
mathematics

Article

The Double Roman Domination Numbers of
Generalized Petersen Graphs P(n, 2)

Huiqin Jiang 1, Pu Wu 2, Zehui Shao 2 ID , Yongsheng Rao 2 and Jia-Bao Liu 3,* ID

1 Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher
Education of Sichuan Province, Chengdu University, Chengdu 610106, China; hq.jiang@hotmail.com

2 Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China;
puwu1997@126.com (P.W.); zshao@gzhu.edu.cn (Z.S.); rysheng@gzhu.edu.cn (Y.R.)

3 School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
* Correspondence: liujiabao@ahjzu.edu.cn or liujiabaoad@163.com

Received: 11 September 2018; Accepted: 10 October 2018; Published: 16 October 2018
����������
�������

Abstract: A double Roman dominating function (DRDF) f on a given graph G is a mapping from
V(G) to {0, 1, 2, 3} in such a way that a vertex u for which f (u) = 0 has at least a neighbor labeled 3
or two neighbors both labeled 2 and a vertex u for which f (u) = 1 has at least a neighbor labeled 2
or 3. The weight of a DRDF f is the value w( f ) = ∑u∈V(G) f (u). The minimum weight of a DRDF on
a graph G is called the double Roman domination number γdR(G) of G. In this paper, we determine
the exact value of the double Roman domination number of the generalized Petersen graphs P(n, 2)
by using a discharging approach.
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1. Introduction

In this paper, only graphs without multiple edges or loops are considered. For two vertices u and
v of a graph G, we say u ∼ v in G if uv ∈ E(G). For positive integer k and u, v ∈ V(G), let d(u, v) be
the distance between u and v and Nk(v) = {u|d(u, v) = k}. The neighborhood of v in G is defined to
be N1(v) (or simply N(v)). The closed neighborhood N[v] of v in G is defined to be N[v] = {v} ∪N(v).
For a vertex subset S ⊆ V(G), we denote by G[S] the subgraph induced by S. For a positive integer
n, we denote [n] = {1, 2, · · · , n}. For a set S = {x1, x2, · · · , xn}, if xi = xj for some i and j, then S is
considered as a multiset. Otherwise, S is an ordinary set.

For positive integer numbers n and k with n at least 2k + 1, the generalized Petersen graph P(n, k)
is a graph with its vertex set {ui|i = 1, 2, · · · , n} ∪ {vi|i = 1, 2, · · · , n} and its edge set the union of
{uiui+1, uivi, vivi+k} for 1 ≤ i ≤ n, where subscripts are reduced modulo n (see [1]).

A subset D of the vertex set of a graph G is a dominating set if every vertex in V(G) \ D has
at least one neighbor in D. The domination number, denoted by γ(G), is the minimum number of
vertices over all dominating sets of G.

There have been more than 200 papers studying various domination on graphs in the literature [2–6].
Among them, Roman domination and double Roman domination appear to be a new variety of
interest [3,7–15].

A double Roman dominating function (DRDF) f on a given graph G is a mapping from V(G)

to {0, 1, 2, 3} in such a way that a vertex u for which f (u) = 0 has at least a neighbor labeled 3 or
two neighbors both labeled 2 and a vertex u for which f (u) = 1 has at least a neighbor labeled 2 or 3.
The weight of a DRDF f is the value w( f ) = ∑u∈V(G) f (u). The minimum weight of a DRDF on a graph
G is called the double Roman domination number γdR(G) of G. A DRDF f of G with w( f ) = γdR(G)
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is called a γdR(G)-function. Given a DRDF f of G, we denote E f
{x1,x2}

= {uv ∈ E(G)|{ f (u), f (v)} =
{x1, x2}}. A graph G is a double Roman Graph if γdR(G) = 3γ(G).

In [7], Beeler et al. obtained the following results:

Proposition 1 ([7]). In a double Roman dominating function of weight γdR(G), no vertex needs to be assigned
the value one.

By Proposition 1, we now consider the DRDF of a graph G in which there exists no vertex assigned
with one in the following.

