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Abstract: It has been recently shown that measurement incompatibility and fine grained
uncertainty—a particular form of preparation uncertainty relation—are deeply related to the
nonlocal feature of quantum mechanics. In particular, the degree of measurement incompatibility
in a no-signaling theory determines the bound on the violation of Bell-CHSH inequality, and a
similar role is also played by (fine-grained) uncertainty along with steering, a subtle non-local
phenomenon. We review these connections, along with comments on the difference in the roles
played by measurement incompatibility and uncertainty. We also discuss why the toy model of
Spekkens (Phys. Rev. A 75, 032110 (2007)) shows no nonlocal feature even though steering is present
in this theory.
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1. Introduction

Quantum theory (QT), admittedly the most accurate mathematical description of physical world,
is considered as one of the greatest achievements of 20th century science. It was developed to explain
a number of newly-discovered microscopic phenomena which the classical theory could not explain.
From a fundamental point of view, a number of concepts of this theory depart in various ways from
that of the classical physics. At the time of the birth of quantum mechanics, two central non-classical
concepts that appeared were the uncertainty principle [1] and the complementarity principle [2–4].
Then came the most surprising concept, namely, quantum nonlocality [5,6]. These nonclassical
features of QT were treated as distinct concepts until very recently. Interestingly, in 2010, Oppenheim
and Wehner related nonlocality with the uncertainty principle [7]. In another important piece of
work, Banik et al. connected nonlocality with the complementarity principle [8]. More explicitly,
the results in [7,8] successfully explain a very peculiar feature of quantum nonlocality, namely its
limited strength. The nonlocal strength of quantum correlations is restricted in comparison with other
possible correlations compatible with the relativistic causality principle. This restricted behavior is
manifested by the amount of optimal violation of the well known Bell-Clauser-Horne-Shimony-Holt
(Bell-CHSH) inequality [9]. Whereas Cirel’son showed that maximum violation of the Bell-CHSH
inequality in quantum theory is limited to 2

√
2 [10], Popescu and Rohrlich provided an example of

a hypothetical correlation [11] (called the PR-correlation) which satisfies the relativistic causality
principle but exhibits stronger nonlocal (with respect to violation of the Bell-CHSH inequality)
behavior than quantum correlations. In [7], the authors have introduced a fine-grained version
of the uncertainty principle and showed that uncertainty, along with steering, determines the aforesaid

Mathematics 2016, 4, 52; doi:10.3390/math4030052 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/journal/mathematics


Mathematics 2016, 4, 52 2 of 13

restricted nonlocality in quantum theory. On the other hand, in [8], it has been shown that the
same restricted behavior can be explained by complementarity principle expressed in terms of
measurement incompatibility. In the present article, we critically review these connections, which
are not limited only to QT, but extend to a much broader framework of convex operational theories.
We then study these connections in a toy theory (introduced by Sppekkens [12]) whose state space
does not have a convex structure in strict sense.

The paper is organized as follows: In Section 2, we briefly describe the mathematical
framework of convex operational theories, the concept of joint measurability, and the concept of
fine-grained uncertainty relation. Section 3 reviews the connection between complementarity principle
and nonlocality. Here we also present an alternative proof of a result by Wolf et al., which shows that
measurement incompatibility in QT always results in the violation of the Bell-CHSH inequality [13].
The connection between the uncertainty principle and nonlocality has been reviewed in Section 4.
Section 5 studies similar connections in the framework of Spekkens’ toy theory and draws some
interesting conclusions, and Section 6 concludes the article.

2. Mathematical Prerequisites

Before going to the core discussion, in this section, we briefly describe the mathematical framework
for convex operational theories followed by the description of joint measurability in quantum theory
as well as in the more general convex operational theories. The fine-grained uncertainty relations are
discussed towards the end of this section.

2.1. Convex Operational Theories

The framework was initially introduced in the 1960s by researchers in quantum foundations who
used it to investigate axiomatic derivations of the Hilbert space formalism of quantum mechanics
from operational postulates [14–17]. Due to the emphasis on the convex structure of the set of
states and the use of operations to model state transformations, the approach is called the convex
state approach. The basic motivation behind this framework is to explain the experimental phenomena
in an operational approach. So, the theories considered in this framework are also specified under
a common name, called operational theories. Recently, the framework has gained renewed interest
from researchers in quantum information science, and the theories encapsulated in this framework are
also known as generalized probabilistic theories (GPT’s) [18–20].

