the DC pension fund
management usually considers a long time horizon, and benefits will be obtained nearly on retirement.
Therefore, the risk management for DC pension plans during the accumulation phase becomes more
and more important nowadays.
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In the past few years, an overwhelming amount of literature has studied the optimal investment
problem for DC pension plans incorporating broad categories of risk factors under the expected utility
framework. Since the pioneering work of Markowitz [2], mean-variance criterion has been one of the
key research topics in financial economics, and has stimulated numerous extensions and applications
from different perspectives. Interested readers can refer to Yao et al. [3–5], Vigna [6], Guan and Liang [7],
Wu and Zeng [8], Li et al. [9] for typical studies of DC pension plans. The investor who considers
the mean-variance criterion needs to balance between maximizing the expected value of the terminal
wealth and minimizing the risk measured by the variance of the terminal wealth. Mathematically,
a mean-variance investor can choose a trade-off parameter to integrate the two conflicting objectives.
More specifically, under the single-period setting, the investor solves the following problem:(

MV(γ)
)

min Var[X1|X0]− γE[X1|X0],

where X0 is the initial wealth level, X1 is the terminal wealth level and γ ≥ 0 is the trade-off parameter.(
MV(γ)

)
is equivalent to the following formulation:(

MV(ω)
)

max E[X1|X0]−ωVar[X1|X0]

with ω = 1
γ . γ (or ω) is also known as the risk aversion parameter, which represents the risk aversion

attitude of the investor. The larger the value of γ (the smaller the value of ω) is, the less risk averse the
investor becomes.

Recent years have seen an upsurge of interests in studying the risk aversion model under the
mean-variance framework. The reason for this trend is that the investor’s risk aversion attitude
cannot be simply characterized by a constant. It may be time-dependent or even state-dependent,
i.e., it depends on the realizations of the state variables at time t, which are the current wealth level
and the current contribution level in our problem. Basak and Chabakauri [10] assume a constant
risk aversion parameter and derive that the optimal policy, i.e., the optimal amount invested in the
risky asset, is independent of the current wealth level. Björk et al. [11] study a continuous-time
mean-variance portfolio optimization model on the assumption that the risk aversion parameter takes
a fractional form of the current wealth level, and point out that their optimal policy is economically
reasonable since the choice for their risk aversion parameter is much more reasonable than that in
Basak and Chabakauri [10]. Wu [12] adopts the same model for the risk aversion parameter and
investigates the mean-variance portfolio selection problem in the multi-period setting. However, an
irrational case in her work is that the risk aversion parameter becomes negative when the wealth level
is negative, which leads to an infinite position on the risk-free asset. Hu et al. [13] define the risk
aversion parameter as a linear function of the current wealth level in a continuous-time setting. Like
Wu [12], the similar problem arises again: when the wealth level is less than a certain value, the risk
aversion parameter becomes negative. Following the work of Wu [12], Wang and Chen [14] investigate
the optimal investment for a DC pension plan in a multi-period setting. Unfortunately, there are still
irrational situations in their work. The main reason for the irrationality in all these works is that there
is no guarantee for the positiveness of the wealth process in a discrete-time setting. Cui et al. [15] and
Cui et al. [16] propose a flexible behavioral risk aversion model which takes a piece-wise linear form of
the surplus or shortage with respect to a preset investment target in the continuous-time setting and
the multi-period setting, respectively.

The main challenge of the multi-period mean-variance optimization problem for a DC pension
plan with state-dependent risk aversion is the time-inconsistency since the Bellman’s principle of
optimality is not applicable any more. In other words, the local optimal decision is different from
that of the pre-commitment global optimal strategy. In the field of dynamic risk management and
investment analysis (see Artzner et al. [17]), time-consistency now has become a basic requirement.
To overcome the time-inconsistency of dynamic mean-variance problems, a popular approach in the
literature recently is to formulate the problem in game theoretic terms. The primitive idea of this
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approach can be traced back to Strotz [18]. Later, Ekeland and Pirvu [19] investigate the time-consistent
strategy for an investment and consumption problem under the continuous-time setting and propose a
precise definition of the game theoretic equilibrium strategy for the first time. Björk and Murgoci [20]
give a general approach to handle time-inconsistent problem by viewing it as an intrapersonal game
and looking for subgame perfect Nash equilibrium. Under this framework, they formally define the
equilibrium concept and derive the extended Hamilton–Jacobi–Bellman (HJB for short) equation and
its verification theorem for a very general class of objective functions. Kryger and Steffensen [21]
obtain explicit solutions for several cases including the mean-standard deviation, the endogenous habit
formation for quadratic utility and group utility. Further, Björk and Murgoci [22] and Björk et al. [23]
extend their own work in Björk and Murgoci [20] and analyze the game theory in detail under the
discrete-time setting and continuous-time setting, respectively. Wang and Forsyth [24] develop a fully
numerical scheme to determine time-consistent mean-variance strategy based on piecewise constant
policy technique. Zeng and Li [25] investigate optimal mean-variance time-consistent investment and
reinsurance policies for an insurer under continuous-time setting. More results with this approach
can be found in Wei et al. [26], Björk et al. [11], Wu et al. [27], Zhou et al. [28], Wei and Wang [29] and
so on.

