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Abstract: In this paper, we present the viscoelastic solutions for rockmass supported with discretely
mechanically or frictionally coupled (DMFC) rockbolts to reveal the coupling rheological mechanisms.
The analytical solutions are first acquired by applying the Laplace inverse transforms. The effect of
different viscosity coefficients and supporting parameters on the coupling model rheological behavior
are then investigated. It is concluded that the variation of the rockbolt axial force or rock mass stress
and displacement have a close relationship with rheological parameters and support parameters.
In addition, the variations of mechanical states of rockbolts and rock mass are closely related to the
rheological model.
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1. Introduction

Cavern excavations are necessary in underground resource exploitation and transport. A large
number of laboratory tests and on-site monitoring indicate that the rock mass stress and displacement
change have a significant time-dependence, which can cause not only the load of supporting structure
but also the deformation to increase continuously [1–4], and it is easy for this to cause engineering
deformation and instability damage to rock slopes, mine roadways, etc. Rockbolts, as an effective
rock reinforcement measure, are widely applied in civil and mining engineering [5–9]. Unfortunately,
the interaction mechanism of the rockbolt and ground is very complicated, and the coupling rheology
mechanism of the rockbolt and rock mass is not well understood [10]. Field monitoring is obviously
useful, but it can be complicated and expensive. Therefore, studying the time-dependent mechanism
between the rock mass and rockbolt using a theoretical approach is meaningful.

The rockbolt belongs to a large support family, which was called the “rockbolt reinforcement
system”, and the types of rockbolt reinforcement systems can be classified as (1) continuously
mechanically coupled (CMC), (2) continuously frictionally coupled (CFC), and (3) discretely
mechanically or frictionally coupled (DMFC) systems, and the classification is based on how the
element load is transferred to the rock mass [8]. For the DMFC rockbolt reinforcement system,
the interaction can be treated as two uniformly compressive distributed loads applied at both
ends of the rock mass, and the rock mass is divided into two zones: respectively, the reinforced
zone and original zone. In addition, the reinforced zone is simplified as homogeneous viscoelastic
models [2,11–13].
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Various approaches have been established to describe the rheological properties in rock mass
based on analytical solutions [14–16], empirical approaches [17–19], and numerical methods [20–22].
Pan and Dong [23] treated the tunnel deformation as a time-dependent process, and applied the
viscoelastic method to study the rheological features. Phienwej et al. [24] solved analytical solutions
through the hyperbolic and power creep laws for predicting the time-dependent behavior of circular
tunnels and found that the closure and support yielding time were most sensitive to the hyperbolic
parameter and the creep parameter. Li et al. [25] explained the influence of stress, the creep coefficient
and geometry parameters on the stress relaxation of bolts, but the rock mass rheological features were
not mentioned. Hao Tang [26] studied a new four-element rock creep model based on variable-order
fractional derivatives and continuum damage mechanics, so an important focus of research on
rock creep has been to develop a model with few parameters and better simulation performance.
Wang et al. [3] acquired the viscoelastic solutions of the circular tunnel supported with a pre-tensioned
rockbolt using a distributed force model. However, the influence of a rockbolt without pretension
force on rheological features was not involved, and the pretension will be weakened over time;
the rheological features of a rock mass-supported DMFC rockbolt without pretension force should be
investigated in depth.

In this paper, we begin by discussing the coupling model elastic solutions and then acquire the
viscoelastic analytical solutions by Laplace reverse. Subsequently, we solve the analytical solutions with
different rheological models. Finally, the changes in the rockbolt axial force, stress and deformation of
rock mass with time are discussed through the analytical solutions.

2. Interaction Model

The relative distribution of the rockbolts and rock mass is shown in Figure 1. R is the radius of the
reinforced zone, r is the radius of the circular cavern, Sθ is the interval of rockbolts along the tangential
direction, and SZ is the interval of rockbolts along the tunnel axis direction. The following assumptions
are made: (a) the cavern is deep and circular; (b) the problem is axisymmetric, and the lateral
pressure coefficient Ka = 1; and (c) the deformation is minor. Given these assumptions, the analytical
solutions are axisymmetric, and the solutions of various viscoelastic models can be obtained from the
corresponding elastic solutions based on a standard procedure (the corresponding principle between
elasticity and viscoelasticity) [27].
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Figure 1. Geometric model of discretely mechanically or frictionally coupled (DMFC) rockbolts and
rock mass: (a) plane direction; (b) excavation direction.
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The internal structure of the interaction model is shown in Figure 2. In the interaction model,
the displacement compatibility between the rockbolt and the rock mass can be expressed as Equation (1),
where displacements of the rockbolt and rock mass are equaled at both ends of the rockbolt:

uρ

∣∣
ρ=r = uρ, rockbolt

∣∣
ρ=r

uρ

∣∣
ρ=R = uρ, rockbolt

∣∣
ρ=R

}
(1)

where uρ is the radial displacement of rock mass, uρ,rockbolt is the displacement of rockbolt, and ρ is
radial distance. The interaction between rock mass and rockbolt can be expressed as

