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Abstract: In this paper, in the setting of ∆-symmetric quasi-metric spaces, the existence and
uniqueness of a fixed point of certain operators are scrutinized carefully by using simulation functions.
The most interesting side of such operators is that they do not form a contraction. As an application,
in the same framework, the Ulam stability of such operators is investigated. We also propose some
examples to illustrate our results.
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1. Introduction

In the last few decades, one of the hot topics in topology and analysis has been the quasi-metric,
which is a natural generalization of the notion of the metric; see, e.g., [1–4]. Roughly speaking, the
quasi-metric appears to be obtained by relaxing the symmetric condition from the axioms of the
standard metric. Regarding the physical phenomena, the quasi-metric can be more useful to consider
in solving real-life problems [5]. On the other hand, one can ask an impulsive question about whether
there is a positive constant ∆ such that the distance from a point p to q is dominated by ∆ times
the distance from q to p. The answer is affirmative, and such spaces are called the ∆-symmetric
quasi-metric. These spaces are quite rich and lie between the quasi-metric and metric.

Quasi-metric spaces are very interesting topics for researchers who work in fixed point theory;
see, e.g., [6,7] and the references therein. It is an indispensable fact that real-life applications of fixed
point theory have a wide range. Indeed, the border of the range is beyond the following question: Do
we transfer the real-life problems in the form of f (x) = x or not? Consequently, after the first metric
fixed point result of Banach, several authors have reported a number of interesting results in various
directions. Here, we mention one of the interesting generalization of the Banach contraction mapping
principle that was given by Seghal [8].

Theorem 1. ([8]) Let (M, d) be a complete metric space and T a continuous self-mapping ofM, which satisfies
the condition that there exists a real number q, 0 < q < 1 such that for each v ∈ M, there exists a positive
integer m(v) such that for each w ∈ M,

d(Tm(v)v, Tm(v)w) ≤ qd(v, w). (1)

Mathematics 2018, 6, 208; doi:10.3390/math6100208 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6798-3254
http://www.mdpi.com/2227-7390/6/10/208?type=check_update&version=1
http://dx.doi.org/10.3390/math6100208
http://www.mdpi.com/journal/mathematics


Mathematics 2018, 6, 208 2 of 19

Then, T has a unique fixed point inM.

This result above was improved by Guseman [9] by removing the continuity condition. Later,
K.Iseki [10], J. Matkowski [11], Singh [12] and Ray and Rhoades [13] extended the result of Seghal [8].
The result of Kincses and Totik [14] is one of the most improved results in this direction.

Theorem 2. ([14]) Let T be a self-mapping on a metric space (M, d) such that for some q ∈ [0, 1) and for all
v, w ∈ M, we can find a positive integer m(v) such that:

d(Tm(v)v, Tm(v)w) ≤ q max
{

d(v, w), d(w, Tm(v)v), d(v, Tm(v)w)
}

. (2)

Then, T has a unique fixed point v∗.

Theorem 3. ([14]) Let T be a self-map of a metric space (M, d). Assume there exists a nonincreasing function
β : (0, ∞)→ [0, 1) such that for each v ∈ M, there exists a positive integer m(v) such that for each w ∈ M
with w 6= v,

d(Tm(v)v, Tm(v)w) ≤ β[d(v, w)]d(v, w). (3)

Then, T has a unique fixed point v∗.

The inflation of so many results causes a commotion. Therefore, it is natural to consider combining
and unifying the existence results. The notion of the simulation function is one of the successful
consequences of this approach. By using the simulation function, it is possible to combine several
distinct types of contractions and hence unify a number of existing results in a single theorem.

In this paper, we aim to get not only the most general metric fixed point results in the context of
quasi-metric space, but also unify the several existing results in this direction, including the results of
Seghal [8], Guseman [9], Kincses and Totik [14].

2. Preliminaries

We denote the set of non-negative reals by R+
0 .

Definition 1. ForM 6= ∅, a function q :M×M→ R+
0 is called quasi-metric if the following assumptions

are held:

(q1) q(s, t) = q(t, s) = 0⇔ s = u ;
(q2) q(s, u) ≤ q(s, t) + q(t, u), for all s, t, u ∈ M.

Here, the pair (M, q) is called a quasi-metric space.

The quasi-metric notion is a concrete extension of the metric concept. Therefore, as expected, each
metric space forms a quasi-metric space, but the converse is not necessarily true. For instance, the
well-known functions l, r : R×R→ R+

0 , defined by l(s, t) = max{s− t, 0} and r(s, t) = max{t− s, 0},
are quasi-metric, but not a metric. Indeed, d(s, t) := max{l(s, t), r(s, t)} forms a standard Euclidean
metric on R.

A sequence {sn} inM converges to s ∈ M if:

lim
n→∞

q(sn, s) = lim
n→∞

q(s, sn) = 0. (4)

In a quasi-metric space (M, q), the limit for a convergent sequence is unique. If sn → s, we have
for all s ∈ M:

lim
n→∞

q(sn, t) = q(s, t) and lim
n→∞

q(t, sn) = q(t, s).
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Let (M, q) be a quasi-metric space and {sn} be a sequence inM. We say that a sequence {sn}
is left-Cauchy if for every ε > 0, there exists a positive integer N = N(ε) such that q(sn, sm) < ε

for all n ≥ m > N. Analogously, a sequence {sn} is called right-Cauchy if for every ε > 0, there
exists a positive integer N = N(ε) such that q(sn, sm) < ε for all m ≥ n > N. Furthermore, the
sequence {sn} is said to be Cauchy if for every ε > 0, there exists a positive integer N = N(ε) such that
q(sn, sm) < ε for all m, n > N. It is evident that a sequence {sn} in a quasi-metric space is Cauchy if and
only if it is left-Cauchy and right-Cauchy. A quasi-metric space (M, q) is left-complete (respectively,
right-complete, complete) if each left-Cauchy sequence (respectively, right-Cauchy sequence, Cauchy
sequence) inM is convergent.

Definition 2. Suppose that (M, q) is a quasi-metric space, and {sn} ⊂ M and s ∈ M. Let T be a
self-mapping.We say that T is:

(i) right-continuous if q(Tsn, Ts)→ 0 whenever q(sn, s)→ 0;
(ii) left-continuous if q(Ts, Tsn)→ 0 whenever q(s, sn)→ 0;

(iii) continuous if {Tsn} → Ts whenever {sn} → s.

Observe that the simultaneous right and left continuity of a mapping yields the continuity of it.

Definition 3. Suppose that (M, q) is a quasi-metric space. We say that it is ∆-symmetric if there exists
a positive real number ∆ > 0 such that:

q(t, s) ≤ ∆ · q(s, t) for all s, t ∈ M. (5)

It is clear that if ∆ = 1, then the ∆-symmetric quasi-metric space (M, q) forms a metric space.

