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Abstract: We develop a Lax–Wendroff scheme on time discretization procedure for finite volume
weighted essentially non-oscillatory schemes, which is used to simulate hyperbolic conservation
law. We put more focus on the implementation of one-dimensional and two-dimensional nonlinear
systems of Euler functions. The scheme can keep avoiding the local characteristic decompositions
for higher derivative terms in Taylor expansion, even omit partly procedure of the nonlinear
weights. Extensive simulations are performed, which show that the fifth order finite volume WENO
(Weighted Essentially Non-oscillatory) schemes based on Lax–Wendroff-type time discretization
provide a higher accuracy order, non-oscillatory properties and more cost efficiency than WENO
scheme based on Runge–Kutta time discretization for certain problems. Those conclusions almost
agree with that of finite difference WENO schemes based on Lax–Wendroff time discretization
for Euler system, while finite volume scheme has more flexible mesh structure, especially for
unstructured meshes.

Keywords: Lax–Wendroff-type time discretization; WENO schemes; finite volume method; nonlinear
Euler system; high order accuracy

1. Introduction

1.1. Background

In this paper, a new scheme is proposed using Lax–Wendroff scheme to discretize the time
derivative and finite volume WENO (Weighted Essentially Non-oscillatory) scheme to discretize
the spatial derivative of PDEs (partial differential equations). The scheme is adopted to simulate
one-dimensional and two-dimensional nonlinear Euler systems of compressible gas dynamics; in fact,
the scheme and results can be generalized to other hyperbolic conservation laws easily.

1.2. Formulation of the Problem of Interest for This Investigation

It has been an important work to study nonlinear PDE [1] due to their rich mathematical structures
and features [2–5] as well as important applications in fluid dynamics and plasma physics [6–12].
Although many theories and methods were proposed to discuss the PDE [13–20], however, most
nonlinear PDE have no analytic solutions; numerical methods are necessary to study hydrodynamic
characteristics of PDEs [21–24]. For the discretization of time derivative in time-dependent PDEs
for numerical methods, the well-known ways is the ODE solver, such as multi-step method and
Runge–Kutta method. These approaches are popular for their simplicity in concept and in coding, and
better stability properties. Mostly, a total variation diminishing (TVD) time discretization is preferred.
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Of course, there also exist disadvantages, the main disadvantage being that total variation diminishing
(TVD) Runge–Kutta methods with positive coefficients cannot reach fifth order accuracy or a higher
order. In many practical schemes, a third TVD Runge–Kutta method has also been used, even for
a very high order in spatial. This combination gives satisfactory results as spatial accuracy is more
crucial than temporal accuracy for many problems.

For the discretization of spatial derivative in PDEs for numerical methods, especially for
hyperbolic conservation law, traditional finite difference methods and finite volume methods are
not fit to simulate Riemann solutions. In recent years, even many numerical methods have been
developed and applied in recent years, many studies have more interest on WENO scheme. WENO is
one of the very important high accuracy numerical methods, as WENO provides a procedure of
spatial discretization for PDE. WENO schemes are shown to be very robust, especially at those regions
where solutions are discontinuities, or have sharp gradient and other complicated solution structures.
The WENO schemes have been developed as a class of high order finite difference or finite volume
methods for hyperbolic conservation laws [25,26] in recent years. Finite difference methods are easily
programmed and are convenient for high dimensional cases, while weakness is only fit for structured
mesh with regular computational domain. In fact, the areas of inshore coastal waters and rivers have
irregularly shaped areas.

1.3. Literature Survey

WENO [27,28] is a numerical method [29] used to approximate the spatial derivative terms to solve
PDEs. WENO schemes have been very important high accuracy numerical methods, since the first
WENO scheme was constructed for the third order finite volume version based on ENO (Essentially
Non-oscillatory) scheme [30]. The main idea of WENO schemes is a non-linear-weighted combination
of several local reconstructions based on different stencils and the usage of it as a final WENO
reconstruction. Now, many improved WENO scheme are developed, such as Hermite-WENO [31],
hybrid-WENO [32], positivity-preserving WENO [33], ADER-WENO [34], CWENO [35] and so on.
The finite difference and the finite volume WENO schemes are widely used in many areas [36–41].
Lu and Qiu [42] investigated the performance of finite volume WENO methods for shallow water
equations on unstructured meshes and simulated the tidal bore on Qiantang River.

Another way to approximate the time derivative is Lax–Wendroff-type time discretization
procedure [43]. The method is based on traditional Lax–Wendroff method [44], which is an alternative
method for time discretization, referring to a Taylor expansion in time, also called Taylor type.
Qiu and Shu [43] developed Lax–Wendroff time discretization procedure with finite difference WENO
scheme to solve Euler system of compressible gas dynamics, which obtained an interesting conclusion
of exploring a balance between reducing the cost and maintaining the non-oscillatory properties.
Lu and Qiu [45] also developed Lax–Wendroff with finite difference WENO scheme for shallow water
equations, and similar results were obtained.