State space: The set of states Ω, in which a system S can be prepared, is commonly assumed
to be a convex subset of a real vector space V. The convexity corresponds to the ability to
define a preparation procedure as a probabilistic mixture of different preparation procedures
corresponding to other states; i.e., for every two states ω1, ω2 ∈ Ω, their convex combination
Cω1,ω2 := {pω1 + (1− p)ω2 | 0 ≤ p ≤ 1} is contained in Ω. The extremal points of Ω are referred to as
pure states, and the states which can be written as convex combinations of other states are called mixed
states. A d-dimensional system (i.e., a system having d degrees of freedom) is classical if and only if its
state space Ω is the convex hull of d− 1 linearly independent pure states (a simplex), in which case Ω
can be thought of as the set of probability distributions over d− 1 distinct possibilities. For a quantum
system S, the (convex) set of density operators (states) D(HS) is contained in the real vector space
Herm (HS) of Hermitian operators on Hilbert spaceHS associated with the system S.

Observables: The set of affine (i.e., non-negative) functionals on Ω forms an ordered linear space
A(Ω), with the ordering given point-wise: For f , g ∈ A(Ω), we have f ≥ g if and only if f (ω) ≥ g(ω)

for all ω ∈ Ω. A(Ω) is an ordered unit space, with unit being defined as u, such that u(ω) = 1 for
all ω ∈ Ω. The set of effects on Ω is taken to be the unit interval [0, u] ⊂ A(Ω) which is denoted as:

E(Ω) := {e ∈ A(Ω) | 0 ≤ e(ω) ≤ 1, for all ω ∈ Ω} (1)
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E(Ω) is the convex hull of the unit effect, the zero effect, and the set of extremal effects; it is a subset of
the vector space V*, which is dual to the vector space V. In this convex framework, one can, however,
define unnormalized states as well as unnormalized effects. The collection of unnormalized states
forms a convex positive cone lying in V+. Similarly, the collection of unnormalized effects from the
corresponding dual positive cone lying in V*,+.

Let us denote the set of measurements or observables, performed on a system byM. Consider, for
simplicity, that a measurement M ∈ M has some finite set KM = {1, 2, ... , n} of possible outcomes.
In the abstract state space formalism, M is represented by a set of functionals M ≡ {eM

1 , eM
2 , ..., eM

n },
where eM

j ∈ E(Ω) is associated with the measurement outcome j ∈ KM for the measurement

of M. The value eM
j (ω) (lying between 0 and 1) denotes the probability of getting outcome j for

a measurement of the observable M on the system prepared in the state ω.
Joint system: The joint system AB will have its own state space, ΩAB, which is convex by definition.

Under the assumptions of no-signalling and local tomography, it can be shown that ΩAB must lie
between two extremes, the maximal tensor product ΩA ⊗max ΩB and the minimal tensor product
ΩA ⊗min ΩB [21].

A state is called a product state if it can be written in the form ωA ⊗ωB for some states ωA ∈ ΩA
and ωB ∈ ΩB. States that can be written as probabilistic mixtures of product states are separable;
i.e., ω

sep
AB = ∑i piω

i
A ⊗ ωi

B with pi ≥ 0 ∀i & ∑i pi = 1 and ωi
A ∈ ΩA, ωi

B ∈ ΩB. States that are
not separable are entangled. A state ωAB is entangled iff ωAB ∈ ΩA ⊗max ΩB but ωAB /∈ ΩA ⊗min
ΩB. If either A or B is classical, then ΩA ⊗min ΩB = ΩA ⊗max ΩB, and there is no entanglement.
In particular, if both are classical, then both ΩA ⊗min ΩB and ΩA ⊗max ΩB are the simplices whose
vertices are ordered pairs of an extremal point of ΩA and one of ΩB. In general ΩA ⊗min ΩB ⊂ ΩAB ⊂
ΩA ⊗max ΩB; i.e., the inclusions are strict.