Example 1. Suppose that (M, q) is a quasi-metric space, and a function q : M×M → R+
0 is defined

as follows:

q(s, t) =

{
3 · d(s, t) if s ≥ t

d(s, t) otherwise

(M, q) is a three-symmetric quasi-metric space, but it is not a metric space.

In the following, we recall the main properties of ∆-symmetric quasi-metric spaces.

Lemma 1. (See, e.g., [15]) Let (M, q) be a ∆-symmetric quasi-metric space and {sn} be a sequence inM and
s ∈ M. Then:

(i) {sn} right-converges to s⇔ {sn} left-converges to s⇔ {sn} converges to x.
(ii) {sn} is right-Cauchy⇔ {sn} is left-Cauchy⇔ {sn} is Cauchy.

(iii) If {tn} is a sequence inM and q(sn, tn)→ 0, then q(tn, sn)→ 0.

A non-decreasing function ψ : R+
0 → R+

0 is called a comparison function (see, e.g., [16]) if:

(Ω) lim
n→∞

ψn(t) = 0, for t ∈ R+
0 .

Proposition 1. (See, e.g., [16]) Let ψ : R+
0 → R+

0 be a comparison function. Then, we have:

(A) ψ is continuous at zero.
(B) For k ∈ N, each ψk also forms a comparison function.
(Γ) ψ(t) < t for all t > 0.

A non-decreasing function ψ : R+
0 → R+

0 is called a c-comparison if
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(Σ)
∞

∑
n=0

ψn(t) < ∞, for all t ∈ (0, ∞).

We reserve the letter Ψ to denote the family of all c-comparison functions. Note that each
c-comparison function forms a comparison function. For more details and examples for comparison
and c-comparison functions, see, e.g., [16,17].

Let ϕ : R+
0 → R+

0 be a c-comparison function that satisfies the following condition:

(Ξ) lim
n→∞

(t− ϕ(t)) = ∞.

We shall use the letter Φ to represent the class of such functions (i.e., the set of all c-comparison
functions that satisfies the condition (Ξ)).

In what follows, we recollect the definition of the simulation function.

Definition 4. See, e.g., [18]. Suppose that ζ : R+
0 × [0, ∞)→ R fulfills:

(ζ1) ζ(t, s) < s− t for all t, s > 0;
(ζ2) if {tn}, {sn} are sequences in (0, ∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, then:

lim sup
n→∞

ζ(tn, sn) < 0. (6)

Then, ζ is called a simulation function. Further, the letter S denotes all simulation functions ζ.

We underline the fact that the condition ζ(0, 0) = 0 is superfluous. Due to the axiom (ζ1), we have:

ζ(t, t) < 0 for all t > 0. (7)

For more details and examples on simulation functions, see, e.g., [6,7,19–22].
The notions of an α-admissible mapping [23] and triangular α-admissible mappings [24] were

refined by Popescu [25] as follows:

Definition 5. [25] Let α : X× X → R+
0 be a mapping andM 6= ∅. A self-mapping T :M→M is said to

be an α-orbital admissible if for all s ∈ M, we have:

α(s, Ts) ≥ 1⇒ α(Ts, T2s) ≥ 1. (8)

Furthermore, α-orbital admissible mapping T is called triangular α-orbital admissible if the following
condition holds:

(TO) α(s, t) ≥ 1 and α(s, Tt) ≥ 1 implies that α(s, Tt) ≥ 1, for all s, t ∈ M.

Each α-admissible mapping is an α-orbital admissible mapping. For more details and interesting
examples, see, e.g., [21,26–35].

A setM is regular with respect to mapping α :M×M→ R+
0 if {sn} is a sequence inM such

that α(sn, sn+1) ≥ 1 for all n and sn → s ∈ M as n→ ∞, then α(s, sn) ≥ 1 for all n.
The following technical lemma will be used in the proof of the first main result of this paper.

Lemma 2. LetM be a non-empty set and T : M → M form a triangular α-orbital admissible mapping.
Consider the iterative sequence sn = Tsn−1, n ∈ N. If there exists s0 ∈ M such that α(s0, Ts0) ≥ 1, then for
any k ∈ N, we have:

α(Tk−1s0, Tks0) ≥ 1, (9)

and:
α(sk, Tpsk) ≥ 1, (10)

for all p ∈ {0, 1, 2, ...} .
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Proof. Due to the statement of the theorem, there exists a point s0 ∈ M such that α(s0, Ts0) ≥ 1.
Based on the definition of the iterative sequence {sn} ⊂ M and taking into account that T is α-orbital
admissible, we get:

α(s0, s1) = α(s0, Ts0) ≥ 1⇒ α(Ts0, T2s0) = α(s1, s2) ≥ 1.

Recursively, we derive that:

α(sn−1, sn) = α(Tn−1s0, Tns0) ≥ 1, for all n ∈ N0. (11)

On the other side, using the condition (TO) of Definition 5, we deduce that:

α(sk, Tsk) = α(sk, sk+1) ≥ 1 and α(sk+1, sk+2)α(sk+1, Tsk+1) ≥ 1
implies that α(sk, sk+2) = α(sk, T2sk) ≥ 1.

Recursively, for all p ∈ {1, 2, ...}, we have:

α(sk, Tpsk) ≥ 1, for any k ∈ N. (12)

Definition 6. Let α :M×M→ R+
0 be a function. We say that a self-mapping T :M→M satisfies the

condition (U) if:
α(u, v) ≥ 1 and α(v, u) ≥ 1 (13)

for all u, v ∈ Fix(Tn) =
{

x ∈ M : Tn(u)x = x
}

.

3. Main Results

We state our first main results.

Theorem 4. Let (M, q) be a complete ∆-symmetric quasi-metric space, T be a continuous self-mapping and
α :M×M→ R+

0 , ζ ∈ S , ϕ ∈ Ψ. Suppose that for every x ∈ M, there is a positive integer n = n(s) such
that the inequality:

ζ(α(s, t)q(Tn(s)s, Tn(s)t), ϕ(q(s, t))) ≥ 0, (14)

is fulfilled for all t ∈ M. Moreover, assume that:

(i) T forms a triangular α-orbital admissible;
(ii) there exists s0 ∈ M with the property α(s0, Ts0) ≥ 1 and α(Ts0, s0) ≥ 1;

Then, T has a fixed point u ∈ M.

Proof. Fix s ∈ M. By assumption, there exist n = n(s) such that for all t ∈ M:

ζ(α(s, t)q(Tn(s)s, Tn(s)t), ϕ(q(s, t))) ≥ 0. (15)

Regarding the condition (ζ1), we find:

0 ≤ ζ(α(s, t)q(Tn(s)s, Tn(s)t), ϕ(q(s, t)))
< ϕ(q(s, t))− α(s, t)q(Tn(s)s, Tn(s)t),

which yields that:
α(s, t)q(Tn(s)s, Tn(s)t) ≤ ϕ(q(s, t)). (16)



Mathematics 2018, 6, 208 6 of 19

Now, we shall define r1(s) and r2(s) as follows:

r1(s) = sup {q(s, Tms) : m ∈ N} ,
r2(s) = sup {q(Tms, s) : m ∈ N} ,

(17)

for any s ∈ M.
In what follows, we shall show that r1(s) < ∞ and r2(s) < ∞.
First of all, for a given p ∈ {0, 1, ..., n(s)− 1}, we set l = max

{
a0, q(s, Tn(s)s)

}
and:

am = q(s, Tmn(s)+ps) for all m ∈ N.