As mentioned above, the main goal of this paper is to further improve the work of Wang and
Chen [14]. Noting the importance of the positiveness nature of the wealth process in a discrete-time
setting, we hope to modify the wealth process to ensure its positiveness, thereby eliminating the
irrationality of the model in that paper. Concretely, we study the mean-variance problem with a
state-dependent risk aversion for a DC pension plan in a multi-period setting. We adopt a more
realistic state-dependent risk aversion model which is a linear function of the current wealth level
after contribution. In the classical dynamic mean-variance portfolio selection problem with constant
risk aversion, the time-inconsistency is caused by the variance operation since it doesn’t satisfy the
smoothing property. Our risk aversion model further complicates the extent of time-inconsistency.
Meanwhile, we incorporate the stochastic wage income factor into our model which leads to a more
complicated problem. Using the game theory, we derive an extension of the standard Bellman
equation for the determination of the analytical expressions of the equilibrium control as well as the
corresponding equilibrium value function. Finally, based on the real data from the American market,
we adopt a more reasonable risk aversion coefficient to illustrate our theoretical results and make a
comparative analysis between our empirical results and the results in the relevant literature.

The main contributions of this paper include: (1) We adopt a state-dependent risk aversion
parameter, which is a linear function of the current wealth level after contribution, to describe the
investor’s risk attitude and investigate the multi-period mean-variance optimization problem for a
DC pension plan. (2) We modify the wealth process to ensure its positiveness, thus, eliminating the
irrational case of the model that appeared in Wang and Chen [14]. (3) We obtain the closed-form
equilibrium control for our problem, where the investment in the risky asset takes a linear feedback
form of the current wealth level and the current contribution level. (4) We adopt a risk aversion
coefficient linked to the investor’s risk aversion attitude in our numerical experiments, some new
features of the equilibrium strategy are observed.

The rest of this paper is organized as follows. In Section 2, we introduce the market structure
and propose the optimal asset allocation model. Section 3 proceeds with the solution of our problem.
Two special cases are discussed in Section 4. In Section 5, using real data from the American market,
we present some numerical results. Finally, concluding remarks are made in Section 6.

2. Model Formulation

We consider a financial market consisting of one riskless asset with a deterministic return and
one risky asset with a random return, and a T-period investment problem within a time horizon [0, T].
For t = 0, · · · , T − 1, we denote the gross return of the two assets at period t (i.e., the investment
interval from time t to time t + 1), respectively, by rt (> 1) (for the riskless asset) and Rt (for the risky
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asset), where {R0, · · · , RT−1} are nonnegative, statistically independent and absolutely integrable
random variables, whose first and second moments, E[Rt] and E[R2

t ], are known for every t and the
variance Var[Rt] is positive for all periods. In addition, it is natural and reasonable to assume that
E[Rt] ≥ rt for all t = 0, · · · , T − 1. Suppose that a pension fund member joins a pension plan at time 0
with an initial wealth x0 (≥ 0) and initial wage income y0 (> 0) and plans to retire at time T. Before
the retirement, the investor needs to contribute a predefined amount of money as premiums at the
beginning of each period t. Upon the retirement, he can convert the pension fund into an annuity to
receive a scheduled pension stream after retirement.

Remark 1. For the sake of simplicity, we introduce only one risky asset in our model, which can be interpreted
as a stock market index. Even if there are multiple risky assets in the market, we can obtain the related results by
routine calculation and no further difficulties are added to the model.

Let Yt be the uncontrollable wage income received at time t and its dynamics is

Yt+1 = qtYt, t = 0, · · · , T − 1, (1)

where qt is an exogenous random variable representing the stochastic growth rate of the wage income
over period t. We assume that qt > 0 almost surely for t = 0, · · · , T − 1 to ensure the nonnegativity of
the wage income. Suppose that the wage earner contributes a fixed percentage, c ∈ [0, 1], of his wage
income at the beginning of each period until retirement, here c is termed as the contribution rate.

Remark 2. If the wage income is controllable, the contribution cYt could be affected by the portfolio. Therefore,
the mean-variance optimization problem for the DC pension plan reduces to a standard portfolio selection problem.

Let Xt and ut be the wealth of the pension fund and the proportion invested in the risky asset
at the beginning of period t, respectively. Then incorporating the contribution at time t, the wealth
process Xt can be described as follows:

Xt+1 =
(
Xt + cYt

)[
rt + Re

t ut
]
, (2)

where Re
t = Rt − rt is the excess return of the risky asset, whose mean and variance are denoted by

re
t = E[Re

t ] = E[Rt]− rt ≥ 0 and σt = Var[Re
t ] = Var[Rt] > 0, respectively. It follows immediately that

E[(Re
t)

2] is positive for all periods.
Let

(
Ω, {Ft},P

)
be a filtered complete probability space, where Ft represents the information

available up to time t. An investment strategy made at time t, u(t) = {uj, j = t, · · · , T − 1},
is admissible if uj is a Fj-measurable Markov control for all j = t, · · · , T− 1. In other words, we restrict
ourselves to feedback control laws, i.e., the controls are of the form ut = u(t, Xt, Yt) where the control
law u is a deterministic function of three variables t, Xt and Yt. Then, ut and (Re

t , qt) are independent
and Ft = σ(Xt, Yt). Denote by Θt the collection of all time t admissible investment strategies.