σρ

∣∣
ρ=r =

1
Sθ SZ

T
∣∣∣
ρ=r

σρ

∣∣
ρ=R− − σρ, rock

∣∣
ρ=R+ = r

RSθ SZ
T
∣∣∣
ρ=r

 (2)

where σρ is the radial stress of the rock mass, and T is the axial force of the rockbolt.Mathematics 2018, 6, x FOR PEER REVIEW  3 of 18 
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Under the conditions described above, the problem is axisymmetric. In other words, stresses
and displacements are independent of the polar coordinate θ. In Figure 2, L is the length of the
rockbolt free part, the mean supporting stress of rockbolts P0 is distributed at the tunnel perimeter,
and Pρ where Pρ = rP0/R at the rockbolt bond. When the rockbolt strain is ε and the axial stress is σ,
the one-dimensional constitutive equation of rockbolt can be expressed as

T = ACσ = AC
QC(D)

PC(D)
ε (3)

where T is the axial force of the rockbolt, AC is the area of the rockbolt cross-section, D is the differential
operator, t is time, pk and qk are both the constant parameters of the material, P(D) and Q(D) are the
operator functions.

Then, the mean supporting stress P0 that the rockbolts act on the tunnel wall is

P0 =
T

SθSZ
=

AC
SθSZ

QC(D)

PC(D)
ε =

AC
SθSZ

QC(D)

PC(D)

∆L
L

= k∆L = k
[
uρ(R)− uρ(r)

]
(4)
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where uρ is the displacement of the rock mass in the radial direction, ∆L is the deformation of the
rockbolt, and k is the equivalent stiffness of the rockbolt which can be expressed as

k =
AC

SθSZL
QC(D)

PC(D)
(5)

When the constitutive model of the rockbolt is a one-dimensional Kelvin viscoelastic model, the
operator functions of QC(D) and PC(D) after Laplace transformation are

PC(s) = 1
QC(s) = EC + ηCs

}
(6)

where s represents the variable after Laplace transformation, ηC is the viscosity coefficient of rockbolt,
and EC is the Young’s modulus of the rockbolt.

When the constitutive model of the rockbolt is a one-dimensional Maxwell model, the operator
functions of QC(D) and PC(D) after Laplace transformation are

PC(s) = 1 + ηC
EC

s
QC(s) = ηCs

}
(7)

Using the generalized Hooke’s law, the following three-dimensional viscoelastic constitutive
equation can be obtained from extending the one-dimensional constitutive equation:

Sij = 2 Q′(D)
P′(D)

eij

σij = 3 Q′′ (D)
P′′ (D)

εij

 (8)

where Sij is the stress partial tensor, eij is the strain partial tensor, σij is the stress tensor, and εij is the
strain tensor, Q′(D), and P′(D), Q′′ (D) and P′′ (D) are the operator functions of three-dimensional
viscoelastic equation.

Under the condition of small deformation, the only difference between the elastic problem
and viscoelastic problem lies in the constitutive equation. The equilibrium differential equation,
geometric equation and boundary equation are all the same. Based on the elastic-viscoelastic principle,
the solution of the viscoelastic problem can be obtained through the following procedure: (1) obtaining
elastic solution and conducting Laplace transformation; (2) substituting viscoelastic parameters in
the phase space into the elastic solutions, and then obtaining the Laplace space equations of the
viscoelastic problem; and (3) obtaining the solution of the viscoelastic problem by Laplace inverse
transformation [27]. The conversion formulae of the viscoelastic problem expressed in the phase space
are shown as follows:

E(s) = 9Q′(s)Q′′ (s)
3P′(s)Q′′ (s)+P′′ (s)Q′(s)

µ(s) = 3P′(s)Q′′ (s)−2P′′ (s)Q′(s)
2[3P′(s)Q′′ (s)+P′′ (s)Q′(s)]

 (9)

where E(s) is elasticity modulus after Laplace transformation, µ(s) is Poisson’s ratio after Laplace
transformation, Q′(s) Q′′ (s) P′(s) and P′′ (s) are the forms of operator function Q′(D), Q′′ (D),
and P′(D) and P′′ (D) are the forms after Laplace transformation.

When the constitutive model of rock mass is the Kelvin model, the three-dimension operator
functions are

P′(s) = 1 (10a)

Q′(s) = G1 + η2s (10b)

P′′ (s) = 1 (10c)
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Q′′ (s) = K (10d)

where G1 is the shear modulus of rock, K is the bulk modulus of rock, and η2 is the rock mass viscosity
coefficient.