Given a DRDF f of a graph G, suppose (V f
0 , V f

2 , V f
3 ) is the ordered partition of the vertex set of G

induced by f in such a way that V f
i = {v : f (v) = i} for i = 0, 2, 3. It can be seen that there is a 1-1

mapping between f and (V f
0 , V f

2 , V f
3 ), and we write f = (V f

0 , V f
2 , V f

3 ), or simply (V0, V2, V3). Given a
DRDF f of P(n, 2) and letting wi ∈ {0, 2, 3} for i = 1, 2, 3 with w1 ≥ w2 ≥ w3, we write Vw1w2w3

j =

{x ∈ V(P(n, 2))| f (x) = j, {w1, w2, w3} = { f (x1), f (x2), f (x3)}}, where N(x) = {x1, x2, x3}.
Now, we will use f (·) = q+ to represent the value scope f (·) ≥ q for an integer q. We say a path

t1t2 · · · tk is a path of type c1 − c2 − · · · − ck if f (ti) = ci for i ∈ [k]. Let H be a subgraph induced by
five vertices s1, s2, s3, s4, s5 with s1 ∼ s2, s2 ∼ s3, s3 ∼ s4, s3 ∼ s5 satisfying f (s3) = 0 and f (s1) = a,
f (s2) = b, f (s4) = c, f (s5) = d for some a, b, c, d ∈ {0, 2, 3}, then we say H is a subgraph of type
a− b− 0−c

−d.
Let W be a subgraph induced by four vertices s1, s2, s3, s4 with s1 ∼ s2, s2 ∼ s3, s2 ∼ s4, satisfying

f (s1) = a, f (s2) = 0, f (s3) = b and f (s4) = c for some a, b, c ∈ {0, 2, 3}, then we say W is a subgraph
of type a− 0−b

−c .
In the graph P(n, 2), we will denote the set of vertices of {ui, vi} with L(i). For a given DRDF f of

P(n, 2), let w f (L(i)) denote the weight of L(i), that is w f (L(i)) = ∑u∈V(L(i)) f (u). Let Bi={L(i−2), L(i−1),

L(i), L(i+1), L(i+2)}, where the subscripts are taken modulo n. We define w f (Bi) =
2
∑

j=−2
w f (L(i+j)), and:

f (Bi) = f

(
ui−2 ui−1 ui ui+1 ui+2
vi−2 vi−1 vi vi+1 vi+2

)
.

Motivation: Beeler et al. [7] put forward an open problem about characterizing the double Roman
graphs. As an interesting family of graphs, the domination and its variations of generalized Petersen
graphs have attracted considerable attention [1,16]. Therefore, it is interesting to characterize the
double Roman graphs in generalized Petersen graphs. In this paper, we focus on finding the double
Roman graphs in P(n, 2).

2. Double Roman Domination Number of P(n, 2)

2.1. Upper Bound for the Double Roman Domination Number of P(n, 2)

Lemma 1. If n ≥ 5, then:

γdR(P(n, 2)) ≤
{
d 8n

5 e, n ≡ 0 (mod 5),
d 8n

5 e+ 1, n ≡ 1, 2, 3, 4 (mod 5).

Proof. We consider the following five cases.

Case 1: n ≡ 0 (mod 5).

Let:

P5 =

[
2 0 2 0 0
0 0 0 2 2

]
.
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Then, by repeating the pattern of P5, we obtain a DRDF of weight 8k of P(5k, 2), and the upper
bound is obtained.

Case 2: n ≡ 1 (mod 5).

If n = 6, let:

P6 =

[
0 2 0 2 0 0
2 0 0 0 2 3

]
.

Then, the pattern P6 induces a DRDF of weight 11 of P(6, 2), and the desired upper bound
is obtained.

If n ≥ 11, let:

P11 =

[
2 0 2 0 0 2 2 0 2 0 0
0 0 0 2 2 0 0 0 0 3 2

]
.

Then, by repeating the leftmost five columns of the pattern of P11, we obtain a DRDF of weight
8k + 3 of P(5k + 1, 2), and the desired upper bound is obtained.

Case 3: n ≡ 2 (mod 5).

If n = 7, let:

P7 =

[
2 0 2 0 0 3 0
0 0 2 2 0 0 2

]
.

Then, the pattern P7 induces a DRDF of weight 13 of P(7, 2), and the desired upper bound
is obtained.

If n ≥ 12, let:

P12 =

[
2 0 2 0 0 2 0 3 0 2 0 0
0 0 0 2 2 0 2 0 0 0 2 2

]
.