2.2. Incompatible Measurement, Unsharpness and Joint Measurability

Bohr’s Complementarity principle is one of the central concepts in quantum mechanics [2].
One of the original versions of the complementarity principle states that there are observables
in quantum mechanics that do not admit unambiguous joint measurement, and they are
called incompatible. With the introduction of the generalized measurement—i.e., with the positive
operator-valued measure (POVM)—it was shown that observables that do not admit perfect joint
measurement may allow joint measurement if the measurements are made sufficiently fuzzy [22].
Moreover, one can mathematically generalize this notion in the abstract state space formalism
introduced above.

Consider a system whose state space is denoted by Ω, and consider a two-outcome measurement
M with outcomes denoted by “yes” (+1) and “no” (−1). Let the effects associated with the outcomes
be denoted by eM

yes and eM
no, respectively. The unsharp version M(λ) of a two-outcome measurement M

is defined as M(λ) := {eM(λ)

yes , eM(λ)

no | eM(λ)

yes (ω) + eM(λ)

no (ω) = 1 for all ω ∈ Ω}. Here, eM(λ)

yes (ω) denotes
the probability of obtaining outcome “yes” whenever the unsharp measurement M(λ) is performed on
the system prepared in the state ω; similarly, eM(λ)

no (ω) denotes the probability of obtaining the other
outcome, and these are related to the outcome probabilities of the sharp version M of the unsharp
measurement M(λ) as follows:

eM(λ)

yes(no)(ω) =
1 + λ

2
eM

yes(no)(ω) +
1− λ

2
eM

no(yes)(ω) (2)

with λ ∈ [0, 1], called the “unsharpness parameter”. Expectation value of the unsharp measurement
M(λ) on the state ω is given by,

〈M(λ)〉ω := eM(λ)

yes (ω)− eM(λ)

no (ω) = λ〈M〉ω (3)

where 〈M〉ω is the expectation value of the corresponding sharp measurement on the state ω.
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Two dichotomic (i.e., two-outcome) observables M1 and M2 are jointly measurable if there exists
a four outcome measurement M12 ≡ {eM12

i,j ; i, j ∈ {yes, no} | ∑i,j∈{yes,no} eM12
i,j (ω) = 1 for all ω ∈ Ω}

whose measurement statistics reproduces the measurement statistics of the observables M1 and M2 as
marginals for every possible state of the system; i.e.,

∑
i∈{yes,no}

eM12
i,j (ω) = eM2

j (ω) ∀ j

∑
j∈{yes,no}

eM12
i,j (ω) = eM1

i (ω) ∀ i (4)

whatever be the choice of ω ∈ Ω.
Whenever the effects eM12

i,j clicks in the joint measurement, it implies (according to the construction

of M12) that the effect eM1
i clicks for the measurement M1 and effect eM2

j clicks for the second one.
Degree of incompatibility: It may be possible that observables which are not jointly measurable

in a theory may admit joint measurement for their unsharp counterparts within that theory.
For two given observables, the largest value of the unsharpness parameter up to which the joint
measurement of their unsharp counterparts is still possible depends on the observables and is
considered the degree of incompatibility of the two observables. If two observables are jointly
measurable for the value λ of the unsharpness parameter, then they are also jointly measurable
for any value of the unsharpness parameter within the interval [0, λ]. The value λopt that guarantees
the existence of joint measurement for all possible pairs of dichotomic observables in a theory can be
considered as the “degree of incompatibility” of the theory.

2.3. Fine-Grained Uncertainty Relation

The uncertainty principle postulates the existence of certain observables (such as position and
momentum, spin of a particle in two different directions), all of which cannot be simultaneously
but arbitrarily well defined in a quantum mechanical state. Conventionally, uncertainty relations
in quantum theory have been expressed in terms of commutators and standard deviations [1].
Later, entropic measures were used to express the uncertainty relations [23]. Recently, in [7], the authors
have introduced more fine-grained uncertainty relations formulated in terms of the probabilities of
particular sets of possible outcomes for given sets of measurements on a quantum system.