1.4. Scope and Contribution of This Study

The Lax–Wendroff time discretization method is via the classical Lax–Wendroff procedure,
which relies on the conversion that makes all the time derivatives into spatial derivatives in a temporal
Taylor expansion, and by using the PDE, discrete spatial derivatives. When the two ways obtain the
same high order accuracy, the Lax–Wendroff time discretization needs a smaller effective stencil than
the ODE solver, and it makes full use of the original PDE. However, the formulation and coding of this
method can be quite complex to understand. The Lax–Wendroff time discretization formula based
on finite volume is easier than that of the finite difference, but the computation is little more complex
than that of finite difference method, as cell averages have to be calculated for finite volume method,
while finite difference method only needs to calculate the point value.
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Thus, in this paper, we mainly discuss finite volume WENO scheme in space as it is more flexible
than finite difference scheme. We follow the same ideas of the previous papers [46,47] about finite
volume WENO schemes.

1.5. Organization of the Paper

We develop the fifth order WENO finite volume schemes based on the third order Lax–
Wendroff-type time discretization in this paper, which is used to solve the one-dimensional and
two-dimensional nonlinear systems of Euler equations to see if similar conclusions still hold. The main
work of this paper is organized as follows, in Section 2, we describe details of the discretization
for Euler system with finite volume WENO schemes and Lax–Wendroff-type time discretization.
Numerical examples are given in Section 3. The results demonstrate the accuracy, resolution and
efficiency of the constructed schemes. Concluding remarks are included in Section 4.

2. Description of Numerical Model

2.1. The Nonlinear Euler System

We introduce the nonlinear Euler system in two dimensions; it has the following form

Ut + F(U)x + G(U)y = 0, (1)

with
U = (ρ, ρu, ρv, E)T ;

F(U) =
(

ρu, ρu2 + p, ρuv, u(E + p)
)T

;

G(U) =
(

ρv, ρuv, ρv2, v(E + p)
)T

;

(2)

where ρ stands for the density, E is the total energy, u, v are the velocity in x, y directions, p is the
pressure, and p is related to E = p

γ−1 + 1
2 ρ(u2 + v2), with γ related to specific heat ratio, for ideal gas

γ = 1.4. Euler system is important and typical hyperbolic conservation laws. In the Euler system
(Equation (1)), U is the conserved vector, F(U), G(U) are the flux terms. We rewrite the Euler system
in a quasi-linear form as follows

Ut + A(U)Ux + B(U)Uy = 0, (3)

where A, B are Jacobian matrices,

A(U) =
∂F
∂U

=


0 1 0 0

1
2 (u

2(γ− 3) + v2(γ− 1)) −u(γ− 3) −v(γ− 1) γ− 1
−uv v u 0

u
(
(u2 + v2)(γ− 1)− γ E

ρ

)
1
2

(
2γ E

ρ − (3u2 + v2)(γ− 1)
)
−uv(γ− 1) uγ

 ,

and

B(U) =
∂G
∂U

=


0 0 1 0
−uv v u 0

1
2

(
v2(γ− 3) + u2(γ− 1)

)
−u(γ− 1) −v(γ− 3) γ− 1

v
(
(u2 + v2)(γ− 1)− γ E

ρ

)
−uv(γ− 1) 1

2

(
2γ E

ρ − (u2 + 3v2)(γ− 1)
)

vγ

 .
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The eigenvalues of Jacobian matrices A and B are

λ(A) = u− c, u, u, u + c; λ(B) = v− c, v, v, v + c,

respectively, where c =
√

γp
ρ is the sound speed of the polytropic gas. The corresponding right and

left eigenvectors of Jacobian matrices A and B as follows:

RA =


1 0 1 1

u− C 0 u u + C
v 1 v v

H − uC v q H + uC

 , LA =


1
2 (

q
H−q +

u
C ) −

1
2 (

u
H−q +

1
C ) −

v
2(H−q)

1
2(H−q)

−v 0 1 0
1− q

H−q
u

H−q
v

H−q − 1
H−q

1
2 (

q
H−q −

u
C ) −

1
2 (

u
H−q −

1
C ) −

v
2(H−q)

1
2(H−q)

 ; (4)

RB =


1 0 1 1
u 1 u u

v− C 0 v v + C
H − vC u q H + vC

 , LB =


1
2 (

q
H−q +

v
C ) −

u
2(H−q) − 1

2 (
v

H−q +
1
C )

1
2(H−q)

−u 1 0 0
1− q

H−q
u

H−q
v

H−q − 1
H−q

1
2 (

q
H−q −

v
C ) −

u
2(H−q) − 1

2 (
v

H−q −
1
C )

1
2(H−q)

 ; (5)

where H = E+p
ρ and q = 1

2 (u
2 + v2), C =

√
(γ− 1)(H − q). RALA = I and RBLB = I hold for

hyperbolic conservation law, where I is unit matrix.
Neglecting all the variables in y direction of the above formula, we can easily get the characteristic

of one-dimensional Euler system (Equation (6)), thus the following procedure is done:

Ut + F(U)x = 0, (6)

with

UT = (ρ, ρv, E)T ,

F(U) =
(

ρv, ρv2 + p, v(E + p)
)T

.
(7)

2.2. Overview of the Fifth Order Finite Volume WENO Schemes

We use the finite volume WENO scheme to solve the spatial derivative of Euler equations. We take
a brief look at WENO scheme [28] for the typical scalar one-dimensional hyperbolic conservation law
Equation (8)

ut + f (u)x = 0. (8)

Denote Ii = [xi− 1
2
, xi+ 1

2
] the ith cell; the center is xi. We assume that the meshes are uniform and

∆x = ∆xi = xi+ 1
2
− xi− 1

2
. For a finite volume scheme, we define the approximate average value ūi

of ū(xi, t) = 1
∆x
∫

Ii
u(x, t)dx at mesh cell Ii in time. We construct the discrete finite volume scheme of

Equation (8) as
d
dt

ū(xi, t) = − 1
∆x

(
f (u(xi+ 1

2
, t))− f (u(xi− 1

2
, t))

)
.

where f
(

u(xi+ 1
2
, t)
)

is approximated by numerical flux f̂i+ 1
2
= f̂ (uL

i+ 1
2
, uR

i+ 1
2
); here, the simplest and

monotone Lax–Friedrich flux is employed, which has the form

f̂ (uL
i+ 1

2
, uR

i+ 1
2
) =

1
2

(
f (uL

i+ 1
2
) + f (uR

i+ 1
2
)− α(uR

i+ 1
2
− uL

i+ 1
2
)
)

,

where α = maxu| f ′(u)| and uL,R
i+ 1

2
are the high order point approximations to u(xi+ 1

2
, t) of left

side and right side at interface xi+ 1
2
, which are obtained from the cell averages by a WENO

reconstruction procedure.
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For a (2k− 1)th WENO scheme, the point values of uL,R
i+ 1

2
are computed through k neighboring

mean values ūj, based on stencil with r cells to the left on the order of accuracy k. Thus, there exist
constants ckj and c̃kj, such that

uL
i+ 1

2
=

k−1

∑
j=0

crjūi−r+j, uR
i− 1

2
=

k−1

∑
j=0

c̃rjūi−r+j.

The constants crj are obtained by the unique k− 1 degree polynomial pr(x), which is

pr(x) =
k

∑
m=0

m−1

∑
j=0

ūi−r+j∆xr−r+j

(∑k
l=0,l 6=m ∏k

q=0,q 6=m,l(x− xi−r+q− 1
2
)

∏k
l=0,l 6=m(xi−r+m− 1

2
− xi−r+l− 1

2
)

)
, (9)

so the approximate point value is uL
i+ 1

2
= pr(xi+ 1

2
), uR

i− 1
2
= pr(xi− 1

2
).

For example, for the fifth order WENO scheme (k = 3), the r(r = 0, 1, 2) approximated point
values of uL

i+ 1
2

are given by

uL(0)
i+ 1

2
=

1
3

ūi +
5
6

ūi+1 −
1
6

ūi+2;

uL(1)
i+ 1

2
= −1

6
ūi−1 +

5
6

ūi +
1
3

ūi+1;

uL(2)
i+ 1

2
=

1
3

ūi−2 −
7
6

ūi−1 +
11
6

ūi.

(10)

The following part describes the computation of the smoothness indicators βs and the nonlinear
weights ωm. The (2k− 1)th order WENO reconstruction is a convex combination based on all these k
point values

uL
i+ 1

2
=

k−1

∑
m=0

ωmuL(m)

i+ 1
2

.

The nonlinear weights ωm have the following new definitions:

ωm =
αm

∑k−1
s=0 αs

, αs =
ds

(ε + βs)2 ,

where ε is a small positive constant to avoid zero denominator; usually, we take it as 10−6. ds are
linear weights which yield (2k− 1)th order accuracy on area of smooth solution, βs are the so-called
“smoothness indicators", which are usually used to measure the smoothness of the polynomials and
they have the form:

βr =
k−1

∑
l=1

∫ x
i+ 1

2

x
i− 1

2

∆x2l−1
i

(∂l pr(x)
∂l x

)2
dx. (11)

For the fifth order WENO scheme on uniform mesh, the linear weights ds have the form:

d0 =
3
10

, d1 =
3
5

, d2 =
1

10
,
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and the smoothness indicators βs are given by

β0 =
13
12

(ūi − 2ūi+1 + ūi+2)
2 +

1
4
(3ūi − 4ūi+1 + ūi+2)

2;

β1 =
13
12

(ūi−1 − 2ūi + ūi+1)
2 +

1
4
(ūi−1 − ūi+1)

2;

β2 =
13
12

(ūi−2 − 2ūi−1 + ūi)
2 +

1
4
(ūi−2 − 4ūi−1 + 3ūi)

2.