Due to (Σ), there exists c ∈ (0, ∞), with c > l such that t− ϕ(t) > l for all t ∈ [c, ∞). Notice that
c > l ≥ a0.

Now, we claim that there exist c ∈ (0, ∞), with c > l such that:

am < c for all m ∈ N. (18)

Observe that the assumption (18) holds for m = 0. On the contrary, we suppose that there is a
positive integer k so that:

ak−1 < c ≤ ak. (19)

Regarding the triangle inequality, together with the inequalities (16) and (12), we have that:

ak = q(s, Tk·n(s)+ps) ≤ q(s, Tn(s)s) + q(Tn(s)s, Tk·n(s)+ps)
= q(s, Tn(s)s) + q(Tn(s)s, Tn(s)

(
T(k−1)·n(s)+ps)

)
≤ l + α(s, T(k−1)·n(s)+ps)q(Tn(s)s, Tn(s)

(
T(k−1)·n(s)+ps)

)
≤ l + ϕ

(
q(s, T(k−1)·n(s)+ps)

)
= l + ϕ(ak−1).

Taking, the assumption (19) into account and keeping ϕ ∈ φ in mind, we get:

ak − ϕ(ak) ≤ l.

This is a contradiction, since we already supposed that ak ≥ c, and we have ak −
ϕ(ak) > l due to (Ξ). Hence, the set

{
q(s, Tm·n(s)+p) : m ∈ N

}
is bounded. Due to fact

that p ∈ {0, 1, ..., n(s)− 1}, we conclude that the set {q(s, Tms) : m ∈ N} is bounded, and so,
r1(s) = sup {q(s, Tms) : m ∈ N} < +∞.

On the other hand, the space (M, q) is the ∆-symmetric, so, for all s ∈ M and m ∈ N, we have:

q(Tms, s) ≤ C · q(s, Tms) ≤ C · r1(s).

From here, we conclude that the set {q(Tms, s) : m ∈ N} is also bounded and r2(s) < +∞.
Therefore, for all s ∈ M and all m1, m2 ∈ N,

q(Tm1 s, Tm2 s) ≤ q(Tm1 s, s) + q(s, Tm2 s) ≤ r1(s) + r2(s) < +∞

which shows that the orbit
{

Tks : k ∈ N
}

is a bounded subset ofM.
Now, let s0 ∈ M be an arbitrary point. If Ts0 = s0, then s0 forms a fixed point of T, which

completes the proof. Hence, we assume that Ts0 6= s0. Starting from s0, we construct inductively a
sequence {sk}, by:

sk+1 = Tnk sk for all k ∈ N, (20)
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where nk = nk(s). Since:
s1 = Tn0 s0 and s2 = Tn1 s1 = Tn1+n0 s0,

by induction, we deduce that:
sk+1 = Tnk+...+n1+n0 s0, (21)

which means that {sk}k ≥ 0 is a subsequence of the orbit
{

Tks0 : k ∈ N
}

. Furthermore, we observe
that:

sk+i = Tn0+n(1)...+nk+nk+1+...+nk+i−1 s0

= Tnk+nk+1+...+nk+i−1 (Tn0+n1+...+nk−1 s0)

= Tnk+nk+1+...+nk+i−1 sk.
(22)

We shall prove that {sn} is right-Cauchy and left-Cauchy in (M, q). First of all, notice that
from (20),

q(sk, sk+1) = q(sk, Tnk sk) = q(Tnk−1 sk−1, Tnk (Tnk−1 sk−1))

= q(Tnk−1 sk−1, Tnk−1(Tnk sk−1)),

for any k ∈ N and replacing s = sk−1 and t = Tnk sk−1 in (16), we get:

q(sk, Tnk sk) = q(Tnk−1 sk−1, Tnk−1(Tnk sk−1))

≤ α(sk−1, Tnk sk−1)q(Tnk−1 sk−1, Tnk−1(Tnk sk−1))

≤ ϕ(q(sk−1, Tnk sk−1))

< q(sk−1, Tnk sk−1).

(23)

Hence, since ϕ is increasing, we obtain that:

q(sk, sk+1) = q(sk, Tnk sk) ≤ ϕk(q(s0, Tnk s0)) ≤ ϕk(q(r1(s0)), for all k ∈ N. (24)

By using the triangular inequality and (24), for all i ≥ 1, we get:

q(xk, xk+l) ≤ q(sk, sk+1) + q(sk+1, sk+2)... + q(sk+l−2, sk+l−1) + q(sk+l−1, sk+l)

≤
k+l−1

∑
j=k

ϕj(r1(x0)) <
∞

∑
j=k

ϕj(r1(x0)).
(25)

However, assuming that Ts0 6= s0, we have r1(s0) ≥ q(s0, Tnk s0) > 0, and by (Σ), the series
∞

∑
j=0

ϕj(r1(s0)) < ∞ is convergent and then
k+l−1

∑
j=k

ϕj(r1(s0))→ 0. Therefore, for an arbitrary ε > 0, there

exists k0 ∈ N such that
∞

∑
l=k

ϕl(r1(s0)) < ε for all k ≥ k0, and from (25),

q(sk, sk+l) < ε,

which ensures that {xk} is a right-Cauchy sequence. On account of Lemma 1, we derive that {xk} is
a left-Cauchy sequence in (M, q). Therefore, it is Cauchy in the complete quasi-metric space (M, q). It
yields that there exists u ∈ M such that:

lim
k→∞

q(sk, u) = lim
k→∞

q(u, sk) = 0. (26)

For the rest of the proof, we consider that {sk} is the sequence defined above and u is the limit of
this sequence.

Since T is continuous, by using the property (q1) we derive that:

lim
k→∞

q(sk, Tu) = lim
n→∞

q(Tsk−1, Tu) = 0, (27)
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and:
lim

n→∞
q(Tu, sk) = lim

n→∞
q(Tu, Tsk−1) = 0. (28)

Thus, we have:
lim
k→∞

q(sk, Tu) = lim
n→∞

q(Tu, sk) = 0. (29)

Keeping (26) and (29) in mind together with the uniqueness of a limit, we conclude that u = Tu,
that is u is a fixed point of T.

In the following theorem, we remove the assumption of the continuity of the mapping T.