When the constitutive model of rock mass is the Maxwell model, the equations of the operator
functions in three dimensions are

P′(s) = 1 + η2s/G1 (11a)

Q′(s) = η2s (11b)

P′′ (s) = 1 (11c)

Q′′ (s) = K (11d)

3. Viscoelastic Analytical Solutions in K–K Constitutive Model

The advantage of a closed-form solution is that the key variables that determine the ground-bolt
response can be readily identified and their relative importance can be quickly estimated. For example,
the formula derivation is provided when the constitutive model of rock mass and rockbolts is the K–K
model. In order to obtain the viscoelastic interaction solutions of rock mass and rockbolts, the elastic
coupling solution of rock mass and rockbolts must be obtained at first. The elastic solutions of the
interaction model are shown in Appendix A [8,28].

Substituting the operator function QC(s), PC(s), Q′(s), P′(s), Q′′ (s), P′′ (s) into
Equations (5) and (9), we can obtain the conversion formulae of the K–K model. Then, substituting the
K–K model conversion formulae into the elastic equations, as in Appendix A (A1)–(A6), we can obtain
the Laplace space equations of the viscoelastic problem as in Appendix B (A7)–(A13).

The solutions of the rheological model of the DMFC rockbolt in circular tunnels can be derived
from Appendix B (A7)–(A13) by the Laplace inverse transformation. The process is shown in
Appendix C.

The viscoelastic solutions under an M–M model can be acquired by a similar method.

4. Analysis of Analytical Solutions

4.1. K-K Rheology Model

The input data for the rheological model for the rockbolt interaction are shown in Table 1.

Table 1. Experiment parameters.

Experiment No. ηC (Pa·s) EC (Pa) η2 (Pa·s) K (Pa) G0 (Pa) σ0 (Pa) r (m) R (m) AC (m2) L (m) Sθ (m) SZ (m)

A 1.0 × 1020 2.0 × 1011 1.0 × 1018 2.2 × 109 1.5 × 109 −3.0 × 106 4 8 3.0 × 10-4 4 0.6981 1
B 3.0 × 1020 2.0 × 1011 1.0 × 1018 2.2 × 109 1.5 × 109 −3.0 × 106 4 8 3.0 × 10-4 4 0.6981 1
C 3.0 × 1020 2.0 × 1011 1.0 × 1018 2.2 × 109 1.5 × 109 −3.0 × 106 4 8 3.0 × 10-4 4 1.0472 1
D 3.0 × 1020 2.0 × 1011 1.0 × 1018 2.2 × 109 1.5 × 109 −3.0 × 106 4 8 3.0 × 10-4 4 1.2566 1
E 3.0 × 1020 2.0 × 1011 1.0 × 1018 2.2 × 109 1.5 × 109 −3.0 × 106 4 8 3.0 × 10-4 4 0.5236 1
F 3.0 × 1020 2.0 × 1011 0.9 × 1018 2.2 × 109 1.5 × 109 −3.0 × 106 4 8 3.0 × 10-4 4 0.6981 1
G 3.0 × 1020 2.0 × 1011 1.1 × 1018 2.2 × 109 1.5 × 109 −3.0 × 106 4 8 3.0 × 10-4 4 0.6981 1
H 3.0 × 1020 2.0 × 1011 1.2 × 1018 2.2 × 109 1.5 × 109 −3.0 × 106 4 8 3.0 × 10-4 4 0.6981 1

The relationship between the axial force of the rockbolt and time under different viscosity
coefficients ηC is shown in Figure 3a. As shown in Figure 3c, the absolute value of the radial stress σρ

at the position ρ = r equals the mean stress that rockbolts act on the tunnel walls. As the radial distance
increases, the radial stress increases and slowly converges to the far-field stress σ0. There is a jump in
radial stress at the end of the rockbolt (ρ = R), and the radial stress (absolute value) in the reinforced zone
lim

ρ→R−

∣∣σρ

∣∣ is larger than that in the original zone lim
ρ→R+

∣∣σρ

∣∣, and the jump value equals the distributed

load at the end of rockbolt ( lim
ρ→R−

∣∣σρ

∣∣− lim
ρ→R+

∣∣σρ

∣∣ = rP0/R). When ηC = 3× 1020 Pa · s, the numerical

result of the radial stress in the reinforced zone decreases with time and then increases in the original
zone. In addition, the jump value of the radial stress at the end of the rockbolt (ρ = R) decreases
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with time at ηC = 3× 1020 Pa · s, but increases at ηC = 1× 1020 Pa · s. When ηC = 1× 1020 Pa · s,
the numerical value of the radial stress increases with time in the reinforce zone and the original
zone. As shown in Figure 3d, the absolute value of the tangential stress σθ decreases with the radial
distance. As the radial distance increases, the tangential stress σθ slowly converges to the far-field
stress σ0. At the end of the rockbolt (ρ = R), the tangential stress in the reinforced zone lim

ρ→R−
|σθ | is

smaller than that in the original zone lim
ρ→R+

|σθ |. In addition, the tangential stress (absolute value) in the

reinforced zone increases with time and the viscosity coefficient of the rockbolt, but in the original zone,
the tangential stress (absolute value) decreases. The variation of tangential stress increases with the
viscosity coefficient in the original zone and decreases in the reinforced zone. As shown in Figure 4b,
the displacement at time t = 0 equals zero, and increases with time. The rock mass displacement
decreases with the viscosity coefficient of the rockbolt.