Then, by repeating the leftmost five columns of the pattern of P12, we obtain a DRDF of weight
8k + 6 of P(5k + 2, 2), and the desired upper bound is obtained.

Case 4: n ≡ 3 (mod 5).

If n ≥ 8, let:

P8 =

[
2 0 2 0 0 2 0 0
0 0 0 2 2 0 2 2

]
.

Then, by repeating the leftmost five columns of the pattern of P8, we obtain a DRDF of weight
8k + 6 of P(5k + 3, 2), and the desired upper bound is obtained.

Case 5: n ≡ 4 (mod 5).

If n ≥ 9, let:

P9 =

[
2 0 2 0 0 3 0 0 0
0 0 0 2 2 0 0 3 2

]
.

Then, by repeating the leftmost five columns of the pattern of P9, we obtain a DRDF of weight
8k + 8 of P(5k + 4, 2), and the desired upper bound is obtained.

2.2. Lower Bound for Double Roman Domination Number of P(n, 2)

Lemma 2. Let f be a γdR-function of P(n, 2) with n ≥ 5. Then, w f (Bi) ≥ 4.

Proof. Since ui, vi, ui+1 and ui−1 need to be double Roman dominated by vertices in Bi, we have
w f (Bi) ≥ 3. Now, we will show that w f (Bi) 6= 3. Otherwise, it is clear that f (ui) = 3, and f (x) = 0
for any x ∈ Bi \ {ui}. Since vi±1, ui±2 and vi±2 need to be double Roman dominated, we have
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f (ui±3) = f (vi±3) = f (vi±4) = 3. Now, we can obtain a DRDF f ′ from f by letting f ′(ui−2) = 2,
f ′(ui−3) = 0 and f ′(v) = f (v) for v ∈ V(P(n, 2)) \ {ui−2, ui−3}. Then, we have w( f ′) < w( f ), a
contradiction (see Figure 1). Therefore, w f (Bi) ≥ 4.

Figure 1. Construct a function f ′ from f used in Lemma 2.

Lemma 3. Let f be a γdR-function of P(n, 2) with n ≥ 5. Then, for any i ∈ [n], it is impossible that
f (vi−1) = f (vi) = f (vi+1) = 3 and f (x) = 0 for any x ∈ Bi \ {vi−1, vi, vi+1}.

Proof. Suppose to the contrary that f (vi−1) = f (vi) = f (vi+1) = 3 and f (x) = 0 for x ∈ Bi \
{vi−1, vi, vi+1}. Then, we have f (ui±3) = 3. Now, we can obtain a DRDF f ′ from f by letting
f ′(ui−1) = 2, f ′(vi−1) = 0 and f ′(v) = f (v) for v ∈ V(P(n, 2)) \ {vi−1, ui−1}. Then, we have
w( f ′) < w( f ), a contradiction (see Figure 2).

Figure 2. Construct a function f ′ from f in Lemma 3.

Lemma 4. Let f be a γdR-function of P(n, 2) with n ≥ 5. Then, for each x ∈ V000
3 , there exists a neighbor y

of x such that y ∈ V320
0 ∪V330

0 ∪V322
0 ∪V332

0 ∪V333
0 , or equivalently, it is impossible that for any x ∈ V000

3 ,
f (z) = 0 for any z ∈ N2(x).
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Proof. Suppose to the contrary that there is a vertex x ∈ V000
3 such that y ∈ V300

0 for every neighbor y
of x. Now, it is sufficient to consider the following two cases.

Case 1: x = ui for some i.

In this case, we have f (ui) = 3 and f (x) = 0 for x ∈ Bi \ {ui}. Then, we have w f (Bi) = 3 < 4,
contradicting Lemma 2.

Case 2: x = vi for some i.

In this case, since ui±1 and ui±2 need to be double Roman dominated, we have f (vi±1) = 3 and
f (ui±3) = 3. By Lemma 3, such a case is impossible.

Discharging procedure: Let f be a DRDF of P(n, 2). We set the initial charge of every vertex x be
s(x) = f (x). We use the discharging procedure, leading to a final charge s′, defined by applying the
following rules:

R1: Each s(x) for which s(x) = 3 transmits 0.8 charge to each neighbor y with y ∈ V300
0 transmits

0.6 charge to each neighbor y with y ∈ V320
0 ∪V330

0 ∪V322
0 ∪V332

0 ∪V333
0 .