Theorem 5. Let (M, q) be a complete ∆-symmetric quasi-metric space, T be a self-mapping and α :M×M→
R+

0 , ζ ∈ S , ϕ ∈ Ψ. Suppose that for every x ∈ M, there is a positive integer n = n(s) such that the inequality:

ζ(α(s, t)q(Tn(s)s, Tn(s)t), ϕ(q(s, t))) ≥ 0, (30)

is fulfilled for all t ∈ M. Suppose also that:

(i) T is a triangular α-orbital admissible;
(ii) there exists s0 ∈ M such that α(s0, Ts0) ≥ 1 and α(Ts0, s0) ≥ 1;

(iii) M is α-regular.

Then, T has a fixed point u ∈ M. Furthermore:

(a) for each x ∈ M, lim
m→∞

Tms = u;

(b) the mapping Tn(u) is continuous at u.

Proof. As in Theorem 4, we can construct an iterative sequence {sn} that converges to a point u ∈ M,
which means that:

lim
k→∞

q(sk, u) = lim
k→∞

q(u, sk) = 0. (31)

We claim, under the assumption that M is α-regular, that u is a fixed point of Tn(u), that is
Tn(u)u = u. First of all, replacing in (30) s = sk−1 and t = Tn(u)sk−1, we have for nk−1 = n(sk−1):

ζ(α(sk−1, Tn(u)sk−1)q(Tnk−1 sk−1, Tnk−1(Tn(u)sk−1)), ϕ(q(sk−1, Tn(u)sk−1))) ≥ 0, (32)

or, keeping in mind (ζ1),

q(sk, Tn(u)sk) = q(Tnk−1 sk−1, Tnk−1(Tn(u)sk−1)

≤ α(sk−1, Tn(u)sk−1)q(Tnk−1 sk−1, Tnk−1(Tn(u)sk−1)

≤ ϕ(q(sk−1, Tn(u)sk−1)

< q(sk−1, Tn(u)sk−1).

(33)

Taking into account that ϕ is monotone increasing, we can write the chain of inequalities:

q(sk, Tn(u)sk) ≤ ϕ(q(sk−1, Tn(u)sk−1)

≤ ϕ2(q(sk−2, Tn(u)sk−2)

≤ ... ≤ ϕk(q(s0, Tn(u)s0) ≤ ϕk(r1(s0)).
(34)

Note that ϕ ∈ Ψ is a c-comparison function, and hence, it satisfies (Ω) condition. Thus, we get
that:

lim
k→∞

q(sk, Tn(u)sk) = 0. (35)
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Furthermore, from (35) and Lemma 1, we have:

lim
k→∞

q(Tn(u)sk, sk) = 0. (36)

By contradiction, we assume that Tn(u)u 6= u, and let ε1 = q(u, Tn(u)u) > 0 and ε2 =

q(Tn(u)u, u) > 0. Without loss of generality, we suppose that ε1 ≤ ε2.
Again, since ϕ ∈ Ψ, (Γ) holds, which means that:

ϕ(ε1) < ε1. (37)

From (31) and respectively (36), there exists k0 ∈ N such that for any k ≥ k0, there hold:

q(sk, u) <
ε1

3
, q(u, sk) <

ε1

3
and q(Tn(u)sk, sk) <

ε1

3
. (38)

IfM is regular with respect to α, then there exists a subsequence {sk} of {sn} such that α(u, sk) ≥ 1
for all k and using the triangle inequality, we obtain:

ε2 = q(Tn(u)u, u) ≤ q(Tn(u)u, Tn(u)sk) + q(Tn(u)sk, sk) + q(snk , u)
≤ α(u, sk)q(Tn(u)u, Tn(u)sk) +

ε1
3 + ε1

3
< ϕ(q(u, sk) +

ε1
3 + ε1

3
< ε1

3 + ε1
3 + ε1

3 = ε1,

(39)

which is a contradiction. As a consequence, Tn(u)u = u.
Let us show now that uis the fixed point for T. Since (M, q) is α-regular, using the triangle

inequality, we have:

q(Tu, u) = q(T(Tn(u)u), u) = q(Tn(u)+1u), u)
≤ q(Tn(u)+1u), Tn(u)+1sk)) + q(Tn(u)+1sk, sk) + q(sk, u)
≤ α(u, sk)q(Tn(u)+1u), Tn(u)+1sk)) + q(Tn(u)+1sk, sk) + q(sk, u)
≤ ϕ(q(u, sk)) + q(Tn(u)+1sk, sk) + q(sk, u)
< q(u, sk) + q(Tn(u)+1sk, sk) + q(sk, u).

Letting k→ ∞, together with (31) and (35), we obtain:

q(Tu, u) ≤ 0. (40)

Hence, q(Tu, u) = 0. Moreover, since the space is ∆-symmetric, q(u, Tu) ≤ Mq(Tu, u) = 0, then
q(u, Tu) = q(Tu, u) = 0, so u is a fixed point of T.

We are demonstrating now (a). To begin, we claim that lim
k→∞

q(u, Tks) = 0, for each x ∈ M. For

this purpose, let s ∈ M be fixed, and let p ∈ {0, 1, ..., n(u)− 1} be arbitrary. For all k ≥ 1,

q(u, Tkn(u)+ps) = q(Tn(u)u, Tn(u)(T(k−1)n(u)+ps)
≤ α

(
u, T(k−1)n(u)+ps

)
q(Tn(u)u, Tn(u)(T(k−1)n(u)+ps)

≤ ϕ
(

q(u, T(k−1)n(u)+ps)
)
< q(u, T(k−1)n(u)+ps)

Since ϕ is monotone increasing, repeatedly applying the previous inequality, we obtain:

q(u, Tkn(u)+ps) ≤ ϕk(q(u, Tps)).
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Since p, u and s are fixed, we have lim
n→∞

ϕk(q(u, Tps)) = 0, which implies that:

lim
n→∞

(q(u, Tkn(u)+ps)) = 0.

If we do p ∈ {0, 1, ..., n(u)− 1}, we conclude that lim
k→∞

q(u, Tks) = 0. Taking Lemma 1 into

account, we get that lim
k→∞

q(Tks, u) = 0 and also lim
m→∞

Tms = u.

Finally, we prove that the statement (b) holds. For this purpose, we will show that q(u, Tn(u)tk) ≤
q(u, tk) where {tk} is an arbitrary sequence inM such that:

lim
k→∞

q(tk, u) = lim
k→∞

q(u, tk) = 0. (41)

Assume, by contradiction, that there exists some k ∈ N such that:

q(u, Tn(u)tk) > q(u, tk).

Replacing in (30), we have:

ζ(α(u, tk)q(Tn(u)u, Tn(u)tk), ϕ(q(u, tk))) ≥ 0.

Since ζ ∈ S and using the α-regularity ofM, we have:

q(u, tk) < q(u, Tn(u)tk) = q(Tn(u)u, Tn(u)tk) ≤ α(u, tk)q(Tn(u)u, Tn(u)tk)

≤ ϕ(q(u, tk)) < q(u, tk)

which is a contradiction. As a consequence, lim
k→∞

q(u, Tn(u)tk) = 0. Since q(Tn(u)tk, u) ≤ Mq(u, Tn(u)tk)

for all k ∈ N, we get that lim
k→∞

q(Tn(u)tk, u) = 0, and therefore:

lim
k→∞

Tn(u)tk = u,

which means that Tn(u) is continuous at s = u.