Let p(j(M)|M)ω be the probability of getting outcome j for the measurement of the observable
M on the system prepared in state ω. Consider a set of possible outcomes which we write as a
string ~x := (x(M1), x(M2), ... , x(Mn)) for a set of measurement M := (M1, M2, ... , Mn) chosen with
some probability distribution D = {p(Mk)}k. The uncertainty relation introduced in [23] is of the
following form

P(ω;~x) :=
n

∑
k = 1

p(Mk)p(x(Mk)|Mk)ω ≤ ξ~x(M,D) (5)

where P(ω;~x) is the probability of the string ~x corresponding to the set of measurements M
(chosen with the probability distribution D) on the system prepared in the state ω; ξ~x(M,D) is
obtained by a maximization over all possible states of the system under consideration:

ξ~x(M,D) = max
ω

n

∑
k = 1

p(Mk)p(x(Mk)|Mk)ω (6)

It is noteworthy here that (5), in fact, represents a series of inequalities—one for each combination
~x of possible outcomes. These inequalities say that one cannot obtain a measurement outcome with
certainty for all measurements simultaneously whenever ξ~x(M,D) < 1. As an example, for a spin-1/2
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quantum system if we consider binary spin observables σx and σz (chosen with equal probability),
then the above relations reads:

1
2

p(m|σx)ρ +
1
2

p(n|σz)ρ ≤
1
2
+

1
2
√

2
, ∀ ~x = (m, n) (7)

where m, n ∈ {+1,−1} denote the outcomes of spin measurements for any state ρ of the system.
The maximally certain states (i.e., the states achieving the right-hand side bound of the above equation)
are given by the eigenstates of (σx ± σz)/

√
2.

3. Measurement Incompatibility and Nonlocality

Undoubtedly, one of the most fundamental contradictions of quantum mechanics (QM) with
classical physics gets manifested in its nonlocal behavior. This bizarre feature of QM was first
established in the seminal work of J.S. Bell [5], where he showed that QM is incompatible with
the local-realistic world view of classical physics. Bell showed this by means of an empirically
testable inequality derived under the joint assumption of local-realism. There exists quantum
states and observable-settings for which this inequality gets violated, and hence the corresponding
correlations (measurement statistics) cannot be explained in any local-realistic theory. On one
hand, quantum theory shows surprising nonlocal behavior; on the other hand, its nonlocal
strength is peculiarly restricted in comparison to other nonlocal correlations compatible with the
relativistic causality principle. This restricted feature is exhibited in the limited violation of the
Bell-CHSH inequality. Is there a principle that determines this limited violation? In an interesting
piece of work, Banik et al. [8] showed that the complementarity principle (incompatibility of two
observables beyond a certain degree of unsharpness) can be one of the reasons for this limited behavior.
They linked the “degree of incompatibility” of two dichotomic observables with the maximum
violation of the Bell-CHSH inequality in a theory. The pivotal for this work of Banik et al. is a work by
Andersson et al. [24] where the Bell-CHSH inequality was derived under an assumption different from
that of local-realism. In this section, we present a comprehensive review on all these developments
and supplement it with alternative derivations of some known results in this area of research.

Quantum nonlocality is based on two central features of quantum theory, namely entanglement
and incompatible measurements—i.e., observation of quantum nonlocality implies the presence of
both entanglement and incompatible measurements. Conversely, entanglement does not always
imply nonlocality. There exist entangled states for which no form of quantum nonlocality can be
demonstrated using non-sequential measurements [25–27]. However, in an important development,
Wolf et al. showed that every pair of incompatible dichotomic quantum observables always leads to
the violation of the Bell-CHSH inequality in QT [13]. That is, there exists a bipartite quantum state and
a set of dichotomic observables at an added site together with which the given observables violate
the Bell-CHSH inequality. In the following, we give an alternative proof of this result following the
approach made in Reference [28]. This proof makes the bound on nonlocality in QT immediate.