The results of experiments B, F, G and H are shown in Figure 4, and the variable among these
experiments is the viscosity coefficient of the rock mass (η2). As shown in Figure 4a, the axial force
of the rockbolt under different viscosity coefficients is exactly the same at time t→ ∞ , because the
displacement of the rock mass and rockbolts equals the elastic deformation at that time. A similar
phenomenon also can be found in Figure 4b–d. When t > 0, the axial force of the rockbolt increases
with the viscosity coefficient of rock mass. As shown in Figure 4c, when t > 0, the variation of the
radial stress increases with the viscosity coefficient η2 in the reinforced zone and decreases in the
original zone. As shown in Figure 4d, the absolute value of the tangential stress in the reinforced
zone increases with η2, but decreases in the original zone. The displacement of rock mass is shown in
Figure 4b; based on the comparison between the displacement–time relations under different viscosity
coefficients η2, we can see that the displacement decreases with the viscosity coefficient η2.

The results of experiments B, C, D and E are shown in Figure 5, and the variable among these
experiments is the intersection angle of the rockbolts (the spacing of rockbolts along the tangential
direction, Sθ). Compared with results of experiments B, F, G and H, the most significant differences
are that the axial force of the rockbolt, the radial stress and tangential stress of the rock mass, and the
displacement in the rock mass are not constant for different spacings of rockbolts at t→ ∞ , and these
values are determined by the spacing of the rockbolts. As shown in Figure 5a, the axial force of a
rockbolt increases with the intersection angle of the rockbolts. As shown in Figure 5c, the absolute
value of the radial stress increases with the intersection angle of the rockbolts in the reinforced zone,
but decreases in the original zone. As shown in Figure 5d, the absolute value of the tangential stress
in the reinforced zone decreases with the intersection angle of rockbolts, but increases in the original
zone. As shown in Figure 5b, the displacement of rock mass increases with the intersection angle of
the rockbolts. The results from the experiments B, C, D and E indicate that the reinforcement effect of
rockbolts decreases with the intersection angle.
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stress–radial distance curves when the time equals zero or 6.0 × 109 seconds. 
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Figure 4. Mechanical states in experiments B, F, G and H. (a) Axial force–time curves; (b) 
Displacement–radial distance curves when the time equals zero or 6.0 × 109 seconds; (c) Radial 
stress–radial distance curves when the time equals zero or 6.0 × 109 seconds; (d) Tangential 
stress–radial distance curves when the time equals zero or 6.0 × 109 seconds. 

The results of experiments B, F, G and H are shown in Figure 4, and the variable among these 
experiments is the viscosity coefficient of the rock mass ( 2η ). As shown in Figure 4a, the axial force 
of the rockbolt under different viscosity coefficients is exactly the same at time t → ∞ , because the 
displacement of the rock mass and rockbolts equals the elastic deformation at that time. A similar 
phenomenon also can be found in Figure 4b–d. When 0t > , the axial force of the rockbolt increases 
with the viscosity coefficient of rock mass. As shown in Figure 4c, when 0t > , the variation of the 
radial stress increases with the viscosity coefficient 2η  in the reinforced zone and decreases in the 
original zone. As shown in Figure 4d, the absolute value of the tangential stress in the reinforced 
zone increases with 2η , but decreases in the original zone. The displacement of rock mass is shown 
in Figure 4b; based on the comparison between the displacement–time relations under different 
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when the time equals zero or 6.0 × 109 s; (d) Tangential stress–radial distance curves when the time
equals zero or 6.0 × 109 s.

4.2. Different Constitutive Models for Rock Mass and Rockbolts

Using a similar methodology for the analytical solutions of the K–K model, the analytical solutions
of the M–M model can be obtained. The mechanical behaviors of the M–M model are extremely
different from those of the K–K model. For example, when using the M–M model, the displacements
of the rock mass and rockbolts equals the corresponding elastic solutions at t = 0, and always increase
with time. The deformation velocity decreases with time and tends to keep constant finally. There
is no limitation in the displacements of the rock mass and rockbolt in the M–M model. However,
for the case of the K–K model, the displacement equals zero at t = 0 and increases with time.
The ultimate deformation of rock mass or rockbolts equals the corresponding elastic problem solutions
(also equalling the displacement obtained from the M–M model at t = 0). The deformation velocity
decreases with time and eventually reduces to zero.

For the case of the M–M model, the variation of the axial force is related to the viscosity coefficient
of rockbolts ηC. In a certain range, the axial force increases with time and gradually reaches its peak
value when the viscosity coefficient of the rockbolts is larger than a certain value (the curve in Figure 6,
M–M model, ηC = 3× 1020 Pa · s). In contrast, the axial force decreases with time and reaches its
minimum value (the curve in Figure 6, K–K model, ηC = 1× 1020 Pa · s). As shown in Figure 6,
the characteristics between the axial force of the rockbolt and the viscosity coefficient of the K–K model
are opposite to those of the M–M model. The variation of the axial force of the rockbolt shows an
opposite pattern between the M–M model and the K–K model for the same parameters.
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Figure 6. Axial force–time curves obtained from M–M model and K–K model with different viscosity
coefficients of rockbolts.