We notice that to guarantee the uniqueness, we need to add an additional condition.

Theorem 6. Adding the condition (U): If u is a fixed point of Tn(u) for any t ∈ M, α(u, t) ≥ 1 to the statement
of Theorem 4, respectively 5, we obtain the uniqueness of the fixed point.

Proof. By Theorem 4, we know that Tn(u) has at least one fixed point. We suppose that there exists
v ∈ M such that Tn(u)v = v 6= u = Tn(u)u. Then, due the condition (U):

0 < q(u, v) = q(Tn(u)u, Tn(u)v) ≤ α(u, v)q(Tn(u)u, Tn(u)v) ≤ ϕ(q(u, v)) < q(u, v)

which is a contradiction.
In this case, it is obvious that Tu = T(Tn(u)u) = Tn(u)(Tu) which shows that Tu is a fixed point of

T, and due to its uniqueness, we conclude that Tu = u.

Example 2. LetM = [0, 4], q :M×M→ R+
0 , defined by:

q(s, t) =

{
2 · (s− t) if s ≥ t

(t− s) otherwise
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It easy to see that (M, q) is a complete two-symmetric quasi-metric space. Let T :M→M,

T(s) =


s
2 if s ∈ [0, 1]
3 if s ∈ (1, 2)
s
4 if s ∈ [2, 4]

and α :M×M→ R+
0 ,

α(s, t) =


2 if s, t ∈ [0, 1]

1 if (s, t) ∈ {[0, 1]× [2, 4]} ∪ {[2, 4]× [0, 1]} ∪
{(

1
2 , 3

2

)}
0 otherwise

We shall prove that T satisfies the conditions of Theorem 5. If s ∈ [0, 1], then Ts, T2s ∈ [0, 1] and
α(s, Ts) = 2 ≥ 1⇒ α(Ts, T2s) = 2 ≥ 1. Furthermore, if s ∈ [2, 4], then Ts, T2s ∈ [0, 1] and α(s, Ts) = 1 ≥
1⇒ α(Ts, T2s) = 2 ≥ 1. Hence, T is an α-orbital mapping. For α(s, t) ≥ 1, we consider the following cases:

(a) If s, t ∈ [0, 1], then Tt ∈ [0, 1], α(t, Tt) = 2 ≥ 1 and α(s, Tt) = 2 ≥ 1;
(b) If s ∈ [0, 1] , t ∈ [2, 4], then Tt ∈ [0, 1], α(t, Tt) = 1 ≥ 1 and α(s, Tt) = 2 ≥ 1;
(c) If s ∈ [2, 4] , t ∈ [0, 1], then Tt ∈ [0, 1], α(t, Tt) = 2 ≥ 1 and α(s, Tt) = 1 ≥ 1;
(d) If s = 1

2 , t = 3
2 , since T 3

2 = 3, α( 3
2 , 3) = 0.

Therefore, T is a triangular α-orbital admissible mapping, so the assumption (i) of Theorem 5 is satisfied.

Remark 1. We remark that, since α(3, 1
2 ) = α( 1

2 , 3
2 ) = 1 and α(3, 3

2 ) = 0, T is not triangular α-admissible
mapping.

Further, Condition (ii) is satisfied, since α(0, T0) = α(0, 0) = 2. Moreover, if {sn} is a sequence inM
such that α(sn, sn+1) ≥ 1 for all n ∈ N and lim

n→∞
sn = s ∈ M, then s = 0 and α(0, sn)geq1 for all n. Hence,

M is α-regular. Due to the manner in which we defined the function α, the following cases are the interesting
ones, letting, for example ζ(t, s) = s

2 − t and ϕ(t) = t
3 .

(1) For s ∈ [0, 1], t ∈ [0, 1], we have Ts = s
2n and Tnt = t

2n . If s ≥ t, then q(s, t) = 2(s − t) and
q(Tns, Tnt) = 2 s−t

2n . Thus, (14) becomes:

α(s, t)q(Tns, Tnt) = 2 · 2 s− t
2n ≤ 1

2
2(s− t)

3
=

1
2

ϕ(q(s, t)),

which holds for any n ∈ {1, 2, ...}. If s < t, then q(s, t) = t− s and q(Tns, Tnt) = t−s
2n . In this case,

α(s, t)q(Tns, Tnt) = 2 · t− s
2n ≤ 1

2
· (t− s)

3
=

1
2

ϕ(q(s, t)),

holds also for any n ∈ {1, 2, ...}.
(2) For s ∈ [0, 1], t ∈ [2, 4], we have s < t, Ts = s

2n , Tnt = t
4·2n−1 = t

2n+1 and Tns ≤ Tnt. Hence,

α(s, t)q(Tns, Tnt) = 2 · t− 2s
2n+1 ≤

1
2
(t− s)

3
=

1
2

ϕ(q(s, t)),

(3) For s ∈ [2, 4], t ∈ [0, 1], we have s > t, Tns = s
2n+1 , Tnt = t

2n and Tns ≥ Tnt. Hence,

α(s, t)q(Tns, Tnt) = 2 · 2(s− 2t)
2n+1 ≤ 2 · 1

2
(s− t)

3
=

1
2

ϕ(q(s, t)),
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(4) For s = 1
2 and t = 3

2 , we have Tn 1
2 = 1

2n+1 , Tn 3
2 = Tn−1 (T 3

2
)
= Tn−13 = Tn−2 (T3) = Tn−2 3

4 =
3

4·2n−2 = 3
2n , so Tn 1

2 < Tn 3
2 . Hence,

α(
1
2

,
3
2
)q(Tn 1

2
, Tn 3

2
) =

(
3
2n −

1
2n + 1

)
=

5
2n+1 ≤

1
6
=

1
2
( 3

2 −
1
2 )

3
=

1
2

ϕ(q(s, t)),

Therefore, for any s ∈ M, there exists n(s) ∈ N, for example n(s) = 4, such that for every t ∈ M,
all assumptions of Theorem 4 are satisfied. Then, T has a (unique) fixed point u = 0. On the other hand,
q(T 1

2 , T 3
2 ) = q( 1

4 , 3) = 3− 1
4 = 11

4 , q( 1
2 , 3

2 ) =
3
2 −

1
2 = 1 and q(T 1

2 , T 3
2 ) ≤ k · q( 1

2 , 3
2 ) imply k > 1. Hence

T is not a contraction. Moreover, we cannot find the functions ζ ∈ S , ϕ ∈ φ such that:

ζ

(
α

(
1
2

,
3
2

)
q(T

1
2

, T
3
2
), ϕ

(
q(

1
2

,
3
2
)

))
≥ 0.

This shows that Theorem 5 is indeed a generalization of known results.