Consider two binary measurements {E, (I− E)} and {F, (I− F)} with 0 ≤ E, F ≤ I, and consider
their unsharp counterparts,

{Eλ ≡
1 + λ

2
E +

1− λ

2
(1− E), (I− Eλ)}

{Fλ ≡
1 + λ

2
F +

1− λ

2
(1− F), (I− Fλ)} (8)

Let λEF be the maximum value of λ such that the unsharp versions are jointly measurable. λEF can
be found from the following cone-linear optimization problem,

Maximize : λ

Subject to : 0 ≤ G ≤ Eλ, Fλ & Eλ + Fλ − I ≤ G (9)
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The unsharp observable can also be expressed as Eλ = λE + 1− λ
2 I, which implies Eλ/λ = E + εI,

where ε = 1− λ
2λ . Let εEF be the minimum value of ε such that the unsharp observables are jointly

measurable, and this value can be obtained from the following optimization,

Minimize : ε

Subject to : 0 ≤ G ≤ E + εI, F + εI & E + F− I ≤ G (10)

We have εEF = 1− λEF
2λEF

. The optimization problem (10) can be cast into the following dual
optimization problem,

Maximize : Tr[σ3(E + F− I)]− Tr[σ2E]− Tr[σ1F]

Subject to : σ3 ≤ σ1 + σ2 = ρ (a density operator)

σ1, σ2, σ3 ≥ 0 (11)

|ψAB〉 is a bipartite state such that TrA[|ψAB〉〈ψAB|] = ρ. Let {P, (I− P)} be the projective measurement
corresponding to the observable A1 = (+1)P + (−1)(I− P) = I− 2P}; similarly, let {Q, (I− Q)}
be the projective measurement corresponding to the observable A2 = (+1)Q + (−1)(I − Q) =

I − 2Q}, both being performed on the subsystem A such that TrA[(P ⊗ I)|ψAB〉〈ψAB|] = σ1 and
TrA[(Q ⊗ I)|ψAB〉〈ψAB|] = σ3. Consider two measurements B1 and B2 on B subsystem such that
B1 = (+1)(I − F) + (−1)F = 1− 2F and B2 = (+1)E + (−1)(I − E) = 2E − 1. The Bell-CHSH
expression for the set of measurements takes the form,

〈Bell − CHSH〉 = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 (12)

〈 〉 denotes expectation, and here expectations are taken on the state |ψAB〉. We have thus,

〈A1B1〉 = 〈ψAB|(I− 2P)⊗ (I− 2F)|ψAB〉
= 〈ψAB|I⊗ I− 2P⊗ I− I⊗ 2F + 2P⊗ 2F)|ψAB〉
= 1− 2Tr[σ1]− 2Tr[ρF] + 4Tr[σ1F]

Similar expressions can be calculated for other 〈AiBj〉, that finally give,

〈Bell − CHSH〉 = 2 + 4 (Tr[σ3(E + F− I)]− Tr[σ2E]− Tr[σ1F]) (13)

which, by using the dual optimization problem in Equation (11), takes the form: 〈Bell − CHSH〉 =
2(1 + 2εEF) = 2/λEF.

If the observables B1 and B2 are not jointly measurable, λEF < 1, which implies the violation of
the Bell-CHSH inequality. Later, in this section, we show how the bound on quantum nonlocality
(i.e., the Cirelson’s bound) easily follows from this alternative proof.

3.1. Connection between Incompatibility and Nonlocality in a Generalized No-Signaling Theory

As a consequence of this sufficiency of incompatibility of the observables for quantum nonlocality,
Wolf et al. concluded that these observables must remain incompatible within any generalized
no-signalling theory [13]. In this context, one can ask whether there is any general connection between
incompatibility of observables and nonlocality in a generalized no-signaling theory. It is also important
whether the nonlocality of such a theory (in terms of optimal Bell violation) can be quantified by the
degree of incompatibility (defined for a pair of observables) of the theory. We discuss some of the
works which answer this below.

Bell’s inequalities are usually derived under the assumptions of local-realism. In [24],
Andersson et al. have derived the Bell-CHSH inequality under a different set of assumptions, namely
under the assumption of the existence of joint measurement of observables for one of the parties along



Mathematics 2016, 4, 52 7 of 13

with the assumption of no signaling. It is important to note that if joint measurement exists on both
sides, then the four (joint) probability distribution exists, and the BI follows immediately from Fine’s
result [29].

Consider a composite system composed of two subsystems shared between the two observers
Alice and Bob with the composite and the individual state spaces denoted by ΩAB and ΩA,
ΩB respectively.