R2: Each s(x) for which s(x) = 2 transmits 0.4 charge to each neighbor y with y ∈ V0.

Proposition 2. If n ≥ 5, then γdR(P(n, 2)) ≥ d 8n
5 e.

Proof. Assume f is a γdR-function of P(n, 2). We use the above discharging procedure. Now, it is
sufficient to consider the following three cases.

Case 1: By Lemma 4, there exists a vertex z with f (z) ≥ 2 for some z ∈ N2(x), for any x ∈ V000
3 .

Therefore, by rule R1, for each v ∈ V000
3 , the final charge s′(v) is at least 3− 0.6− 0.8− 0.8 = 0.8. For

each v ∈ V3 \V000
3 , then the final charge s′(v) is at least 3− 0.8− 0.8 = 1.4.

Case 2: By rule R2, for each v ∈ V2, the final charge s′(v) is at least 2− 0.4− 0.4− 0.4 = 0.8.

Case 3: For each v ∈ V300
0 , the final charge s′(v) is 0.8 by rule R1. For each v ∈ V0 \ V300

0 , the final
charge s′(v) is at least 0.8 by rules R1 and R2.

From the above, we have:

s′(v) ≥ 0.8 for any v ∈ P(n, 2). (1)

Hence, w( f ) = ∑
v∈V(P(n,2))

s(v) = ∑
v∈V(P(n,2))

s′(v) ≥ 0.8 × 2n = 8n
5 . Since w( f ) is an integer,

we have w( f ) ≥ d 8n
5 e.

By using the above discharging rules, we have the following lemma immediately, and the proof
is omitted.

Lemma 5. Let f be a γdR-function of P(n, 2) with n ≥ 5. If we use the above discharging procedure for f on
P(n, 2), then:

(a) if there exists a path P of type 2− 2− 2, or type 2+ − 3, or type 2− 2− 0− 3, or type 3− 0− 2+ −
0 − 3 − 0 − 2+ − 0 − 3, or type 3 − 0 − 2+ − 0 − 3 − 0 − 3, or type 3 − 0 − 3 − 0 − 3, or type
2+ − 0− 3− 0− 3− 0− 2+ or a subgraph P of type 3− 0−3

−3, then ∑v∈V(P)(s′(v)− 0.8) ≥ 1.
(b) if there exist a path P1 of type 2− 2 and a path P2 of type 2+− 0− 3, then ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥
1.

(c) if there exists a subgraph H of type 2− 2− 0−2
−2, then ∑v∈V(H)(s′(v)− 0.8) ≥ 1.2.

(d) if there exist a path P of type 3− 0− 3, together with a subgraph H of type 2+ − 0− 3− 0− 2+ or type
3− 0−2+

−2+ , then ∑v∈V(P)∪V(H)(s′(v)− 0.8) ≥ 1.
(e) if there exist three paths P1, P2, P3 of type 3− 0− 3, then ∑v∈V(P1)∪V(P2)∪V(P3)

(s′(v)− 0.8) ≥ 1.2.
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Lemma 6. Let f be a γdR-function of P(n, 2) with weight d 8n
5 e, then there exists no edge uv ∈ E(P(n, 2)) for

which uv ∈ E f
{2,2} ∪ E f

{2,3} ∪ E f
{3,3}.

Proof. First, we have:

γdR(P(n, 2)) = w( f ) = d8n
5
e ≤ 8n + 4

5
=

8n
5

+ 0.8,

and so:

w( f )− 8n
5
≤ 0.8.

We use the above discharging procedure for f on P(n, 2), and similar to the proof of Proposition 2,
we have:

w( f ) = ∑
v∈V(P(n,2))

s′(v),

and so:

∑
v∈V(P(n,2))

(s′(v)− 4
5
) ≤ 0.8 (2)

By Lemma 5a and Equation (2), we have that there exists no edge uv ∈ E f
{2,3} ∪ E f

{3,3}.

Now, suppose to the contrary that there exists an edge uv ∈ E f
{2,2}, and it is sufficient to consider

the following three cases.

Case 1: f (ui) = f (ui+1) = 2.

We have f (ui−1) = f (ui+2) = f (vi+1) = f (vi) = 0. Otherwise, there exists a path P of type
2− 2− 2 or type 2+ − 3. By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Since ui+2 needs to be double Roman dominated, we have { f (ui+3), f (vi+2)} = {0, 2}. Otherwise,
f (x) = 3 for some x ∈ {ui+3, vi+2} or f (ui+3) = f (vi+2) = 2.