Theorem 7. Let (M, q) be a complete ∆-symmetric quasi-metric space, a self-mapping T and a map α :
M×M→ R+

0 . Suppose that there exist ζ ∈ S , ϕ ∈ φ such that for every s ∈ M, there is a positive integer
n = n(s) such that for all t ∈ M:

ζ(α(s, t)q(s, t), ϕ(S(s, t))) ≥ 0, (42)

for each s, t ∈ M, where:

S(s, t) = max
{

q(s, t), q(s, Tn(s)s), q(s, Tn(s)t)
}

. (43)

Assume that:

(i) T forms a triangular α-orbital admissible;
(ii) there is s0 ∈ M such that α(s0, Ts0) ≥ 1 and α(Ts0, s0) ≥ 1;

(iii)a either,M is α-regular,
(iii)b or, T is continuous.

Then, T has a fixed point u ∈ M. Furthermore, for each s ∈ M, lim
m→∞

Tms = u.

Proof. We remark firstly that if s ∈ M, then there exist n = n(s) such that for all y ∈ M:

ζ(α(s, t)q(s, t), ϕ(S(s, t))) ≥ 0, (44)

or, with (ζ1) in mind,
0 ≤ ζ(α(s, t)(q(s, t), ϕ(S(s, t)))

< ϕ(S(s, t))− α(s, t)q(s, t).

Furthermore,
α(s, t)q(s, t) ≤ ϕ(S(s, t)). (45)

The functions r1(s) and r2(s), defined by (17), are finite, which is observed by following step by
step the lines in the proof of Theorem 4. By substituting s by Tn(s) and y by T(k−1)n(x)+ps in (45) and
taking (Γ) into account, we have:

α(x, T(k−1)n(s)+ps)q(s, T(k−1)n(s)+ps) ≤ ϕ
(

S(s, T(k−1)n(s)+ps)
)

, (46)

where:
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S(s, T(k−1)n(s)+ps) = max
{

q(s, T(k−1)n(s)+ps), q(s, Tn(s)s), q(s, Tn(s)(T(k−1)n(s)+ps))
}

= max
{

q(s, T(k−1)n(s)+ps), q(s, Tn(s)s), q(s, Tkn(s)+ps)
} (47)

Denoting by ak = q(s, Tkn(s)+ps) for k ∈ N, from the triangle inequality, we have:

ak = q(s, Tkn(s)+ps) ≤ q(s, Tn(s)s) + q(Tn(s)s, Tkn(s)+ps)
= q(s, Tn(s)x) + q(Tn(s)s, Tn(s)(T(k−1)n(s)+ps)).

and combining with (46), we get, for any k ∈ N:

ak ≤ q(s, Tn(s)s) + q(Tn(s)s, Tn(s)(T(k−1)n(s)+ps))
≤ q(s, Tn(s)s) + α(s, T(k−1)n(s)+ps)q(Tn(s)s, Tn(s)(T(k−1)n(s)+ps))
≤ q(s, Tn(s)s) + ϕ(S(s, T(k−1)n(s)+ps))
= q(s, Tn(s)s) + ϕ(max

{
q(s, T(k−1)n(s)+ps), q(s, Tn(s)s), q(s, Tkn(s)+ps)

}
)

= q(s, Tn(s)s) + ϕ(max
{

ak−1, q(s, Tn(s)s), ak

}
).

Following the reasoning in the previous theorem, notice that we can find c ∈ (0, ∞), with
c > l = max {a0, q(s, Tn(s)s)} ≥ a0 such that t− ϕ(t) > l for all t ∈ R+

0 . We shall prove that ak < c for
all k ∈ N. For this, we assume, on the contrary, namely, that there exists a positive integer i such that
ai−1 < c ≤ ai. We have then:

ai ≤ l + ϕ(max {ai−1, l, ai}) ≤ l + ϕ(ai), (48)

or ai − ϕ(ai) ≤ l, which is a contradiction. Therefore, the set {q(s, Tns) : n ∈ N} is bounded and
r1(s) < ∞. Since the space (M, q) is ∆-symmetric, we have for all s ∈ M and all k ∈ N that:

q(Tns, s) ≤ Mq(s, Tns) ≤ Mr1(s),

which shows that the set {q(Tns, s) : n ∈ N} is also bounded. Hence, r2(s) < ∞.
Let s0 ∈ M be arbitrary. We will show now that the sequence {si} constructed inductively by:

m0 = n(s0), s1 = Tm0 s0

mi = n(si), si+1 = Tmi si

is a Cauchy sequence. By this construction of sequence {si}, it follows that for any i ∈ N and l ≥ 1,

si+l = Tmi+l−1 si+l−1 = Tmi+l−1 + ... + mi+1 + mixi
= Tmi+l−1+...+mi+1+mi+mi−1...+m1+m0 s0.

(49)

If we denote by s0 = mi+l−1 + ... + mi+1 + mi, using the condition (42) or, equivalently, (45), for
s = si−1 and t = Tp0 ti−1, we have:

q(si, si+l) = q(xi, Tp0 si) ≤ α(si−1, Tp0 si−1)q(Tmi−1 si−1, Tmi−1(Tp0 si−1)

≤ ϕ(S(si−1, Tp0 si−1)),
(50)

where:

S(si−1, Tp0 si−1) = max
{

q(si−1, Tp0 si−1), T(si−1, Tmi−1 si−1), q(si−1, Tp0+mi−1 si−1))
}

.
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Let us now have a positive integer p1 ∈ {p0, mi−1, p0 + mi−1} such that S(si−1, Tp0 si−1) =

q(si−1, Tp1 si−1). Replace in (50):

q(si, Tp0 si) ≤ ϕ(q(si−1, Tp1 si−1)). (51)

Hence, ϕ is monotone increasing, and we obtain that:

q(si, si+l) = q(si, Tp0 si) ≤ ϕ(q(si−1, Tp1 si−1)) ≤ ϕ2(q(si−2, Tp2 si−2))

≤ ... ≤ ϕi(q(s0, Tpi s0)) ≤ ϕi(r1(s0)),
(52)

for p0, p1, ..., pi ∈ N. However, ϕ is a c-comparison function, and from (Ω), there exist ε > 0 such that,
ϕi(r1(s0)) < 0 for any i ∈ N. Hence,

q(si, si+l) < ε

for arbitrary i ∈ N and l ≥ 1. We conclude that {li} is a right-Cauchy sequence on (M, q). Since (M, q)
is supposed to be ∆-symmetric, then, from Lemma 1, it is a Cauchy sequence. As the space is complete,
there exists u ∈ M such that sn → u, which means that:

lim
i→∞

q(si, u) = lim
i→∞

q(u, si) = 0. (53)

If we use the hypothesis that the map T is continuous, we obtain:

u = lim
i→∞

si+1 = lim
i→∞

Tsi = Tu

that is, u is a fixed point of T.
We want to show now that Tn(u)u = u, that is u is a fixed point of Tn(u), under the assumption

thatM is α-regular. First, we show that:

lim
i→∞

q(si, Tn(u)si) = 0 (54)

and:
lim
i→∞

q(Tn(u)si, si) = 0 (55)

By proceeding as above, from (45), we get:

q(si, Tn(u)si ) = q(Tmi−1 si−1, Tmi−1(Tn(u)si−1)

≤ α(si−1, Tn(u)si−1)q(Tmi−1 si−1, Tmi−1(Tn(u)si−1)

≤ ϕ(S(si−1, Tn(u)si−1))

= ϕ(max
{

q(si−1, Tn(u)si−1), T(si−1, Tmi−1 si−1), q(si−1, Tn(u)+mi−1 si−1))
}
)

= ϕ(q(si−1, Tri si−1)),

where ri ∈ {n(u), mi−1, n(u) + mi−1} is an appropriate index such that S(si−1, Tn(u)si−1) =

q(si−1, Tr1 si−1). Using the same arguments as previously given and taking into account that ϕ is
monotone increasing, we obtain that:

q(si, Tn(u)si) ≤ ϕi(q(s0, Tri s0)→ 0.