• Andersson et al.: Let M1 and M2 be the two dichotomic ({+1,−1}-valued) observables on Alice’s
side which are jointly measurable, and Bob on his side can measure any of the two dichotomic
observables N1 and N2 ({+1,−1}-valued), and if the probabilities for the results that Alice obtains
do not depend on what Bob measures (no-signalling), then

|〈M1N1〉ηAB + 〈M1N2〉ηAB + 〈M2N1〉ηAB − 〈M2N2〉ηAB | ≤ 2 (14)

for any composite system state ηAB ∈ ΩAB , where 〈MN〉ηAB := eM,N
yes,yes(ηAB)− eM,N

yes,no(ηAB)−
eM,N

no,yes(ηAB) + eM,N
no,no(ηAB).

From this, it follows that (justified below):
• For any pair of dichotomic observables M1 and M2 on Alice’s side (independent of whether they

are jointly measurable) and for any measurement pair N1 and N2 (both dichotomic) on Bob’s side
under the constraint of no-signalling,

|〈M1N1〉ηAB + 〈M1N2〉ηAB + 〈M2N1〉ηAB − 〈M2N2〉ηAB | ≤ 2/λM1,M2 (15)

where λM1,M2 is the degree of incompatibility between the two observables M1 and M2

(maximum allowed unsharpness parameter for the pair M1 and M2 up to which the joint
measurement of their unsharp counterparts is still possible, cf. Section 2.2).

• For any pair of dichotomic measurements M1 and M2 on Alice’s side and for any measurement
pair N1 and N2 on Bob’s side, in a no-signalling theory

|〈M1N1〉ηAB + 〈M1N2〉ηAB + 〈M2N1〉ηAB − 〈M2N2〉ηAB | ≤ 2/λopt (16)

where λopt is the degree of incompatibility of the underlying theory (cf. Section 2.2).

Equations (15) and (16) can be obtained from Equation (14) by using the fact that
〈M(λ)N〉ηAB = λ〈MN〉ηAB , where M(λ) is the unsharp version of the measurement M (we refer
to [8] for the detailed proof).

From inequality (16), it is clear that the amount of Bell violation is upper bounded by the
incompatibility of a theory quantified by the quantity λopt. For example, in classical theory, joint
measurement of any two dichotomic observables is possible, which means λopt = 1. Contrary to this,
in [8], it was shown that, in quantum mechanics, the value of λopt is 1/

√
2, and hence the amount

of nonlocality in quantum theory is restricted to the Cirel’son bound—i.e., to 2
√

2. Earlier, in this
section, we showed that the Bell-CHSH function for a bipartite quantum system is related to λEF
(the maximum value of unsharp parameter for a pair of observables B1 and B2 such that their unsharp
versions are jointly measurable) as 〈Bell − CHSH〉 = 2/λEF. If we set λEF = λopt =

1√
2

, the Cirel’son
bound will immediately follow. On the other hand, in [28], the authors have shown that for PR-box
theory, the value of λopt is 1/2, and correspondingly, the Bell-CHSH value is 4, the algebraic optimal
of the expression.

At this point it should be noted that the degree of incompatibility of a theory puts a limit on
the maximum strength of CHSH inequality violations of the theory via the relation expressed in
Equation (16). However, this result does not tell whether a theory saturates this bound or not. In [28],
the authors have found a sufficient condition when the optimal value is saturated. They have shown
that under an additional assumption on the physical theory—namely, that it supports a sufficient
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degree of steering (more specifically, if the theory supports uniform universal steering)—the bound can
be saturated.

The concepts of measurement incompatibility can be extended for more than two observables
with an arbitrary number of outcomes for each observable. However, it has been shown very recently
that in this generalized scenario, measurement incompatibility does not always imply Bell nonlocality,
but implies a weaker form of nonlocality—namely, steering [30–33].

4. Fine-Grained Uncertainty and Nonlocality

In order to establish the link between the strength of nonlocality and uncertainty in a particular
theory, Oppenheim and Wehner considered the famous Bell-CHSH inequality and cast it in the form
of a game [7]. In a typical Bell game, two parties, Alice and Bob, receive questions s ∈ S and
t ∈ T , respectively, from a third party (verifier). These questions are chosen according to some input
distribution p(s, t), which, for the sake of simplicity, we take as p(s, t) = p(s)p(t). Alice and Bob then
return answers a ∈ A and b ∈ B to the verifier, who then, according to some fixed set of rules, decides
whether Alice and Bob win by giving answers a and b to questions s and t. To win the game, Alice
and Bob may agree on any strategy beforehand, but can no longer communicate once the game starts.
The CHSH game is an example of the simplest Bell game where the questions received by Alice and
Bob are binary and so are their answers; i.e., S = {0, 1} and also T = {0, 1}. The verifier declares
them as the winners if their answers satisfy a⊕ b = s.t.