If f (x) = 3 for some x ∈ {ui+3, vi+2}, there exists a path P of type 2− 2− 0− 3. By Lemma 5a,
we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

If f (ui+3) = f (vi+2) = 2, there exists a subgraph H of type 2− 2− 0−2
−2. By Lemma 5c, we have

∑v∈V(H)(s′(v)− 0.8) ≥ 1.2, contradicting Equation (2).
Now, it is sufficient to consider the following two cases.

Case 1.1: f (vi+2) = 2, f (ui+3) = 0.

To double Roman dominate vi+1, we have f (vi+3) ≥ 2 or f (vi−1) ≥ 2. First, we have f (vi+3) 6= 3
and f (vi−1) 6= 3. Otherwise, uiui+1vi+1vi+3 or uiui+1vi+1vi−1 is a path P of type 2 − 2 − 0 − 3.
By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Now, we have that it is impossible f (vi+3) = f (vi−1) = 2. Otherwise, the set
{ui, ui+1, vi+1, vi+3, vi−1} induces a subgraph H of type 2 − 2 − 0−2

−2. By Lemma 5c, we have
∑v∈V(H)(s′(v)− 0.8) ≥ 1.2, contradicting Equation (2).

Therefore, we have { f (vi+3), f (vi−1)} = {0, 2}. Now, it is sufficient to consider the following
two cases.

Case 1.1.1: f (vi+3) = 2, f (vi−1) = 0.

Since vi−1 and ui−1 need to be double Roman dominated, we have f (vi−3) = 3, f (ui−2) = 2+.
Then, there exists a path P1 of type 2− 2 and a path P2 of type 2+ − 0− 3. By Lemma 5b, we have
∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Case 1.1.2: f (vi+3) = 0, f (vi−1) = 2.
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Since ui+3 and vi+3 need to be double Roman dominated, we have f (ui+4) = f (vi+5) = 3.
Then, there exist a path P1 of type 2 − 2 and a path P2 of type 3 − 0 − 3. By Lemma 5b,
∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Case 1.2: f (vi+2) = 0, f (ui+3) = 2.

Since vi+2 needs to be double Roman dominated, we have f (vi+4) = 3. Then, there exist a
path P1 of type 2− 2 and a path P2 of type 2− 0− 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1,
contradicting Equation (2).

Case 2: f (vi) = f (ui) = 2.

We have f (ui±1) = f (vi±2) = 0. Otherwise, there exists a path P of type 2− 2− 2 or type 2+ − 3.
By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Since ui+1 needs to be double Roman dominated, we have { f (ui+2), f (vi+1)} = {0, 2}. Otherwise,
by Lemma 5a or Lemma 5c, we obtain a contradiction with Equation (2).

Now, we consider the following two subcases.

Case 2.1: f (vi+1) = 2, f (ui+2) = 0.

Since ui+2 needs to be double Roman dominated, we have f (ui+3) = 3. Then, there exist a
path P1 of type 2− 2 and a path P2 of type 2− 0− 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1,
contradicting Equation (2).

Case 2.2: f (vi+1) = 0, f (ui+2) = 2.

Since vi+1 needs to be double Roman dominated, we have f (x) = 3 for some x ∈ {vi+3, vi−1} or
f (vi+3) = f (vi−1) = 2. If f (x) = 3 for some x ∈ {vi+3, vi−1}, there exist a path P1 of type 2− 2 and a
path P2 of type 2− 0− 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting Equation (2).
If f (vi+3) = f (vi−1) = 2, then by Lemma 5b,c, we have ui−2 = 0. Since ui−2 needs to be double

Roman dominated, we have f (ui−3) = 3. Then, there exist a path P1 of type 2− 2 and a path P2 of type
2− 0− 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Case 3: f (vi+1) = f (vi−1) = 2.

We have f (ui±1) = f (vi±3) = 0. Otherwise, there exists a path P of type 2− 2− 2 or type 2+ − 3.
By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Since ui needs to be double Roman dominated, we have f (ui) = 2 or f (vi) = 3.

Case 3.1: f (ui) = 2, f (vi) = 0.