Therefore, indeed, (54) holds. We remark than from Lemma 1, also (55) holds. Let ε > 0 be
arbitrary chosen. Then, there exists i0 ∈ N such that for any i ≥ i0, the following hold:

q(si, u) <
ε

3
, q(u, si) <

ε

3
, q(Tn(u)si, si) <

ε

3
.
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Consequently, since (M, q) is α-regular, and ϕ ∈ Ψ, we have:

q(Tn(u)u, u) ≤ q(Tn(u)u, Tn(u)si) + q(Tn(u)si, si) + q(si, u)
≤ α(u, si)q(Tn(u)u, Tn(u)si) + q(Tn(u)si, si) + q(si, u)
≤ ϕ(S(u, si)) + q(Tn(u)si, si) + q(si, u)
≤ ϕ( ε

3 ) +
ε
3 + ε

3
≤ ε

3 + ε
3 + ε

3 = ε.

Thus, it follows that Tn(u)u = u. We claim now that Tns→ u, for each x ∈ M, that is q(Tns, u) =
q(u, Tns) = 0. For s ∈ M fixed and p ∈ {0, 1, 2, ..., n(u)− 1},

q(u, Tkn(u)+ps) = q(Tn(u)u, Tn(u)(T(k−1)n(u)+ps))
≤ α(u, T(k−1)n(u)+pu)q(Tn(u)u, Tn(u)(T(k−1)n(u)+ps))
≤ ϕ(S(u, T(k−1)n(u)+ps))
= ϕ(max

{
q(u, T(k−1)n(u)+ps), q(u, Tn(u)u), q(u, Tn(u)(T(k−1)n(u)+ps))

}
)

= ϕ(max
{

q(u, T(k−1)n(u)+ps), q(u, Tkn(u)+ps)
}
).

(56)

If max
{

q(u, T(k−1)n(u)+ps), q(u, Tkn(u)+ps)
}
= q(u, Tkn(u)+ps), then:

q(u, Tkn(u)+ps) ≤ ϕ(q(u, Tkn(u)+ps)) < q(u, Tkn(u)+ps)

which is a contradiction. Hence, q(u, Tkn(u)+ps) ≤ q(u, T(k−1)n(u)+ps). Since ϕ ∈ Ψ, ϕ is a comparison
function, we obtain:

q(u, Tkn(u)+ps) ≤ ϕ(q(u, T(k−1)n(u)+ps)) ≤ ... ≤ ϕk(q(u, Tps)→ 0,

where u, s ∈ M and p ≥ 1 are fixed. Using Lemma 1, we obtain that, for any n ∈ N,

lim
n→∞

Tns = u.

Next, we shall show the uniqueness of the obtained fixed point of T, defined in Theorem 7.
In order to prove the uniqueness of the fixed point, we propose the following condition:

(U) If u is a fixed point of Tn(u) for any t ∈ M, α(u, t) ≥ 1.

Theorem 8. Besides all assumptions of Theorem 7, suppose that the condition (U) is satisfied. Then, T has
a unique fixed point.

Proof. The existence of a fixed point is observed by Theorem 7. For the proof of the uniqueness, we
use the method of reductio ad absurdum. Let u, v ∈ M be two fixed points of Tn(u) with u 6= v. Then,
we have from hypotheses (U) that α(u, v) ≥ 1 and:

q(u, v) ≤ α(u, v)q(Tn(u)u, Tn(u)v) ≤ ϕ(S(u, v))
≤ ϕ(max

{
q(u, v), q(u, Tn(u)u), q(u, Tn(u)v)

}
)

≤ ϕ(max q(u, v), q(u, u)) = ϕ(q(u, v)) < q(u, v),

which is a contradiction. Hence, u is the unique fixed point for Tn(u). Then, Tu = T(Tn(u)u) =

Tn(u)(Tu) implies that Tu = u, which shows that u is the unique fixed point of T.



Mathematics 2018, 6, 208 16 of 19

Example 3. LetM = {0, 1, 2, 3}, q :M×M→ R+
0 , defined by:

q(1, 2) = q(2, 1) = 2, q(3, 2) = q(2, 3) = 2
q(2, 0) = q(0, 2) = 3, q(1, 3) = q(3, 1) = 1
q(1, 0) = q(3, 0) = 2, q(0, 1) = q(0, 3) = 1
q(0, 0) = q(1, 1) = q(2, 2) = q(3, 3) = 0.

Then, (M, q) is a two-symmetric quasi-metric space. Let T :M→M, T0 = 0, T1 = 2, T2 = 3, T3 = 0
and α : M×M → R+

0 be defined by α(s, t) = 1 if (s, t) ∈ {(0, 0), (1, 2), (1, 3), (2, 3), (1, 0), (2, 0)(3, 0)}
and α(s, t) = 0 otherwise. Since:

α(0, T0) = α(0, 0) = 1⇒ α(T0, T20) = α(0, 0) = 1
α(1, T1) = α(1, 2) = 1⇒ α(T1, T21) = α(2, 3) = 1
α(2, T2) = α(2, 3) = 1⇒ α(T2, T22) = α(3, 0) = 1
α(3, T3) = α(3, 0) = 1⇒ α(T3, T23) = α(0, 0) = 1,

T is α-orbital admissible. Furthermore, it is easy to check that T is triangular α-orbital admissible, but is
not triangular α admissible, since, for example,

α(2, 3) = 1 and α(3, 0) = 1 but α(2, 0) = 0 < 1.

Notice that, for n ≥ 4, we have Tns = 0. Hence, for any ζ ∈ S , ϕ ∈ φ such that for every s ∈ M,
there is a positive integer n = n(s) (for example, any n ∈ {5, 6, ...}) such that for all t ∈ M, all conditions
of Theorem 7 are satisfied, and s = 0 is the fixed point of T. We notice that T is not a contraction, since for
example, for s = 1 and t = 3, we have:

q(T1, T3) = q(2, 0) = 3 > k · 1 = k · q(1, 3)

for all k ∈ [0, 1).