Following Yao et al. [3,5], in this paper, we make the assumptions as follows.

Assumption 1. For t = 0, · · · , T − 1, the random series Γt = (Re
t , qt) are statistically independent.

Assumption 2. There are no transaction costs or taxes in the market. Meanwhile, borrowing from the money
market (at the interest rate rt) is prohibited. In other words, ut should satisfy 0 ≤ ut ≤ 1 for t = 0, · · · , T − 1.

Remark 3. Assumption 1 means that the excess return of the risky asset and the wage income are statistically
independent among different periods.
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Remark 4. Assumption 2 implies that the wealth process (2) is positive since both rt and Rt are nonnegative,
the amount of the contribution cYt is positive and the investment strategy is subject to the constraints 0 ≤ ut ≤ 1.
As we discussed in the previous section, the positiveness of the wealth process is extremely important.

Define the objective function at time t as

Jt
(

xt, yt; u(t)
)
, Vart,xt ,yt [X

u
T
]− γt(xt)Et,xt ,yt [X

u
T
], (3)

where the expectation and variance are conditional on the event {Xt = xt, Yt = yt}. γt(xt) = γtxt is
the state-dependent risk aversion parameter of the investor, γt > 0 is the risk aversion coefficient.

Remark 5. It is particularly important to note that, the risk aversion parameter under our setting is positive
during all time periods since both the wealth process and the risk aversion coefficient are positive. As we
mentioned in Section 1, a similar irrational case in the studies of Wu [12], Hu et al. [13] and Wang and
Chen [14] is that the state-dependent risk aversion parameter becomes negative when the wealth process is
negative, which results in an unreasonable or meaningless model. Compared with these works, our model
completely eliminates this problem in view of Remark 4.

Remark 6. It is known from Equation (2) that the wealth process depends on the current wealth level Xt and
the current contribution level cYt. Then the intuition behind our risk aversion model is clear: the larger the
current wealth level after the investor’s contribution is, the less risk averse the investor becomes. Similar to
Björk et al. [11], we can explain the choice of the risk aversion function from the following two aspects:

(1) Dimension analysis

In the objective function

Jt
(

xt, yt; u(t)
)
= Vart,xt ,yt [X

u
T
]− γt(xt)Et,xt ,yt [X

u
T
],

the first term Vart,xt ,yt [X
u
T
] has the dimension (dollar)2, the second term Et,xt ,yt [X

u
T
] has the dimension (dollar).

So in order to have a objective function measured in (dollar)2, we have to make γt(xt) have the dimension
(dollar). The most obvious way to accomplish this is of course to specify γt(xt) as γt(xt) = γtxt.

(2) Economic point of view

In the Markowitz’s single-period mean-variance analysis, the mean-variance utility function (with constant
γ) is in fact applied to the return rate. More precisely, the corresponding objective function is given by

Jt
(

xt, yt; u(t)
)
= Vart,xt ,yt

[Xu
T

xt

]
− γEt,xt ,yt

[Xu
T

xt

]
,

and we can write this as

Jt
(

xt, yt; u(t)
)
=

1
x2

t

{
Vart,xt ,yt [X

u
T
]− γxtEt,xt ,yt [X

u
T
]
}

.

Since xt > 0 as we mentioned in Remark 4, it is clear that this objective function will lead to the same
equilibrium control as the objective function

Jt
(

xt, yt; u(t)
)
= Vart,xt ,yt [X

u
T
]− γ(xt)Et,xt ,yt [X

u
T
],

with γ(xt) = γxt. It should be noted that, in our setting, the risk aversion coefficient is time-dependent, thus,
the conclusion is in accordance with the first analysis.
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Considering the long time horizon of the pension management, at time t, the investor aims to find
an equilibrium (time-consistent) strategy to minimize the objective function (3) based on the wealth
level xt and the wage income level yt. To derive the equilibrium strategy, we formulate the problem
in a game theoretic framework which is adopted in Björk and Murgoci [23]. Firstly, we shall give the
definition of the equilibrium strategy.

Remark 7. Note that minimizing (3) is equivalent to the following formulation:

sup
u

{
γt(xt)Et,xt ,yt [X

u
T
]−Vart,xt ,yt [X

u
T
]
}

.

Normally, in the literature, one would define the risk aversion γ0
t (xt) in the following way

sup
u

{
Et,xt ,yt [X

u
T
]− γ0

t (xt)Vart,xt ,yt [X
u
T
]
}

.

We can see that our choice of γt(xt) is basically equivalent when we set γt(xt) = 1/γ0
t (xt). We hope that

our definition of the risk aversion will not bring other confusions to the readers.

Definition 1. Let û be a fixed feasible control law, for an arbitrary point (t, xt, yt) (t = 0, · · · , T − 1),
we choose an arbitrary control value ut and define the control law ū(t) = {ut, ût+1, · · · , ûT−1}. Then, û is said
to be a subgame perfect Nash equilibrium control (equilibrium control for short) if for all t < T, it satisfies

inf
ut

Jt
(

xt, yt; ū(t)
)
= Jt

(
xt, yt; û(t)

)
,

where û(t) = {ût, ût+1, · · · , ûT−1}. In addition, if such an equilibrium control û exists, the corresponding
equilibrium value function is defined as Vt(xt, yt) = Jt

(
xt, yt; û(t)

)
.