By Lemma 5b,c and Equation (2), we have f (ui±2) = 0. Since vi needs to be double Roman
dominated, we have { f (vi−2), f (vi+2)} = {0, 2}. Considering isomorphism, we without loss of
generality assume f (vi+2) = 2 and f (vi−2) = 0. Since ui−2 needs to be double Roman dominated,
f (ui−3) = 3. Then, there exist a path P1 of type 2− 2 and a path P2 of type 2− 0− 3. By Lemma 5b,
∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Case 3.2: f (ui) = 0, f (vi) = 3.

By Lemma 5a and Equation (2), we have f (vi±2) = 0. Since ui+1 needs to be double Roman
dominated, we have f (ui+2) = 2. Then, there exist a path P1 of type 2− 2 and a path P2 of type
2− 0− 3. By Lemma 5b, ∑v∈V(P1)∪V(P2)

(s′(v)− 0.8) ≥ 1, contradicting Equation (2).
Therefore, the proof is complete.

Lemma 7. Let f be a γdR-function of P(n, 2) with weight d 8n
5 e, v ∈ V000

3 and S = {x|x ∈ N2(v), f (x) ≥ 2},
then 1 ≤ |S| ≤ 2.
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Proof. We use the above discharging procedure for f on P(n, 2). By Lemma 4, we have |S| ≥ 1.
Now, suppose to the contrary that |S| ≥ 3. By rules R1 and R2 and Equation (1), we have:

∑
v∈V(P(n,2))

(s′(v)− 4
5
) ≥ ∑

x∈N[v]∪N2(v)
(s′(x)− 4

5
) ≥ 1,

contradicting Equation (2).

Lemma 8. If n ≥ 5 and f is a γdR-function of P(n, 2) with f (ui) = 3 for some i ∈ [n], then w( f ) ≥ d 8n
5 e+ 1.

Proof. Suppose to the contrary that there exists a γdR-function f with w( f ) = d 8n
5 e such that f (ui) = 3

for some i ∈ [n]. By Lemma 6, we have f (vi) = f (ui±1) = 0. Let S = {x|x ∈ N2(v), f (x) ≥ 2}.
By Lemma 7, we have |S| ∈ {1, 2}. Therefore, we just need to consider the following two cases.

Case 1: |S| = 1.

We may w.l.o.g assume that { f (ui−2), f (vi−1), f (vi−2)} ={0, 0, 2} or {0, 0, 3} and f (vi+1) =

f (vi+2) = f (ui+2) = 0. Since ui+2, vi+2 need to be double Roman dominated, we have f (ui+3) =

f (vi+4) = 3, and thus, f (vi+3) = 0. Since vi+1 needs to be double Roman dominated, we have
f (vi−1) = 3. Thus, f (ui−2) = f (vi−2) = 0. Since ui−2, vi−2 need to be double Roman dominated,
we have f (ui−3) = f (vi−4) = 3. Then, there exist three paths P1, P2, P3 of type 3− 0− 3. By Lemma 5e,
we have ∑v∈V(P1)∪V(P2)∪V(P3)

(s′(v)− 0.8) ≥ 1.2, contradicting Equation (2).

Case 2: |S| = 2.

It is sufficient to consider the following cases.

Case 2.1: S ⊆ {vi−1, vi−2, ui−2} and f (vi+1) = f (vi+2) = f (ui+2) = 0.

Since ui+2, vi+2 need to be double Roman dominated, we have f (ui+3) = f (vi+4) = 3. Then,
there exist a path P of type 3− 0− 3, and a subgraph H of type 2+ − 0− 3− 0− 2+ or type 3− 0−2+

−2+ .
By Lemma 5d, we have ∑v∈V(P)∪V(H)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Case 2.2: S = {s1, s2}, s1 ∈ {vi−1, vi−2, ui−2} and s2 ∈ {vi+1, vi+2, ui+2}.

First, we have f (vi±1) = 0. Otherwise, we may without loss of generality assume that f (vi+1) ≥ 2.
Since ui+2, vi+2 need to be double Roman dominated, we have f (ui+3) = f (vi+4) = 3. Then, there
exist a path P of type 3− 0− 3, and a path H of type 2+ − 0− 3− 0− 2+. By Lemma 5d, we have
∑v∈V(P)∪V(H)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Then, since vi+1, vi−1 need to be double Roman dominated, we have f (vi+3) = f (vi−3) = 3.
By Lemma 6, we have f (ui+3) = f (ui−3) = 0. Since ui±2 need to be double Roman dominated,
we have ( f (ui−2), f (vi−2)) ∈ {(0, 3), (2, 0), (3, 0)} and ( f (ui+2), f (vi+2)) ∈ {(0, 3), (2, 0), (3, 0)}.