4. Ulam Stability

There is a strong relation between fixed point theory and Ulam stability; see, e.g., [36–41].

Definition 7. Let (M, q) be a ∆-symmetric quasi-metric space and T : M →M be a mapping. The fixed
point equation:

s = Ts, s ∈ M (57)

is called generalized Ulam stable if for each ε > 0 and s ∈ M, there exists n(s) ∈ {1, 2, ...} such that for any
v ∈ M satisfying the inequality:

q(Tn(v)v, v) ≤ ε (58)

there exists an increasing function β : R+
0 → R+

0 continuous at zero, with β(0) = 0 and u ∈ M a solution of
Equation (57) such that:

q(u, v) ≤ β(ε) and q(v, u) ≤ β(ε). (59)

Remark 2. If β(t) = ct for all t ≥ 0, where c > 0, the fixed point Equation (57) is said to be Ulam stable.

Theorem 9. Let (M, q) be a complete ∆-symmetric quasi-metric space. Let the function β : R+
0 → R+

0 ,
defined by β(t) := t− ϕ(t), with ϕ ∈ Ψ. Suppose that the hypothesis of Theorem 6 is satisfied. Then, the fixed
point Equation (57) is generalized Ulam stable.
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Proof. From Theorem 6, there exists a unique u ∈ M such that Tu = u, which means that u is
a solution of fixed point Equation (57). Let v ∈ M. There exist n(v) ∈ {1, 2, ...} such that (58) holds.
Using condition (14), for s = u and t = v, we get:

ζ(α(u, v)q(Tn(v)u, Tn(v)v), ϕ(q(u, v))) ≥ 0. (60)

Keeping in mind the properties of ζ, ϕ, the condition (U) imposed on the alpha function and
using the triangle inequality, we obtain:

q(u, v) ≤ q(u, Tn(v)u) + q(Tn(v)u, Tn(v)v) + q(Tn(v)v, v)
= q(u, u) + q(Tn(v)u, Tn(v)v) + q(Tn(v)v, v)
≤ α(u, v)q(Tn(v)u, Tn(v)v) + ε

≤ ϕ(q(u, v)) + ε.

(61)

Taking into account the definition of the function β, we have:

q(u, v)− ϕ(q(u, v)) = β(q(u, v)) ≤ ε

or,
q(u, v) ≤ β−1(ε)

and since β is continuous, strictly increasing, β−1 is also increasing, continuous with β−1(0) = 0
On the other hand, the space (M, q) is ∆-symmetric, so that, for a given positive real number M > 0:

q(v, u) ≤ M · q(u, v) ≤ Mβ−1(ε)

for all u, v ∈ M. Hence, the fixed point Equation (57) is generalized Ulam stable.

5. Conclusions

In this paper, we obtain fixed point theorems in quasi-metric spaces by using simulations functions.
Notice that the class of simulation functions is quite rich; see, e.g., [6,7,18–20,22]. Accordingly, for each
simulation function, we find not only the existing results in the literature, but also some new results; in
particular, by letting simulation function ζ(t, s) = qs− t, q ∈ (0, 1) in Theorem 4.

On the other hand, we have used an auxiliary function α in simulation functions that unifies the
results in standard (quasi-)metric and results in a partially ordered (quasi-)metric and also the frame
of the cyclic mappings. As was shown in several papers (see, e.g., [26,28,35]), by taking the auxiliary
function α in a proper way, we shall get analogous results in a partially ordered structure and in the
setting of cyclic maps. Regarding these aspects and several possible combinations of them, one can get
a long list of corollaries of the results of this paper. Regarding the length of the paper, we avoid listing
these consequences explicitly. We underline also that we give a simple form of Ulam stable results.
It is easily improved in some other directions.

Author Contributions: All authors contributed equally and significantly to writing this article. All authors read
and approved the final manuscript.

Acknowledgments: The authors thank the anonymous referees for their remarkable comments, suggestion and
ideas that helped to improve this paper. The first and third authors would like to extend their sincere appreciation
to the Deanship of Scientific Research at King Saud University for funding this group No. RG-1437-017.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2018, 6, 208 18 of 19

References

1. Doitchinov, D. On completeness in quasi-metric spaces. Topol. Appl. 1988, 30, 127–148. [CrossRef]
2. Romaguera, S.; Sanchis, M. Applications of utility functions defined on quasi-metric spaces. J. Math.

Anal. Appl. 2003, 283, 219–235. [CrossRef]
3. Reilly, I.L. A Note on Quasi Metric Spaces. Proc. Jpn. Acad. 1976, 52, 428–430. [CrossRef]
4. Triebel, H. A new approach to function spaces on quasi-metric spaces. Rev. Mat. Complut. 2005, 18, 7–48.

[CrossRef]
5. Sapto, I.; Diego, M.; Sharad, S. On the axiomatic approach to Harnack’s inequality in doubling quasi-metric

spaces. J. Differ. Equ. 2013, 254, 3369–3394.
6. Alsulami, H.; Karapinar, E.; Khojasteh, F.; Roldan, A. A proposal to the study of contractions in quasi metric

spaces. Discrete Dyn. Nat. Soc. 2014, 269286. [CrossRef]
7. Aydi, H.; Felhi, A.; Karapinar, E.; Alojail, F.A. Fixed points on quasi-metric spaces via simulation functions

and consequences. J. Math. Anal. 2018, 9, 10–24.
8. Sehgal, V.M. On fixed and periodic points for a class of mappings. J. Lond. Math. Soc. 1972, 5, 571–576.

[CrossRef]
9. Guseman, L.F., Jr. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am.

Math. Soc. 1970, 26, 615–618. [CrossRef]
10. Iseki, K. A generalization of Sehgal-Khazanchi’s fixed point theorems. Math. Semin. Notes Kobe Univ.

1974, 2, 1–9.
11. Matkowski, J. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc.

1977, 62, 344–348. [CrossRef]
12. Singh, K.L. Fixed-Point Theorems for Contractive-Type Mappings. J. Math. Anal. Appl. 1979, 72, 283–290.

[CrossRef]
13. Ray, B.K.; Rhoades, B.E. Fixed point theorems for mappings with a contractive iterate. Pac. J. Math.

1977, 71, 517–520. [CrossRef]
14. Kincses, J.; Totik, V. Theorems an counterexamples on contractive type mappings. Math. Balk. 1990, 4, 69–90.
15. Karapinar, E.; Roldan-Lopez-de-Hierro, A.-F.; Samet, B. Matkowski theorems in the context of quasi-metric

spaces and consequences on G-metric spaces. Anal. Stiint. Ale Univ. Ovidius Constanta-Ser. Mat.
2016, 24, 309–333. [CrossRef]

16. Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Cluj, Napoca, 2001.
17. Rus, I.A. The theory of a metrical fixed point theorem: Theoretical and applicative relevances. Fixed Point

Theory 2008, 9, 541–559.
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