3. Equilibrium Control and Equilibrium Value Function

In this section, we aim to derive the equilibrium control and the corresponding equilibrium value
function for our problem.

To obtain an equilibrium control, we start from establishing a recursive formula for the equilibrium
value function Vt. It follows from (3) that

Jt
(

xt, yt; u(t)
)
= Vart,xt ,yt

[
Xu(t)

T

]
− γt(xt)Et,xt ,yt

[
Xu(t)

T

]
= Et,xt ,yt

(
Et+1,Xt+1,Yt+1

[(
Xu(t+1)

T

)2])− (Et,xt ,yt

[
Et+1,Xt+1,Yt+1(Xu(t+1)

T
)
])2

−γt(xt)Et,xt ,yt

(
Et+1,Xt+1,Yt+1

[
Xu(t+1)

T

])
.

In view of Definition 1, for t = 0, 1, · · · , T − 1, we have,

Vt(xt, yt) = Jt
(

xt, yt; û(t)
)
= min

ut
Jt
(
xt, yt; {ut, ût+1, · · · , ûT−1}

)
= min

ut

{
Et,xt ,yt

[
ht+1(Xut

t+1, Yut
t+1)

]
−
(

Et,xt ,yt

[
gt+1(Xut

t+1, Yut
t+1)

])2

−γt(xt)Et,xt ,yt

[
gt+1(Xut

t+1, Yut
t+1)

]}
, (4)

with the terminal condition,
VT(xT , yT ) = −γT x2

T
. (5)
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where the recursions of ht(xt, yt) and gt(xt, yt) are given as follows,

gt(xt, yt) = Et,xt ,yt

[
Xû(t)

T

]
= Et,xt ,yt

[
gt+1

(
Xût

t+1, Yût
t+1
)]

, (6)

gT (xT , yT ) = xT ,

ht(xt, yt) = Et,xt ,yt

[(
Xû(t)

T

)2]
= Et,xt ,yt

[
ht+1

(
Xût

t+1, Yût
t+1
)]

, (7)

hT (xT , yT ) = x2
T
.

Before giving the time-consistent results, we need to introduce the following series of αt, βt, At,
Bt and Dt, t = 0, 1 · · · , T − 1 and their properties:

αt = αt+1

(
rt −

(re
t )

2

2ηt+1

[
2rt(At+1 − α2

t+1)− γtαt+1
])

, (8)

βt = rtαt+1 + βt+1E[qt]−
αt+1re

t
2ηt+1

[
2re

t

(
rt(At+1 − α2

t+1)− αt+1βt+1E[qt]
)
+ Dt+1E[qtRe

t ]
]
, (9)

At = At+1

(
r2

t +
(re

t )
2E[(Re

t)
2]

4η2
t+1

[
2rt(At+1 − α2

t+1)− γtαt+1
]2

− rt(re
t )

2

ηt+1

[
2rt(At+1 − α2

t+1)− γtαt+1
])

, (10)

Bt =
At+1E[(Re

t)
2]

4η2
t+1

[
2re

t

(
rt(At+1 − α2

t+1)− αt+1βt+1E[qt]
)
+ Dt+1E[qtRe

t ]
]2

−

(
2rtre

t At+1 + Dt+1E[qtRe
t ]
)

2ηt+1

[
2re

t

(
rt(At+1 − α2

t+1)− αt+1βt+1E[qt]
)
+ Dt+1E[qtRe

t ]
]

(11)

+At+1r2
t + Bt+1E[q2

t ] + Dt+1rtE[qt],

Dt = −
re

t

(
2rtre

t At+1 + Dt+1E[qtRe
t ]
)

2ηt+1

[
2rt(At+1 − α2

t+1)− γtαt+1
]
+ 2At+1r2

t + Dt+1rtE[qt]

+
re

t At+1

ηt+1

[
2re

t

(
rt(At+1 − α2

t+1)− αt+1βt+1E[qt]
)
+ Dt+1E[qtRe

t ]
]
· (12)(E[(Re

t)
2]

2ηt+1

[
2rt(At+1 − α2

t+1)− γtαt+1
]
− rt

)
,

where ηt+1 = At+1E
[
(Re

t)
2]− α2

t+1(r
e
t )

2, and the boundary conditions being αT = 1, βT = 0, AT =

1, BT = 0 and DT = 0.

Remark 8. Based on the above backward Equations (8)–(12), it is easy to see the dependence of these deterministic
parameters on the risk aversion coefficient γt. More specifically, αt, At and Dt rely on γt directly. βt and Bt

seem to be independent of γt at a first sight. However, as βt and Bt rely on αt, At and Dt, then γt affects βt and
Bt indirectly.

Lemma 1. For t = 0, 1, · · · , T − 1, At ≥ α2
t , and ηt (t = 1, · · · , T) is positive.

Proof. This lemma can be proved by mathematical induction on t in a similar way as that in
Appendix A of Wang and Chen [14], thus, we omit it.