It is impossible that f (vi+2) + f (ui+2) = 3 and f (vi−2) + f (ui−2) = 3. Otherwise, there exists a
path P of type 3− 0− 3− 0− 3 or a subgraph P of type 3− 0−3

−3. By Lemma 5a, we have ∑v∈V(P)(s′(v)−
0.8) ≥ 1, contradicting Equation (2).

It is impossible f (ui±2) ≥ 2. Otherwise, there exists a path P of type 3− 0− 2+ − 0− 3− 0−
2+ − 0− 3. By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1, contradicting Equation (2).

Then, we may without loss of generality assume that f (ui+2) = 2 and f (vi−2) = 3. Then, there
exists a path P of type 3− 0− 2− 0− 3− 0− 3. By Lemma 5a, we have ∑v∈V(P)(s′(v)− 0.8) ≥ 1,
contradicting Equation (2).

Lemma 9. If n ≥ 5 and f is a γdR-function of P(n, 2) with f (vi) = 3 for some i ∈ [n], then w( f ) ≥ d 8n
5 e+ 1.

Proof. Suppose to the contrary that there exists a γdR-function f with w( f ) = d 8n
5 e such that f (vi) = 3

for some i ∈ [n]. By Lemma 6, we have f (ui) = f (vi±2) = 0. Let S = {x|x ∈ N2(v), f (x) ≥ 2}.
By Lemma 7, we have 1 ≤ |S| ≤ 2, and we just need to consider the following two cases.
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Case 1: |S| = 1.

We may without loss of generality assume that { f (ui−1), f (ui−2), f (vi−4)}={0, 0, 2} or {0, 0, 3}
and f (ui+1) = f (ui+2) = f (vi+4) = 0. Since ui+1 and ui+2 need to be double Roman dominated,
we have f (vi+1) = f (ui+3) = 3, contradicting Lemma 8.

Case 2: |S| = 2.

Now, it is sufficient to consider the following two cases.

Case 2.1: S ⊆ {ui−1, ui−2, vi−4} and f (ui+1) = f (ui+2) = f (vi+4) = 0.

Since ui+1, ui+2 need to be double roman dominated, we have f (vi+1) = f (ui+3) = 3,
contradicting Lemma 8.

Case 2.2: S = {s1, s2}, where s1 ∈ {ui−1, ui−2, vi−4} and s2 ∈ {ui+1, ui+2, vi+4}.

By Lemma 8, f (uk) 6= 3 for each k ∈ {1, 2, · · · , n}, and thus, { f (ui+1), f (ui+2), f (ui−2),
f (ui−1)} = {0, 2}.

Then, we have f (vi+4) = f (vi−4) = 0. Otherwise, f (vi+4) 6= 0 or f (vi−4) 6= 0. By symmetry,
we may assume without loss of generality that f (vi+4) 6= 0. Thus, we have f (ui+1) = f (ui+2) = 0.
Since ui+1, ui+2 need to be double Roman dominated, we have f (vi+1) = f (ui+3) = 3, contradicting
Lemma 8.

Now, it is sufficient to consider the following three cases.

Case 2.2.1: f (ui+1) = f (ui−1) = 2.

By Lemma 6, we have f (ui±2) = f (vi±1) = 0.
Since ui+2 needs to be double Roman dominated and by Lemma 8, we have f (ui+3) = 2. Since vi+1

needs to be double Roman dominated, we have f (vi+3) ≥ 2. Thus, there exists an edge e ∈ E f
{2,2+},

a contradiction with Lemma 6.

Case 2.2.2: f (ui+2) = f (ui−2) = 2.

By Lemma 6, we have f (ui±3) = f (ui±1) = 0.
Since ui+1, ui−1 need to be double Roman dominated, we have f (vi±1) = 2. Thus, there exists an

edge e ∈ E f
{2,2}, a contradiction with Lemma 6.

Case 2.2.3: f (ui+1) = f (ui−2) = 2.