(12)

On uniform meshes, we do not have to calculate c̃rj. The reconstruction of uR
i+ 1

2
is mirror

symmetry to that of uL
i+ 1

2
. For the Euler system, the reconstruction is performed in eigenspace,

so local characteristic decompositions should be used. The reconstruction in eigenspace is more robust
than a component by component method. We need to calculate the right eigenvectors and the left
eigenvectors of the Jacobian matrices A, B and Roe’s average in the local characteristic decomposition.

For two-dimensional finite volume case, we cannot simply procede in a dimension-by-dimension
fashion as in finite difference method. The spatial surface integration on rectangular cell Ii,j =

[xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] can be converted to line integration by Gauss theorem. To obtain the fifth

order, we can use three-point Gaussian quadrature for line integration of every rectangular cell as
in Figure 1. For example, to calculate numerical flux in x direction, three Gaussian point values on
every vertical lines should be reconstructed from cell average values in y direction first; then left and
right Gaussian point values should be reconstructed by the WENO scheme; next is the numerical flux;
and finally the cell average value can be approximate on next time level. When dissipation does not
exist, we first suppose

r = ρ cos θ − ct, (13)

where c is a constant and denote the phase speed of the wave. Equation (8) implies that

∂

∂t
=

∂

∂r
∂r
∂t

= −c
∂

∂r
,

∂

∂ρ
=

∂

∂r
∂r
∂ρ

= cos θ
∂

∂r
,

∂

∂θ
=

∂

∂r
∂r
∂θ

= −ρ sin θ
∂

∂r
.

Based on the above transform, Equation (7) becomes

− c
∂

∂r

[
∂2φ

∂r2 +
cos θ

ρ

∂φ

∂r
− β

c
φ

]
= 0. (14)

where 

∇2 =
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂θ2 ,

J(a, b) =(cos θ
∂a
∂ρ
− sin θ

ρ

∂a
∂θ

)(sin θ
∂b
∂ρ

+
cos θ

ρ

∂b
∂θ

)

− (sin θ
∂a
∂ρ

+
cos θ

ρ

∂a
∂ρ

)(cos θ
∂b
∂ρ
− sin θ

ρ

∂b
∂θ

).

When
∂2u
∂r2 +

cos θ

ρ

∂u
∂r
− β

c
u = 0,

we can easy infer that the relative vorticity ∇2u is a function of stream function u only. Thus, we get

∂2u
∂ρ2 +

1
ρ

∂u
∂ρ

+
1
ρ2

∂2u
∂θ2 =

β

c
u. (15)
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Figure 1. A sketch of WENO reconstruction on a rectangular cell.

2.3. The Lax–Wendroff-Type Time Discretization Procedure for Euler Equations

The details of Lax–Wendroff-type time discretization are described based on finite volume WENO
schemes for two-dimensional Euler system (Equation (1)) [43,45] in this section.

Define ∆t as the time step; then (n + 1)th time level tn+1 = tn + ∆t. We introduce Un
i,j as the

approximate average values of U on rectangular cell Ii,j at the nth time level. For simplicity, we denote
the rth order time derivative of U as U(r) rather than ∂rU

∂tr , and U′, U′′ and U′′′ stand for the first,
the second and the third time derivatives of U, respectively. The idea of Lax–Wendroff-type time
discretization procedure is to replace time derivative by spatial derivatives using the original PDE
(Equation (1)) [43]. By a temporal Taylor’s expansion for conservative vector U(x, y, t + ∆t), we obtain

U(x, y, t + ∆t) = U(x, y, t) + ∆tU′(x, y, t) + (∆t)2

2 U′′(x, y, t) + (∆t)3

6 U′′′(x, y, t) + (∆t)4

24 U(4)(x, y, t) + ..., (16)

The sliding average is

U(x, y, t + ∆t) = U(x, y, t) + ∆tU′(x, y, t) + (∆t2)
2 U′′(x, y, t) + (∆t)3

6 U′′′(x, y, t) + (∆t)4

24 U(4)(x, y, t) + ..., (17)

where U(r) means mean value of U(r) in space. If we need to obtain kth degree of accuracy in time,
we should approximate those terms until the kth time derivatives on the right hand side in Equation
(17). Here, we calculate the third order in time and the fifth order in space, which means that we should
approximate until the third order time derivatives on the right hand side in Equation (17), and for
every time derivative the fifth order spatial approximation method should be used; actually, the fifth
order WENO reconstruction is used.

Using Euler system (Equation (1)), by Lax–Wendroff type dime discretization, we replace the time
derivatives in Equation (16) by the spatial derivatives as follows

U′ = −F(U)x − G(U)y;

U′′ = −
(

F′(U)U′
)

x
−
(

G′(U)U′
)

y

=
(

F′(U)2Ux

)
x
+
(

G′(U)2Uy

)
y
;

U′′′ = −
(

F′′(U)(U′)2 + F′(U)U′′
)

x
−
(

G′′(U)(U′)2 + G′(U)U′′
)

y

= −
(

3F′′(U)F′(U)2U2
x + F′(U)3Uxx

)
x
−
(

3G′′(U)G′(U)2U2
y + G′(U)3Uyy

)
y
.