As shown in Figure 7, these displacement–time curves represent the displacement of surrounding
rock mass at the position ρ = 4 m under the condition of the M–M model and K–K model; the different
variable used in these curves is the viscosity coefficient of rock mass. In Figure 8, the curves also
represent the displacement of the rock mass at the position ρ = 4 m under the condition of the M–M
model and the K–K model, but the different variable between these curves is the viscosity coefficient
of the rockbolt. It can be seen from Figures 7 and 8, the displacements obtained from the M–M model
and the K–K model increase with time. The displacement obtained from the M–M model equals the
corresponding elastic solution at t = 0 and increases with time. However, the displacement obtained
from the K–K model equals zero at t = 0, and the ultimate displacement equals the corresponding
elastic solution. Therefore, the displacement obtained from the M–M model at t = 0 equals that
from the K–K model at t→ ∞ . In Figure 7, as the viscosity coefficient of the rock mass increases,
the deformation velocity decreases, and the displacement of the surrounding rock mass in the M–M
model is reduced. However, this does not affect the ultimate displacement obtained from the K–K
model. In Figure 8, as the viscosity coefficient of the rockbolt increases, the displacement of the rock
mass in the M–M model decreases, and the ultimate displacement obtained from the K–K model
is impacted.Mathematics 2018, 6, x FOR PEER REVIEW  10 of 18 
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5. Conclusions

In this paper, an interaction rheological model of rockbolt and rock mass is proposed based on the
reinforcement mechanism of DMFC rockbolts, and the long-term evolution of stress and displacement
of the rock mass and rockbolts are discussed. The main conclusions can be drawn as follows:

(1) Based on this study, the time-dependent features of rock mass–rockbolt rheology coupling is
considered in the long-term design and maintenance of caverns, and the theoretical model can be
used to evaluate the rheological mechanical properties of the interaction between the rock mass
and DMFC rockbolts, and then the long-term mechanical behavior of the rockbolt supporting
system can be predicted;

(2) The evolution of the axial force of a rockbolt is closely related to the viscosity coefficient of
rockbolts ηC. When using the M–M model, if ηC is larger than a certain value (T′(t) > 0), the axial
force of rockbolts increases with time, and eventually approaches a limit value. Conversely,
the axial force decreases with time, and gradually approaches a minimum value. When using the
K–K model, the variation of the axial force is opposite to the result from the M–M model. If the ηC
is larger than a certain value, the axial force decreases with time, and eventually approaches the
corresponding elastic solution. In contrast, the axial force increases with time, and approaches
the value of the corresponding elastic solution. In addition, when the viscosity coefficient of a
rockbolt is relatively large, the axial force of the rockbolt may increase at first and then decrease;

(3) The results show a marked difference when the Kelvin model is used as opposed to the Maxwell
model; the reason for the difference is that the properties of these two models are different.
The Maxwell model can describe the materials’ transient, relaxation and viscous flow, while the
Kelvin model can only describe the elastic after-effect and deformation limit;

(4) In this study, analytical solutions of the theoretical model under the circumstances of the K–K
model and M–M model are given. This solution derivation methodology may also be applied
to other types of rheological models; for example, the reasonable and simplified method for
the theoretical model of a CFC rockbolt can be further studied based on this model, which lays
a foundation of the preliminary research for solving the theoretical model of a CFC rockbolt.
Additional details regarding rockbolt and rock mass coupling properties should be investigated
using the appropriate rheological models in future work. Furthermore, the coupling model
nonlinear viscoelastic behavior is also the next work.
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Appendix A

The elastic solutions of the interaction model are shown below [8,28].
The radial stresses σρ1, σρ2 in the reinforced zone (r < ρ < R) and original zone (ρ > R) can be

expressed, respectively, as follows:

σρ1 = σ0R
ρ2

[
kρ2r2(4µ−3)(µ+1)(r−R)

−kR2r(4µ−3)(µ+1)−2E0R2(µ−1)+4kRr2(µ+1)(µ−1)+kr3(µ+1)

+
Rkr3(2µ−1)(µ+1)(R−r)+2E0R(r2(µ+1)−ρ2(µ−1))

−kR2r(4µ−3)(µ+1)−2E0R2(µ−1)+4kRr2(µ+1)(µ−1)+kr3(µ+1)

] (A1)

σρ2 = σ0 −
R2r2σ0

ρ2
k(2µ− 1)(µ + 1)

(
r2 − R2)− 2E0R(µ− 1)

−kR2r(4µ− 3)(µ + 1)− 2E0R(µ− 1) + 4kRr2(µ + 1)(µ− 1) + kr3(µ + 1)
(A2)

where E0 is the elasticity modulus and µ is Poisson’s ratio when rock is defined as linear
elastic materials.