By Lemma 6, we have f (ui−3) = f (vi+1) = f (ui+2) = 0.
Since ui+2 needs to be double Roman dominated, we have f (ui+3) = 2. By Lemma 6, we have

f (vi+3) = f (ui+4) = 0. Since ui+4 needs to be double Roman dominated and by Lemma 8, we have
f (ui+5) = 2. Since vi+3 needs to be double Roman dominated, we have f (vi+5) ≥ 2. Thus, there exists
an edge e ∈ E f

{2,2+}, a contradiction with Lemma 6.

Lemma 10. Let n ≥ 5 and n 6≡ 0 (mod 5). If f is a γdR-function of P(n, 2), then w( f ) ≥ d 8n
5 e+ 1.

Proof. Suppose to the contrary that w( f ) = d 8n
5 e. By Lemmas 8 and 9, we have |V3| = 0. Now,

we have:

Claim 1. |V2 ∩ N(v)| = 2 for any v ∈ V(P(n, 2)) with f (v) = 0.

Proof. Suppose to the contrary that there exists a vertex v ∈ V(P(n, 2)) with f (v) = 0 and |V2 ∩
N(v)| = 3. We consider the following two cases.

Case 1: v = ui for some i ∈ [n].
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Since |V2 ∩ N(v)| = 3, we have f (ui−1) = f (ui+1) = f (vi) = 2. By Lemma 6, we have f (ui±2) =

0, f (vi±1) = 0 and f (vi±2) = 0. Since vi+1 needs to be double Roman dominated, we have f (vi+3) = 2.
Since ui+2 needs to be double Roman dominated, we have f (ui+3) = 2. Since vi+3ui+3 ∈ E f

{2,2},
contradicting Lemma 6.

Case 2: v = vi for some i ∈ [n].

Since |V2 ∩ N(v)| = 3, we have f (vi−2) = f (vi+2) = f (ui) = 2. By Lemma 6, we have f (ui±1) =

f (ui±2) = f (vi±4) = 0. Since ui+1 needs to be double Roman dominated, we have f (vi+1) = 2.
Since ui−1 needs to be double Roman dominated, we have f (vi−1) = 2. Since vi+1vi−1 ∈ E f

{2,2},
contradicting Lemma 6.

We assume without loss of generality that f (ui) = 2. By Lemma 6, we have f (ui−1) = 0, f (vi) = 0
and f (ui+1) = 0. Since vi needs to be double Roman dominated, we assume without loss of generality
that f (vi−2) = 2. By Claim 1, we have f (vi+2) = 0. Since f (vi−2) = 2, together with Lemma 6,
we have f (ui−2) = 0. Since ui−1 needs to be double Roman dominated, we have f (vi−1) = 2. Then,
by Lemma 6, we have f (vi+1) = 0. Since vi+2 needs to be double Roman dominated, we have
f (ui+2) = 2. That is to say, we have:

f (Bi) = f

(
ui−2 ui−1 ui ui+1 ui+2
vi−2 vi−1 vi vi+1 vi+2

)
=

(
0 0 2 0 2
2 2 0 0 0

)
.

By repeatedly applying Claim 1 and Lemma 6, f (x) can be determined for each x ∈ Bi+5, and
we have f (Bi) = f (Bi+5). It is straightforward to see that w( f ) = d 8n

5 e only if n ≡ 0 (mod 5),
a contradiction.

3. Conclusions

By Lemma 1, Proposition 2 and Lemma 10, we have

Theorem 1. If n ≥ 5, then:

γdR(P(n, 2)) =

{
d 8n

5 e, n ≡ 0 (mod 5),
d 8n

5 e+ 1, n ≡ 1, 2, 3, 4 (mod 5).

Remark 1. Beeler et al. [7] proposed the concept of the double Roman domination. They showed that 2γ(G) ≤
γdR(G) ≤ 3γ(G). Moreover, they suggested to find double Roman graphs.

In [17], it was proven that:

Theorem 2. If n ≥ 5, then γ(P(n, 2)) = d 3n
5 e.

Therefore, we have that P(n, 2) is not double Roman for all n ≥ 5.
In fact, there exist many double Roman graphs among Petersen graph P(n, k). For example,

in [12], it was shown that P(n, 1) is a double Roman graph for any n 6≡ 2 (mod 4). Therefore, it is
interesting to find other Petersen graphs that are double Roman.
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