(18)
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where brief notes are used, such as F′(U)2 = F′(U)F′(U), the details are given below. Thus, Equation (16)
can be written as

U(x, y, t + ∆t) = U(x, y, t)− ∆t
(

F(U)− ∆t
2

F′(U)2Ux +
∆t2

6
(3F′′(U)F′(U)2U2

x + F′(U)3Uxx)
)

x

− ∆t
(

G(U)− ∆t
2

G′(U)2Uy +
∆t2

6
(3G′′(U)G′(U)2U2

y + G′(U)3Uyy)
)

y
+ ...

(19)

Then, the sliding average (Equation (17)) with third order in time on a rectangular cell Iij is
approximated as

Un+1
i,j = Un

i,j −
∆t

∆x∆y

∫ y
j+ 1

2

y
j− 1

2

(
F̃(Ui+ 1

2 ,∗)− F̃(U(xi− 1
2 ,∗)
)

dy

− ∆t
∆x∆y

∫ x
i+ 1

2

x
i− 1

2

(
G̃(U∗,j+ 1

2
)− G̃(U∗,j− 1

2
)
)

dx,
(20)

with

F̃(U) = F(U)− ∆t
2

F′(U)2Ux +
∆t2

6
(3F′′(U)F′(U)2U2

x + F′(U)3Uxx);

G̃(U) = G(U)− ∆t
2

G′(U)2Uy +
∆t2

6
(3G′′(U)G′(U)2U2

y + G′(U)3Uyy),
(21)

where F̃(U) and G̃(U) are approximated by numerical flux ˆ̃F and ˆ̃G, such as F̃(Ui+ 1
2 ,∗) ≈

ˆ̃Fi+ 1
2 ,∗ =

ˆ̃F(UL
i+ 1

2 ,∗, UR
i+ 1

2 ,∗).

For example, the first term in F̃(U) and G̃(U) are for the approximation of the first time derivative
U′, where U′ = −F(U)x − G(U)y. In the fifth order finite volume WENO scheme, on rectangle control
volume Ii,j,

U′ i,j = −
1

∆x∆y

∫ y
j+ 1

2

y
j− 1

2

(
F̂i+ 1

2 , ∗ − F̂i− 1
2 , ∗

)
dy− 1

∆x∆y

∫ x
i+ 1

2

x
i− 1

2

(
Ĝ∗ ,j+ 1

2
− Ĝ∗ ,j− 1

2

)
dx,

three point Gaussian quadrature formulae are used for the above line integration. The integrand,
that is numerical flux vector F̂(UL

i± 1
2 ,G

, UR
i± 1

2 ,G
) and Ĝ(UL

G,j± 1
2
, UR

G,j± 1
2
), at every Gaussian point

(xG, yj± 1
2
), (xi± 1

2
, yG), is obtained by the regular fifth order WENO finite volume reconstruction and the

Lax–Friedrich numerical flux, as described in Section 2.2, where xG = {xi −
√

3
5

∆x
2 , xi, xi +

√
3
5

∆x
2 }

are the three Gaussian points. Meanwhile, the reconstruction of Ux, Uxx and Uy, Uyy in the second and
third term (Equation (21)) on Gaussian points of cell interface are calculated in this procession of WENO
reconstruction. That is, in this procession, we calculate UL,R

G,j+ 1
2
, (Ux)

L,R
G,j+ 1

2
, (Uxx)

L,R
G,j+ 1

2
, in subroutine of

WENO reconstruction. Notice that the extra ∆t factor multiplying by U′′ in Equation (21) leads to a
one order lower flux approximation than that of the first time derivative U′. In x-direction, the linear
polynomial p′r(x) and constant p′′r (x) are the approximations to Ux and Uxx. According to polynomial
pr(x) (Equation (9)), on r(r = 0, 1, 2) small stencil, we have

p′r(x) =
k

∑
m=0

m−1

∑
j=0

ūi−r+j∆xr−r+j

(∑k
l=0,l 6=m ∑k

q=0,q 6=m,l ∏k
s=0,s 6=m,l,q(x− xi−r+s− 1

2
)

∏k
l=0,l 6=m(xi−r+m− 1

2
− xi−r+l− 1

2
)

)
,

p′′r (x) = 2k
k

∑
m=0

( ∑m−1
j=0 ūi−r+j∆xr−r+j

∏k
l=0,l 6=m(xi−r+m− 1

2
− xi−r+l− 1

2
)

)
.

(22)
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The same linear weights of U are used for Ux, Uxx. According to the definition of smooth,
Equation (11) indicates constant β′r and zero β′′r are used for Ux and Uxx, as

β′r =
∫ x

i+ 1
2

x
i− 1

2

∆xi(p′′r (x))2dx +
∫ x

i+ 1
2

x
i− 1

2

(∆xi)
3(p′′′r (x))2dx.