The tangential stresses σθ1, σθ2 in the reinforced zone (r < ρ < R) and original zone (ρ > R) can
be expressed, respectively, as follows:

σθ1 =
Rσ0

ρ2
krρ2(R− r)(4µ− 3)(µ + 1) + 2E0R(µ− 1)

(
ρ2 + r2)+ kr3(2µ− 1)(µ + 1)(R− r)

−kR2r(4µ− 3)(µ + 1)− 2E0R2(µ− 1) + 4kRr2(µ + 1)(µ− 1) + kr3(µ + 1)
(A3)

σθ2 = σ0 +
Rr2σ0

ρ2
k
(
r2 − R2)(2µ− 1)(µ + 1)− 2E0R(µ− 1)

−kR2r(4µ− 3)(µ + 1)− 2E0R2(µ− 1) + 4kRr2(µ + 1)(µ− 1) + kr3(µ + 1)
(A4)

The displacements uρ1, uρ2 in the reinforced zone (r < ρ < R) and original zone (ρ > R) can be
expressed, respectively, as follows:

uρ1 =
σ0r2(1 + µ)

E0ρ

2E0R2(1− µ) + kR(µ + 1)(2µ− 1)
(
r2 − ρ2)+ kr(µ + 1)(2µ− 1)

(
ρ2 − R2)

−kR2r(4µ2 + 2µ− 3)− 2E0R2µ + 4kRr2(µ2 − 1) + kr3(1 + µ)
(A5)

uρ2 =
σ0Rr2(1 + µ)

E0ρ

k(µ + 1)(2µ− 1)
(
r2 − R2)+ 2E0R(1− µ)

−kR2r(µ + 1)(4µ− 3) + 2E0R(1− µ) + 4kRr2(µ2 − 1) + kr3(µ + 1)
(A6)

Appendix B

The rheological equations of the viscoelastic solutions in the Laplace space for the K–K model are
shown below.

The displacements u1KK, u2KK of the reinforced zone (r < ρ < R) and original zone (ρ > R) can
be expressed, respectively, as follows:

u1KK =
a1KKs + b1KK

c1KKs3 + d1KKs2 + e1KKs
(A7)

u2KK =
a2KKs + b2KK

c2KKs3 + d2KKs2 + e2KKs
(A8)

where

a1KK =
3ηCσ0 ACr2

SZSθ L
(R− r)

(
Rr + ρ2

)
+ 8η2σ0R2r2

b1KK = 2R2r2σ0(4G1 + 3K) + 3ECσ0
ACr3

SZSθ L

(
R2 − ρ2

)
+ 3ECσ0

ACRr2

SZSθ L

(
ρ2 − r2

)
c1KK = 16ρR2η2

2 + 2ηCη2
ACrρ

SZSθ L
(7R− r)(R− r)
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d1KK = 4R2ρη2(8G1 + 3K) + 2ECη2
ρrAC
SZSθ L

(7R− r)(R− r) + 2G1ηC
ρrAC
SZSθ L

(7R− r)(R− r)

e1KK = 4ρG1R2(4G1 + 3K) + 2ECG1
ρrAC
SZSθ L

(7R− r)(R− r) + 6ECK
ρrAC
SZSθ L

(R− r)2

a2KK = 3ηCσ0
ACRr2

SZSθ L

(
R2 − r2

)
+ 8η2σ0R2r2

b2KK = 2R2r2σ0(4G1 + 3K) + 3ECσ0
ACRr2

SZSθ L

(
R2 − r2

)
c2KK = 16R2η2

2ρ + 2ηCη2
ACρr

SZSθ L
(7R− r)(R− r)

d2KK = 4R2ρη2(8G1 + 3K) + 2ECη2
ρrAC
SZSθ L

(7R− r)(R− r) + 2G1ηC
ρrAC
SZSθ L

(7R− r)(R− r)

e2KK = 4ρG1R2(4G1 + 3K) + 2ECG1
ρrAC
SZSθ L

(7R− r)(R− r) + 6ECK
ρrAC
SZSθ L

(R− r)2

The radial stresses σρ1KK, σρ2KK of the reinforced zone (r < ρ < R) and original zone (ρ > R) can
be expressed, respectively, as follows:

σρ1KK =
a3KKs2 + b3KKs + c3KK

d3KKs3 + e3KKs2 + f3KKs
(A9)

σρ2KK =
a4KKs2 + b4KKs + c4KK

d4KKs3 + e4KKs2 + f4KKs
(A10)

where

a3KK = 8σ0R2η2
2
(

ρ2 − r2
)
+ 7ηCη2σ0

ACRρ2r
SθSZL

(R− r) + 3ηCη2σ0
ACRr3

SθSZL
(r− R)

b3KK = 6KR2η2σ0
(
ρ2 − r2)+ 16G1R2η2σ0

(
ρ2 − r2)