According to the Equations (4)–(7) and Lemma 1, the equilibrium strategy and the equilibrium
value function can be obtained. We summarize the main results in the following theorem.
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Theorem 1. For the multi-period mean-variance asset allocation problem of a DC pension plan with a
state-dependent risk aversion, the equilibrium strategy is,

ût(xt, yt) = 1
2ηt+1(xt+cyt)

{
re

t
[
γtαt+1 − 2rt(At+1 − α2

t+1)
]
xt

+
(

2re
t
[
αt+1βt+1E[qt]− rt(At+1 − α2

t+1)
]
− Dt+1E[qtRe

t ]
)

cyt

}
,

(13)

the corresponding equilibrium value functions is

Vt(xt, yt) =
(

At − α2
t − γtαt

)
x2

t +
(

Bt − β2
t
)
c2y2

t +
(

Dt − 2αtβt − γtβt
)
xtcyt, (14)

and

gt(xt, yt) = αtxt + βtcyt, (15)

ht(xt, yt) = Atx2
t + Btc2y2

t + Dtxtcyt, (16)

where αt, βt, At, Bt and Dt are defined by (8)–(12).

Proof. We refer to the proof in Appendix B of Wang and Chen [14] for a detailed process since this
theorem can be similarly proved by mathematical induction.

Remark 9. Although the above results are similar to the results of Theorem 12 for the case x > 0 in Wang
and Chen [14], we need to remind the reader that, in this paper the wealth process is positive during all time
periods and the model has always been reasonable, thus, the investment strategy remains effective throughout the
investment period. However, in Wang and Chen [14], there is no guarantee for the positiveness of the wealth
process. Therefore, if the wealth level becomes negative at any period, the investment strategy they obtained
will be ineffective. Then the investment strategy will be time-inconsistent, or even-worse the investment will
be interrupted.

Noting that xt + cyt is the amount of the fund after the investor’s contribution at the beginning
of the t-th period. Then ût(xt + cyt) is the amount invested in the risky asset at time t. Thus, we can
rewrite Equation (13) as

ût(xt + cyt) = 1
2ηt+1

{
re

t
[
γtαt+1 − 2rt(At+1 − α2

t+1)
]
xt

+
(

2re
t
[
αt+1βt+1E[qt]− rt(At+1 − α2

t+1)
]
− Dt+1E[qtRe

t ]
)

cyt

}
.

(17)

We see from (17) that the amount invested in the risky asset takes a linear feedback form of the
current wealth level xt and the current contribution level cyt. Further, it is independent of the initial
information, which is consistent with the results in Wu [12] and Wu and Chen [30]. Moreover, we see
that the return randomness of the risky asset and the wage income characterized by Re

t and qt affect
the strategy both separately and coupled together.

According to Definition 1 and Equations (6), (7), (14) and (15), we obtain the mean and variance
of the terminal wealth in the following theorem.

Theorem 2. For an arbitrary initial point (t, xt, yt) with t ∈ {0, · · · , T − 1}, the mean and variance of the
terminal wealth achieved by the equilibrium strategy are

Et,xt ,yt

[
Xû(t)

T

]
= αtxt + βtcyt, (18)

Vart,xt ,yt

[
Xû(t)

T

]
= (At − α2

t )x2
t + (Dt − 2αtβt)cxtyt + (Bt − β2

t )c
2y2

t . (19)
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4. Special Cases

In this section, we discuss two special cases of our model.
Case 1. The wage income is uncorrelated with the risky asset. Mathematically, in this case, qt is

uncorrelated with Re
t , so we have E[qtRe

t ] = re
t E[qt] for t = 0, · · · , T − 1.

According to Equations (8)–(12), αt and At are given by (8) and (10), while βt, Bt and Dt can be
further rewritten as,

βt = rtαt+1 + βt+1E[qt]−
αt+1

(
re

t
)2

ηt+1

[
rt(At+1 − α2

t+1) +
(Dt+1

2
− αt+1βt+1

)
E[qt]

]
,

(20)

Bt =
At+1E[(Re

t)
2]
(
re

t
)2

η2
t+1

[
rt(At+1 − α2

t+1) +
(Dt+1

2
− αt+1βt+1

)
E[qt]

]2

−

(
re

t
)2
(

2rt At+1 + Dt+1E[qt]
)

ηt+1

[
rt(At+1 − α2

t+1) +
(Dt+1

2
− αt+1βt+1

)
E[qt]

]
(21)

+At+1r2
t + Bt+1E[q2

t ] + Dt+1rtE[qt],

Dt =
2
(

re
t

)2
At+1

ηt+1

[
rt(At+1 − α2

t+1) +
(

Dt+1
2 − αt+1βt+1

)
E[qt]

](
E[(Re

t )
2 ]

ηt+1

[
rt(At+1 − α2

t+1)−
γtαt+1

2

]
− rt

)
−

(
re
t

)2
(

2rt At+1+Dt+1E[qt ]

)
ηt+1

[
rt(At+1 − α2

t+1)−
γtαt+1

2

]
+ 2At+1r2

t + Dt+1rtE[qt],

(22)

where ηt+1 and the boundary conditions are still given as before.
The results in Theorem 1 can be rewritten as follow.