Similar formulae can be written for Uy and Uyy in y-direction in WENO reconstruction.
In Equation (21), the Jacobian matrices are F′(U) = A(U), G′(U) = B(U), which have been

mentioned above. F′(U)2Ux, G′(U)2Uy are 4× 1 vectors. If we denote

F′′(U) = A′(U) = (A21|A22|A23|A24), (23)

where A21, A22, A23, A24 are 4× 4 matrices,

F′′(U)F′(U)2(Ux)
2 =

(
A21(F′(U)2Ux), A22(F′(U)2Ux), A23(F′(U)2Ux), A24(F′(U)2Ux)

)
Ux,

which is also a 4× 1 vector and have been calculated in a previous step, in which we known F′(U)2(Ux)

is a 4× 1 vector, with

A21 =
1
ρ


0 0 0 0

−(γ− 3)u2 − (γ− 1)v2 u(γ− 3) v(γ− 1) 0
2uv −v −u 0

u
(

2Eγ
ρ − 3(γ− 1)(u2 + v2)

)
(γ− 1)(3u2 + v2)− Eγ

ρ 2uv(γ− 1) −uγ

 ,

A22 =
1
ρ


0 0 0 0

(γ− 3)u −(γ− 3) 0 0
−v 0 1 0

− Eγ
ρ + (γ− 1)(3u2 + v2) −3(γ− 1)u −v(γ− 1) γ

 ,

A23 =
1
ρ


0 0 0 0

(γ− 1)v 0 −(γ− 1) 0
−u 1 0 0

2uv(γ− 1) −v(γ− 1) −u(γ− 1) 0

 ,

A24 =
1
ρ


0 0 0 0
0 0 0 0
0 0 0 0
−uγ γ 0 0

 .

(24)

If we denote
G′′(U) = B′(U) = (B21|B22|B23|B24), (25)
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where B21, B22, B23, B24 are 4× 4 matrices, and

B21 =
1
ρ


0 0 0 0

2uv −v −u 0
−(γ− 1)u2 − (γ− 3)v2 u(γ− 1) v(γ− 3) 0

v
(

2Eγ
ρ − 3(γ− 1)(u2 + v2)

)
(γ− 1)2uv − Eγ

ρ + (γ− 1)(u2 + 3v2) −vγ

 ,

B22 =
1
ρ


0 0 0 0
−v 0 1 0

(γ− 1)u −(γ− 1) 0 0
(γ− 1)2uv −(γ− 1)v −(γ− 1)u 0

 ,

B23 =
1
ρ


0 0 0 0
−u 1 0 0

(γ− 3)v 0 −(γ− 3) 0
− Eγ

ρ + (γ− 1)(u2 + 3v2) −(γ− 1)u −3(γ− 1)v γ

 ,

B24 =
1
ρ


0 0 0 0
0 0 0 0
0 0 0 0
−vγ 0 γ 0

 .

(26)

If a higher accuracy order in time is required, the procedure needs to be continued until
the corresponding derivatives in a similar fashion. For convenience, in the following parts,
WENO5-LW3 denotes a scheme coupling the fifth order finite volume WENO scheme in space and the
third order Lax–Wendroff-type method in time and WENO5-RK3 denotes a scheme coupling the fifth
order finite volume WENO schemes and the third order Runge–Kutta methods.

3. Numerical Results

In this section, extensive numerical examples are used for performance testing for the new finite
volume WENO5-LW3 schemes. We compare the results of WENO5-LW3 for one- and two-dimensional
Euler equations and that of the WENO5-RK3 schemes, focusing on the important issue of CPU time
cost, non-oscillatory and efficiency. For comparison of CPU time cost, all computations are performed
on a personal computer, Core (TM) i5-3470 CPU @ 3.20 GHz with 4 GB RAM. In these numerical
simulations, we use CFL number 0.4 and 0.6 for WENO5-LW3 and WENO-RK3 schemes, respectively.
The small positive constant ε = 10−6 is used to avoid denominator zero in the nonlinear weight
formula. All of these simulations are based on uniform meshes.

Example 1 (One-Dimensional Accuracy Test). To check the order accuracy of the finite volume WENO5-LW3
schemes based on one-dimensional Euler system with a smooth solution (Equation (6)), for comparison, we use
the same test as in [43]. In the computational domain [−1, 1], the initial condition is given below:

ρ(x, 0) = 1 + 0.2sin(πx),

v(x, 0) = 1.0, p(x, 0) = 1.0.

Two-periodic boundary conditions are used; we simulate until the ending time t = 2, when the solutions
are continuous and there are no shocks. The exact solution is

ρ(x, t) = 1 + 0.2sin(π(x− t)),

v(x, t) = 1.0, p(x, t) = 1.0.
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The numerical errors and orders of accuracy based on L1 and L∞ norm metric for density ρ by
WENO5-LW3 are shown in Table 1. N stands for the number of mesh grids; adjusted adaptive time step
size should be used to get the fifth order as mesh refining. For comparison, the L1 and L∞ numerical
errors and accuracy orders by WENO5-RK3 schemes are displayed in Table 1. In Table 1, we can
find that the designed accuracy order are attained for both WENO5-LW3 and WENO5-RK3, and they
generate similar numerical errors.