+(ECη2 + G1ηC)σ0
AC Rr
SθSZ L (R− r)

(
7ρ2 − 3r2)+ 3KηCσ0

AC Rrρ2

Sθ SZ L (R− r)

c3KK = (8G1 + 6K)G1R2σ0
(
ρ2 − r2)+ 3ECσ0

AC Rr
Sθ SZ L (R− r)

(
G1r2 + Kρ2)

+7ECG1σ0
AC Rrρ2

Sθ SZ L (R− r)

d3KK = 8R2ρ2η2
2 + ηCη2

ACρ2r
SθSZL

(7R− r)(R− r)

e3KK = (16G1 + 6K)R2ρ2η2 + (ECη2 + G1ηC)
AZρ2r
SθSZ L (7R− r)(R− r)

+3KηC
AZρ2r
Sθ SZ L (R− r)2

f3KK = (8G1 + 6K)G1R2ρ2 + ECG1
ACρ2r
SZSθ L (7R− r)(R− r)

+3ECK ACρ2r
SZSθ L (R− r)2

a4KK = 3η2ηCσ0
ACRr2

SθSZL

(
r2 − R2

)
+ 8σ0R2η2

2
(

ρ2 − r2
)
+ σ0η2ηC

ACρ2r
SZSθ L

(7R− r)(R− r)

b4KK = (6K + 16G1)R2η2σ0
(
ρ2 − r2)+ 3σ0

AC Rr2

Sθ SZ L (ECη2 + G1ηC)
(
r2 − R2)

+σ0
ACrρ2

Sθ SZ L (ECη2 + G1ηC)(7R− r)(R− r) + 3KηCσ0
ACrρ2

SθSZ L (r− R)2
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c4KK = (8G1 + 6K)G1R2σ0

(
ρ2 − r2

)
+ 3σ0ECG1

ACRr2

SZSθ L

(
r2 − R2

)
+ 3σ0ECK

ACρ2r
SZSθ L

(r− R)2

d4KK = 8R2ρ2η2
2 + η2ηC

ACrρ2

SθSZL
(7R− r)(R− r)

e4KK = 2R2ρ2η2(8G1 + 3K) +
ACrρ2

SθSZL
(ECη2 + G1ηC) + 3KηC

ACrρ2

SθSZL
(R− r)2

f4KK = 2G1R2ρ2(4G1 + 3K) + ECG1
ACrρ2

SθSZL
(7R− r)(R− r) + 3ECK

ACrρ2

SθSZL
(R− r)2

The tangential stresses σθ1KK, σθ2KK of the reinforced zone (r < ρ < R) and original zone (ρ > R)
can be expressed, respectively, as follows:

σθ1KK =
a5KKs2 + b5KKs + c5KK

d5KKs3 + e5KKs2 + f5KKs
(A11)

σθ2KK =
a6KKs2 + b6KKs + c6KK

d6KKs3 + e6KKs2 + f6KKs
(A12)

where
a5KK = 8σ0R2η2

2
(

ρ2 + r2
)
+ ηCη2σ0

ACRr
SθSZL

(R− r)
(

7ρ2 + 3r2
)

b5KK = (6K + 16G1)R2η2σ0
(
ρ2 + r2)+ 3σ0

AC Rr3

Sθ SZ L (R− r)(ECη2 + G1ηC)

+(7ECη2 + 7G1ηC + 3KηC)
AC Rrρ2

Sθ SZ L σ0(R− r)

c5KK = (8G1 + 6K)G1R2σ0

(
ρ2 + r2

)
+ 3ECG1σ0

ACRr3

SθSZL
(R + r) + ECσ0

ACRrρ2

SθSZL

d5KK = 8R2ρ2η2
2 + η2ηC

ACrρ2

SθSZL
(7R− r)(R− r)

e5KK = 2R2ρ2η2(8G1 + 3K) +
ACrρ2

SθSZL
(ECη2 + G1ηC)(7R− r)(R− r) + 3KηC

f5KK = 2G1R2ρ2(4G1 + 3K) + ECG1
ACrρ2

SθSZL
(7R− r) + 3ECK

ACrρ2

SθSZL
(R− r)2

a6KK = 8σ0R2η2
2(ρ2 + r2)+ 3ηCη2σ0

AC Rr2

Sθ SZ L
(

R2 − r2)
+ηCη2σ0

ACρ2r
Sθ SZ L (7R− r)(R− r)

b6KK = 2R2η2σ0(3K + 8G1)
(
r2 + ρ2)+ 3σ0

AC Rr2

Sθ SZ L
(

R2 − r2)(ECη2 + G1ηC)