Theorem 3. For the multi-period mean-variance asset allocation problem of a DC pension plan with a
state-dependent risk aversion, when the wage income is uncorrelated with the risky asset, the equilibrium
strategy can be rewritten in the following form,

ût(xt, yt) =
re

t
ηt+1(xt+cyt)

{[
γtαt+1

2 − rt(At+1 − α2
t+1)

]
xt

+
[(

αt+1βt+1 − Dt+1
2

)
E[qt]− rt(At+1 − α2

t+1)
]
cyt

}
,

(23)

the corresponding equilibrium value functions is given by

Vt(xt, yt) =
(

At − α2
t − γtαt

)
x2

t +
(

Bt − β2
t
)
c2y2

t +
(

Dt − 2αtβt − γtβt
)

xtcyt, (24)

and

gt(xt, yt) = αtxt + βtcyt, (25)

ht(xt, yt) = Atx2
t + Btc2y2

t + Dtxtcyt, (26)

where αt, At, βt, Bt and Dt are defined by (8), (10), (20)–(22).

Remark 10. We can see from (23) that when the wage income is uncorrelated with the risky asset, the return
randomness of the risky asset characterized by Re

t and the randomness of the wage income dictated by qt affect
the equilibrium strategy just separately.

Case 2. No pension contribution is considered. Under this situation, we only need to set c = 0 in
our model, which then degenerates to a multi-period mean-variance portfolio selection model with
state-dependent risk aversion. The results in Theorem 1 can be simplified as follows.
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Theorem 4. For the multi-period mean-variance portfolio selection problem with a state-dependent risk aversion,
the equilibrium strategy is,

ût =
re

t
ηt+1

[γtαt+1

2
− rt(At+1 − α2

t+1)
]

(27)

and the corresponding equilibrium value function is

Vt(xt) =
(

At − α2
t − γtαt

)
x2

t , (28)

gt(xt) = αtx, (29)

ht(xt) = Atx2, (30)

where αt and At are defined in (8) and (10).

Remark 11. We can see from (27) that now the amount invested in the risky asset, ûtxt, is proportional to
the current wealth level xt and is only affected by the return randomness of the risky asset characterized by
Re

t , and the corresponding value function only depends on the current wealth level. Further, it is obvious from
(27)–(30) that our results are consistent with the results of Theorem 7 in Wu [12].

5. Numerical Illustration

In this section, based on the real data from the American stock market, we present some numerical
experiments to illustrate our theoretical results.

In this paper, the data set of the interest rate and the wage income is the same as that in Wang and
Chen [14]. We choose the S&P 500 Index as the risky asset in our model. The historical monthly data
of the stock index from 1 March 2006, to 1 January 2017 (the same period as that for the data set of the
interest rate and the wage income) is downloaded from Yahoo Finance. All the numerical tests are
performed on the Lenovo PC with Intel(R) Core(TM) i7-6700 CPU and all the results are obtained by
MATLAB. The computational results are accurate to the fourth digit after the decimal point.

Consider an investor who enters the pension plan at time 0 with an initial wealth x0 = 1, an initial
wage income y0 = 1 and a contribution rate c = 0.2 for an investment horizon of T = 10. The risk
aversion coefficient is γt = γ/t, where γ is a positive constant. The risk aversion coefficient decreases
with respect to time, that is, the investor becomes more risk averse over time. This choice is in line
with the reality: when the retirement time approaches, the suggestion usually given to the investor
in pension plans is to decrease the investment in the risky asset. Table 1 shows the values of the risk
aversion coefficients for γ = 0.5, 1, 1.5 and 2, respectively.

For simplicity, we assume that market parameters are independent of time t. On the basis of the
above data set, the monthly risk-free return rt = 1.0115, other market parameters are

re
t = 0.0320, E[(Re

t)
2] = 0.1883, E[qt] = 1.0020,

E[q2
t ] = 1.0040, E[qtRe

t ] = 0.0321, E[qt]E[Re
t ] = 0.0321.

Table 1. Risk aversion coefficients.

γ γt =
γ
t

0.5 [0.5000, 0.2500, 0.1667, 0.1250, 0.1000, 0.0833, 0.0714, 0.0625,0.0556,0.0500]
′

1 [1.0000, 0.5000, 0.3333, 0.2500, 0.2000, 0.1667, 0.1429, 0.1250, 0.1111, 0.1000]
′

1.5 [1.5000, 0.7500, 0.5000, 0.3750, 0.3000, 0.2500, 0.2143, 0.1875, 0.1667, 0.1500]
′

2 [2.0000, 1.0000, 0.6667, 0.5000, 0.4000, 0.3333, 0.2857, 0.2500, 0.2222, 0.2000]
′

Substituting the above historical data into (8)–(12), we can further calculate the parameters
αt, βt, At, Bt and Dt backwards. Table 2 presents the values of them in each period under different risk
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aversion coefficients. We can observe from Tables 1 and 2 that the smaller the value of γt is, the smaller
the values of αt, βt, At, Bt and Dt are in each period. This is because that the smaller the value of
γt is, the more risk averse of the investor becomes. Thus, the investor will choose a relatively safer
investment strategy. According to Equations (18) and (19), αt, βt, At, Bt and Dt are related to the mean
and variance of the terminal wealth. The lower proportion in the risky asset results in smaller mean
and variance of the terminal wealth, then the smaller values of αt, βt, At, Bt and Dt. This result further
verifies the explanation in Remark 8.