Table 1. L1 and L∞ errors and numerical orders of accuracy for density of one-dimensional order test,
WENO5-LW3 and WENO5-RK3 using N space mesh points.

N
WENO5-LW3 WENO5-RK3

L1 error order L∞ error order L1 error order L∞ error order

10 6.38 × 10−3 1.02 × 10−2 6.37 × 10−3 1.01 × 10−2

20 3.14 × 10−4 4.34 5.45 × 10−4 4.23 3.15 × 10−4 4.34 5.45 × 10−4 4.21
40 9.80 × 10−6 5.00 1.88 × 10−5 4.86 9.85 × 10−6 5.00 1.89 × 10−5 4.85
80 3.06 × 10−7 5.00 6.14 × 10−7 4.94 3.07 × 10−7 5.00 6.15 × 10−7 4.94

160 9.59 × 10−9 5.00 1.85 × 10−8 5.05 9.58 × 10−9 5.00 1.85 × 10−8 5.05
320 2.97 × 10−10 5.01 5.40 × 10−10 5.10 2.98 × 10−10 5.01 5.42 × 10−10 5.10
640 9.71 × 10−12 4.93 1.82 × 10−11 4.89 9.20 × 10−12 5.02 1.91 × 10−11 4.82

In Figure 2, we give the numerical errors and CPU time cost for density ρ based on L1 and L∞ norm
metric with cell numbers are 10× 2k−1, k = 1, 2, ..., 7, and Log scale is used for numerical errors in y axis.
In this figure, the line of WENO5-LW3 always underneath the line of WENO5-RK3, which implies that,
with the same CPU time cost, WENO5-LW3 obtains a higher accuracy than WENO5-RK3. From the
trend of the line, it seems that the phenomenon will be more serious when the test has more mesh
points.
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Figure 2. Numerical errors of density and CPU time for the one-dimensional order test in Example 1:
(Left) L1 error; and (Right) L∞ error.

Example 2 (One-Dimensional Test with Shocks). This problem is commonly applied to test the ability of
shock capturing for schemes in one-dimensional Euler system [43]. In this case, we considertwo different initial
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conditions in the domain [−0.5, 0.5], with continuation boundary condition for two boundary; the first test is
Lax Problem,

(ρ, v, p) =

{
(0.445, 0.698, 3.528) x ≤ 0
(0.5, 0, 0.571) x > 0

. (27)

and the second test is Sod Problem,

(ρ, v, p) =

{
(1.0, 0, 1.0) x ≤ 0
(0.25, 0, 0.1) x > 0

, (28)

Both problems have Riemann initial condition. The simulation is performed up to final time
t = 0.16 for the Lax Problem and ending time t = 0.1644 for the Sod Problem, when shocks have
appeared in the solutions.

In this case, we put more concern on the resolution of numerical shocks. The computed density ρ

based on the WENO5-LW3 and WENO5-RK3 schemes with N = 200 on uniform mesh are plotted
in Figure 3 and compared with the exact solution. The numerical results and the exact solution fit
very well, no spurious oscillations occur, and the results are comparable with that in [43]. In this test,
we take the CPU time based on 2000 uniform mesh grids and tested for 10 times; the CPU time for
WENO5-LW3 and WENO5-RK3 schemes are 23.41 s and 26.52 s, respectively. From the data, we find
that the CPU time cost of WENO5-LW3 scheme is about 10% less than that of WENO5-RK3 scheme.
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Figure 3. One-dimensional test with shocks problem at t = 1.6 for the Lax Problem (Left) and t = 0.1644
(Right) for the Sod Problem by WENO5-LW3 and WENO5-RK3 against exact solution.

Example 3 (One-Dimensional Test of Shocks Interaction with Entropy Waves). This problem is a typical
one-dimensional test for higher order method to evaluate the non-oscillatory properties [43], as this case contains
not only shocks but also complex smooth region structure; more specifically, it is a problem about the interaction
with entropy waves of shocks. The given initial condition is:

(ρ, v, p) =

{
(3.857143, 2.629369, 10.333333) x < −4
(1 + εsin(5x), 0, 1.0) x ≥ −4

. (29)

where ε = 0.2 is used. Actually, this is a problem about a moving Mach = 3 shock interacting with sine
waves. The simulation is performed until the ending time t = 1.8 s with continuation boundary condition on
the domain [−5, 5].
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The computed density ρ based on the WENO5-LW3 schemes and WENO5-RK3 schemes with the
mesh points N = 200 and N = 400 and zoomed in pictures are plotted in Figure 4 against a reference
exact solution by 2000 mesh points, which show that the computed solution converges to the reference
exact solution, and no spurious oscillations occur. The WENO5-LF3 scheme could get much better
resolution than that of WENO5-RK3 scheme. The results are better confirmed with reference solution
on N = 400 than that on N = 200, which also shows a converged solution computed by WENO5-LW3.
All results agree with that in [43]. The time cost to run 10 times based on uniform mesh with N = 2000
is taken as the CPU time for every problem. The CPU time is 59.94 s for WENO5-LW3 and 66.24 s
for WENO5-RK3, respectively, so the CPU time cost of WENO5-RK3 is around 8.5% more than that
of WENO5-LW3.
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Figure 4. The shock density wave interaction problem at t = 1.8 by WENO5-LW3 and WENO5-RK3
with N = 200 and N = 400. (a) N = 200 for density; (b) N = 200 density zoomed in; (c) N = 400 for
density; (d) N = 400 density zoomed in.