+σ0
ACρ2r
Sθ SZ L (ECη2 + G1ηC)(7R− r)(R− r) + 3KηCσ0

ACρ2r
Sθ SZ L (R− r)2

c6KK = 2G1R2σ0(4G1 + 3K)
(
ρ2 + r2)+ 3ECG1σ0

AC Rr2

Sθ SZ L
(

R2 − r2)
+ECG1σ0

ACrρ2

Sθ SZ L (7R− r)(R− r) + 3ECKσ0
ACrρ2

SθSZ L (R− r)2

d6KK = 8R2ρ2η2
2 + η2ηC

ACrρ2

SθSZL
(7R− r)(R− r)

e6KK = 2R2ρ2η2(8G1 + 3K) +
ACrρ2

SθSZL
(ECη2 + G1ηC)(7R− r)(R− r)

f6KK = 2G1R2ρ2(4G1 + 3K) + ECG1
ACrρ2

SθSZL
(7R− r)(R− r) + 3ECK

ACrρ2

SθSZL
(R− r)2
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Combining Equations (5) and (9), the axial force of the rockbolts can be obtained as

TKK =
aTKKs2 + bTKKs + cTKK

dTKKs3 + eTKKs2 + fTKKs
(A13)

where
aTKK = 4ηCη2σ0

ACRr
L

(R + r)

bTKK = (4ECη2 + 4G1η2 + 3Kη2)Rrσ0
AC
L

(r− R)

cTKK = (4G1 + 3K)ECRrσ0
AC
L

(r− R)

dTKK = 8R2η2
2 + η2ηC

ACr
SθSZL

(7R− r)(R− r)

eTKK = 2R2η2(8G1 + 3K) + (ECη2 + G1ηC)
ACr

SθSZL
+ 3Kη2

ACr
SθSZL

(R− r)2

fTKK = 2G1R2(4G1 + 3K) + ECG1
ACr

SθSZL
(7R− r)(R− r) + 3ECK

ACr
SθSZL

(R− r)2

Appendix C

There are two forms of Appendix B (A7)–(A13), and these different forms of equations can be
written as follows.

Type 1: The equation u(ρ, s) = as+b
cs3+ds2+es can be used to represent Appendix B (A7) and (A8). Then,

the equation u(ρ, t) can be obtained by the inverse Laplace transformation from the equation u(ρ, s):

u(ρ, t) =
2ae− bd√
−4ce + d2e

sinh

(
1
2

t
√
−4ce + d2

c

)
e−

td
2c − b

e

[
e−

td
2c cosh

(
1
2

t
√
−4ce + d2

c

)
− 1

]
(A14)

where a, b, c, d, e represent the parameters a1KK, b1KK, c1KK, d1KK, e1KK or a2KK, b2KK, c2KK, d2KK, e2KK in
Equation (A7) or (A8).

Type 2: The equation f (s) = as2+bs+c
ds3+es2+ f s can be used to represent Appendix B (A9)–(A13). Then,

the equation f (t) can be obtained by the inverse Laplace transformation from equation f (s):

f (t) = c
f +

a f−cd
d f cosh

(
1
2

t
√
−4d f+e2

d

)
e−

te
2d + −ae f+2bd f−cde√

−4d f+e2 f d
sinh

(
1
2

t
√
−4d f+e2

d

)
e−

te
2d (A15)

where a, b, c, d, e, f represent the parameters a3, b3, c3, d3, e3, f3, a4, b4, c4, d4, e4, f4, a5, b5, c5, d5, e5, f5,
a6, b6, c6, d6, e6, f6 and aT , bT , cT , dT , eT , fT in (A9) and (A13).

When Equation (A14) represents the axial force T(t), the derivative of T(t) can be obtained by
Equations (A15) and (A16):

T′(t) = f ′(t) = − 2 exp(− te
2d )√

−4d f+e2d2

[(
− 1

2 ae2 + 1
2 bde + ad f − cd2

)
sinh

(
1
2

t
√
−4d f+e2

d

)
+ 1

2

√
−4d f + e2 cosh

(
1
2

t
√
−4d f+e2

d

)
(ae− bd)

] (A16)

Let T′(t) = 0, thus the extreme point t1 can be expressed as

t1 =
d√

−4d f + e2
ln

(
−
√
−4d f + e2ae−

√
−4d f + e2bd− 2ad f + ae2 − bde + 2cd2√

−4d f + e2ae−
√
−4d f + e2bd + 2ad f − ae2 + bde− 2cd2

)
(A17)
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If the f (s) represents T(s), and the parameters a, b, c, d, e, f represent aT , bT , cT , dT , eT , fT at the
same time. The axial force of rockbolt T(x) can be derived from Equation (A15). The axial force of
rockbolt at t→ ∞ can be expressed as

lim
t→∞

T(t) =
ECRrσ0 ACSθSZ(R− r)(4G0 + 3K)

G0R2SθSZL(8G0 + 6K) + EC ACr(R− r)[G0(7R− r) + 3K(R− r)]
(A18)

At t→ ∞ , the value of the axial force T(t) is not affected by the material viscosity coefficient
of rock mass and rockbolts, and the value of T only depends on geometric parameters and
elastic parameters.
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