Table 2. Parameter values under different risk aversion coefficients.

γt α

0.5/t [1.1250, 1.1109, 1.0976, 1.0847, 1.0721, 1.0596, 1.0474, 1.0353, 1.0234, 1.0116]
′

1/t [1.1292, 1.1136, 1.0997, 1.0863, 1.0733, 1.0605, 1.0481, 1.0358, 1.0237, 1.0118]
′

1.5/t [1.1333, 1.1164, 1.1017, 1.0878, 1.0744, 1.0614, 1.0487, 1.0362, 1.0240, 1.0119]
′

2/t [1.1373, 1.1191, 1.1037, 1.0893, 1.0756, 1.0623, 1.0494, 1.0367, 1.0243, 1.0120]
′

γt β

0.5/t [10.7583, 9.6153, 8.4881, 7.3761, 6.2792, 5.1970, 4.1293, 3.0760, 2.0367, 1.0115]
′

1/t [10.7683, 9.6226, 8.4933, 7.3798, 6.2817, 5.1986, 4.1302, 3.0764, 2.0369, 1.0115]
′

1.5/t [10.7783, 9.6299, 8.4986, 7.3835, 6.2842, 5.2001,4.1311, 3.0768, 2.0370, 1.0115]
′

2/t [10.7883, 9.6371, 8.5038, 7.3872, 6.2866, 5.2017, 4.1320, 3.0772, 2.0372, 1.0115]
′

γt A

0.5/t [1.2663, 1.2344, 1.2049, 1.1767, 1.1494, 1.1229, 1.0970, 1.0719, 1.0473, 1.0234]
′

1/t [1.2772, 1.2410, 1.2097, 1.1803, 1.1521, 1.1249, 1.0985, 1.0729, 1.0479, 1.0237]
′

1.5/t [1.2891, 1.2480, 1.2146, 1.1839, 1.1548, 1.1269, 1.1000, 1.0739, 1.0486, 1.0240]
′

2/t [1.3022, 1.2554, 1.2198, 1.1877, 1.1577, 1.1291, 1.1015, 1.0750, 1.0492, 1.0243]
′

γt B

0.5/t [115.7429, 92.4563, 72.0489, 54.4082, 39.4286, 27.0088, 17.0512, 9.4615, 4.1483, 1.0231]
′

1/t [115.9653, 92.6004, 72.1403, 54.4640, 39.4606, 27.0256, 17.0588, 9.4642, 4.1489, 1.0231]
′

1.5/t [116.1916, 92.7468, 72.2332, 54.5206, 39.4931, 27.0426, 17.0665, 9.4670, 4.1495, 1.0231]
′

2/t [116.4219, 92.8956, 72.3276, 54.5782, 39.5260, 27.0598, 17.0744, 9.4698, 4.1501, 1.0231]
′

γt D

0.5/t [24.2082, 21.3645, 18.6342, 16.0025, 13.4638, 11.0140, 8.6500, 6.3691, 4.1687, 2.0465]
′

1/t [24.3223, 21.4348, 18.6810, 16.0340, 13.4844, 11.0269, 8.6575, 6.3729, 4.1702, 2.0467]
′

1.5/t [24.4383, 21.5062, 18.7286, 16.0659, 13.5054, 11.0401, 8.6652, 6.3768, 4.1717, 2.0470]
′

2/t [24.5563, 21.5788, 18.7769, 16.0983, 13.5267, 11.0534, 8.6729, 6.3807, 4.1732, 2.0473]
′

Note: we omit the last element for each vector since it is given by the boundary conditions in (8)–(12).

Firstly, we analyze the effects of the risk aversion coefficient on the equilibrium strategy,
the equilibrium value function and the global investment performance. x0, y0, c and T take the
initial values above.

(1) Effect of the risk aversion coefficient on the equilibrium strategy

Let γn = 0.5 + 0.5 ∗ (n − 1), n = 1, · · · , 5, and the risk aversion coefficient is γt,n = γn/t.
The equilibrium strategy corresponding to the increasing risk aversion coefficient γt,n is demonstrated
in Figure 1. We can see from Figure 1 that the investment in the risky asset decreases over time for each
γt,n. Moreover, as γt,n increases, the investment proportion in the risky asset increases at each period.
The reason behind this is that the larger the value of γt,n is, the lower the degree of the investor’s
risk aversion is at time t, which then generates larger investment in the risky asset. This result is
consistent with the results in Cui et al. [16], Wang and Chen [14] and also matches the reality that the
investor will shift his investment from the risky asset to a safe or less risky asset with the coming of
the terminal time.
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Figure 1. Equilibrium strategies under different risk aversion coefficients.