Example 4 (Two-Dimensional Accuracy Order Test). To check the order accuracy of the schemes for
two-dimensional Euler system with a smooth solution, for comparison, we use the test in [43]. In the
computational domain [0, 2]× [0, 2], we take the following initial conditions:

ρ(x, y, 0) = 1 + 0.2sin
(

π(x + y)
)

,
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u(x, y, 0) = 0.7, v(x, y, 0) = 0.3, p(x, y, 0) = 1.

Four-periodic boundary conditions are used; the final time t = 2 is when no shocks appear in the solution.
The exact solution for the problem is

ρ(x, y, t) = 1 + 0.2sin
(

π(x + y− (u + v)t)
)

,

u(x, y, t) = 0.7, v(x, y, t) = 0.3, p(x, y, t) = 1.

In Table 2, the numerical errors and accuracy orders for ρ by WENO5-LW3 based on L∞ and
L1 norm metric are shown, while N is the number of mesh cells. The rectangle cell is used to avoid
cancelations of some special error due to the symmetry axis being in the diagonals of cells. L∞ and
L1 numerical errors and accuracy orders by WENO5-RK3 schemes are also displayed in Table 2 to
compare with the results of WENO5-LW3. The two schemes have achieved the fifth order accuracy at
the final time and generate similar numerical errors.

Table 2. L1 and L∞ errors and numerical orders of accuracy for density of two-dimensional accuracy
test, WENO5-LW3 and WENO5-RK3 with N cells.

N
WENO5-LW3 WENO5-RK3

L1 error order L∞ error order L1 error order L∞ error order

8× 12 4.46×10−2 0.00 1.73×10−2 0.00 4.46×10−2 0.00 1.74×10−2 0.00
16× 24 2.70×10−3 4.05 1.15×10−3 3.91 2.72×10−3 4.03 1.16×10−3 3.90
32× 48 8.79×10−5 4.94 4.32×10−5 4.73 8.85×10−5 4.94 4.35×10−5 4.74
64× 96 2.75×10−6 5.00 1.38×10−6 4.97 2.77×10−6 5.00 1.40×10−6 4.96

128× 192 8.62×10−8 5.00 4.24×10−8 5.02 8.65×10−8 5.00 4.27×10−8 5.03

On mesh 64× 96, the corresponding CPU time costs for WENO5-LW3 and WENO5-RK3 are
986.73 s and 1103.93 s. We can see that WENO5-RK3 cost about 10% more CPU time than WENO5-LW3.

Example 5 (Two-Dimensional Double Mach Reflection). This problem is a two-dimensional double mach
reflection test; complex boundary conditions are implemented. For the example, multiple shocks with complex
self-similar structure are emergent, and the initial geometry is very simple [43].

In this test, the wedge of the oblique shock is set as a partially reflecting horizontal lower boundary.
The computational domain is [0, 4]× [0, 1], the x axis is 4.0 units long. At the first 1/6 units, the outflow
is free and the remaining units reflect the rest of the boundary. At the upper boundary, the flow values
are used to describe the exact motion of a shock at Mach = 10. The left boundary is constant with
the post oblique shock values, and there is no limit for the right boundary. In the whole calculation,
the final time is t = 0.2.

At the ending time, we plot the computed density contours by the WENO5-LW3 scheme with
1920× 480 meshes in Figure 5, which is almost the same as the results by WENO5-RK3, and comparable
with previous results in [43]. When the CPU time is considered, we can find that WENO5-RK3 also
costs a little more time than WENO5-LW3.
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Figure 5. The two-dimensional double mach reflection problem at t = 0.2 by WENO5-LW3.

4. Concluding Remarks

In this paper, we take advantage of Lax–Wendroff-type time discretizations and high resolution
finite volume WENO schemes to simulate one-dimensional and two-dimensional Euler equations.
By comparing the addressing on CPU time, non-oscillatory, resolution and relevant efficiency of finite
volume WENO schemes using time discetizations, the numerical results show that the WENO5-LW3
schemes takes smaller CPU costs than WENO5-RK3 schemes, while WENO5-LW3 schemes got the
same order of accuracy with Runge–Kutta time discretization on the same mesh grids number.
These conclusions agree with the theory of the finite difference WENO with Lax–Wendroff-type
and Runge–Kutta time discretizations for Euler system of compressible gas dynamics.
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