(2) Effect of the risk aversion coefficient on the equilibrium value function

Let
γn = 0.4 + 0.4 ∗ (n− 1), n = 1, · · · , 10, γt,n = γn/t. (31)

The left-hand side of Figure 2 shows that the equilibrium value function at the initial time
decreases as the risk aversion coefficient at the initial time increases. Wu and Chen [30] show a similar
result when the volatility of the risk aversion changes and point out that the volatility of the risk
aversion, as a component of risk, plays an important role in the equilibrium value function. As our
risk aversion parameter is state-dependent, even though the risk aversion coefficient at the initial time
increases with the same volatility, the volatility of our risk aversion parameter is still changing.
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Figure 2. Value function and Sharpe ratio under different risk aversion coefficients at the initial time.
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(3) Effect of the risk aversion coefficient on the Sharpe ratio

Define
E0,x0,y0

[Xû
T ]−x0rT

t
Var0,x0,y0

[Xû
T ]

as the Sharpe ratio of the terminal wealth achieved by the equilibrium

strategy. We choose this Sharpe ratio as a performance index to show the global investment
performance of the equilibrium strategy. Let the risk aversion coefficient γt,n fluctuate as (31) shows,
the relationship between the Sharpe ratio and the risk aversion coefficient at the initial time is depicted
in the right-hand side of Figure 2. We find that increasing the risk aversion coefficient at the initial time
gives rise to a decrease in the Sharpe ratio of the terminal wealth. As γ0,n increases, the risk aversion of
the investor decreases and the investment amount in the risky asset increases, which generates larger
mean and variance of the terminal wealth. This observation shows that the variance of the terminal
wealth increases faster than that of the expected value of the terminal wealth, which indicates that the
incorporation of the successive contribution brings extra risk for the investor.

To obtain a more comprehensive understanding, we further analyze the influence of the
investment time horizon and the contribution rate on the equilibrium strategy. In the following
experiments, x0 and y0 remain the initial values, the risk aversion coefficient is γt = 0.5/t.

Let c = 0.2 and the investment horizon T increase from 5 to 11 with step size 2, the equilibrium
strategies under different Ts are demonstrated in Figure 3. We can draw some conclusions from this
figure: (1) The allocation in the risky asset decreases during the whole investment horizon for each
T. (2) The shorter the investment horizon T is, the larger the proportion holds in the risky asset at
each period. This is easy to understand since the investor would have less confidence to control the
investment uncertainty in the future when the investment horizon becomes longer, which results in
smaller investment amount in the risky asset. (3) The longer the investment horizon T is, the smaller
the proportion holds in the risky asset at the terminal time, which is quite different with Wu and
Chen [30]. Although we contribute to the pension account at each period, our accumulated wealth
is basically increasing throughout the investment period. Noting that the risk aversion coefficient
decreases with respect to time. The third conclusion implies that, when the investment horizon
becomes longer, the decrease of the risk aversion coefficient is more pronounced than the increase of
the accumulated wealth, which leads to a decrease in the risk aversion function, that is, the investor
becomes more risk averse. All in all, the investment proportion in the risky asset will be smaller as the
investment horizon T becomes longer. To get a closer look, an amplified version for t ∈ [2, 4] is given
in Figure 4.
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Figure 3. Equilibrium strategy under different investment horizons.
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Finally, we examine the effect of the contribution rate c on the equilibrium strategy. Let T = 10
and the contribution rate c increase from 0 to 0.3 with step size 0.1. Our natural intuition is that a
larger investment comes with a higher contribution rate, as it directly leads to a higher accumulated
wealth for the pension fund. Apparently, the result shown in Figure 5 validates our intuitive idea. We
observe from Figure 5 that: (1) The investment proportion in the risky asset increases at each period as
c increases. (2) The investment in the risky asset decreases over time under each c. (3) When c = 0,
the investment in the risky asset is the lowest, and the speed of the decrease is the slowest compared
with the other three cases.
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Figure 5. Equilibrium strategy under different contribution rates.

Remark 12. The above numerical results are consistent with the results in Wang and Chen [14] in essential.
In the above numerical tests, we use a risk aversion coefficient linked to the investor’s risk aversion attitude,
(i.e., γt = γ/t), while in Wang and Chen [14], we simply assume that the risk aversion coefficient is a constant.
It is clear that the choice of the risk aversion coefficient in this paper is more reasonable and the results are more
realistic. It seems that the positiveness of the wealth process have little impact. However, for the numerical tests
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in Wang and Chen [14], we actually need to adjust the related parameters many times to ensure that the wealth
level is positive. In this paper, this parameter adjustment is not needed.

All the above numerical results and analyses further illustrate the theoretical results we have
drawn and help us comprehend this paper easily.

6. Conclusions

We propose a linear state-dependent risk aversion model in this paper and study the
mean-variance optimization problem for a multi-period DC pension fund. In the proposed risk
aversion model, the larger the current wealth level after contribution is, the less risk averse the
mean-variance investor becomes. We modify the wealth process to ensure its positiveness at the
present work, which then eliminates the irrational case of the model that appeared in Wang and
Chen [14]. As the resulting stochastic control problem is time-inconsistent, we reformulate it into an
intrapersonal game formulation and derive the explicit expressions for the Nash equilibrium control
and the corresponding equilibrium value function. We find that the amount invested in the risky asset
takes a linear feedback form of the current wealth level and the current contribution level. Finally, by
adopting a more reasonable risk aversion coefficient, some numerical experiments are provided to
illustrate the theoretical results obtained in this paper.
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