Consider now those runs where Alice gets the question s = 0. In these runs, Bob needs to give
the same answer as that of Alice in order to win the game. Similarly, for s = 1, Bob needs to give the
same answer as Alice if he receives t = 0, but the opposite answer if t = 1. We represent Bob’s answer
by x(t)s,a . Then, the winning answers would be

x(0)0,0 = x(1)0,0 = x(0)1,0 = x(1)1,1 = 0

x(0)0,1 = x(1)0,1 = x(1)1,0 = x(0)1,1 = 1

As mentioned above, Alice and Bob may agree on any strategy beforehand, but can no longer
communicate once the game starts. In any theory, such a strategy consists of a choice of shared state
σAB as well as measurements. For any particular strategy, the probability of Alice and Bob winning the
game, thus given as

Pgame(S , T , σA,B) = ∑
s,t

p(s, t)∑
a

p(a, b = x(t)s,a |s, t)σAB (17)

where in the right hand side p(a, b = x(t)s,a |s, t)σAB denotes the probability of Alice and Bob giving the

answers a and b = x(t)s,a (where x(t)s,a are according to Equation (17)), respectively, when they receive the
questions s and t, respectively, from the verifier. The maximum winning probability (maximized over
all possible strategies for Alice and Bob) is thus given by

Pgame
max = max

S ,T ,σAB
Pgame(S , T , σAB) (18)

The maximum winning probability, Pgame
max quantifies the strength of nonlocality for any theory.

For the Bell-CHSH inequality, Pgame
max = 3

4 in classical theories, Pgame
max = 1

2 + 1
2
√

2
quantum mechanically

and Pgame
max = 1 for PR-box theory.
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In order to connect the nonlocality with the uncertainty, Oppenheim and Wehner [7] rewrote the
probability of Alice and Bob winning the game (i.e., Equation (17)) as

Pgame(S , T , σA,B) = ∑
s
a

p(s)p(a|s)∑
t

p(t)p(b = x(t)s,a |s, t, a)σAB

= ∑
s
a

p(s)p(a|s){∑
t

p(t)p(b = x(t)s,a |t)}σs,a
B

(19)

where σs,a
B denotes the reduced state of Bob’s system for the setting s and outcome a of Alice

(Here p(s, t) = p(s)p(t) has also been used). It is noteworthy here that the term in the parentheses in
Equation (19) is upper bounded by the fine grained uncertainty relation (5) as follows

∑
t

p(t)p(b = x(t)s,a |t)}σs,a
B
≤ ξ~xs,a(T ,D) (20)

This, in fact, is a fine-grained uncertainty relation for Bob’s system for a given (s, a); ξ~xs,a(T ,D)
denotes the maximum of the left hand side of the above equation over all possible states of Bob’s
system. The fine-grained uncertainty relation (Equation (5)) thus limits the winning probability as

Pgame(S , T , σA,B) ≤∑
s
a

p(s)p(a|s)ξ~xs,a(Topt,D) (21)

Let {σs,a
B } be the set of states that achieve the maximum value of the uncertainty expressions

(these states are called maximally certain states) for each (s, a) when Bob’s optimal measurements are
given as Topt. Thus, to achieve the upper bound for winning the game, Alice, by her act of measurement
on the system she possess, should be able to prepare Bob’s system to these maximally certain states.
Thus, the degree of nonlocality of any theory is determined by two factors— the strength of uncertainty
relations (for Bob’s optimal measurements) and strength of steering (which determines which states
Alice can prepare at Bob’s location by performing measurements on her system).

As an example, we consider the quantum theory, where for a spin-1/2 system, Bob’s optimal
measurements are σx and σz for which, as described in Section 2.3, ξ~xs,a = 1

2 + 1
2
√

2
. The maximally

certain states are given by the eigenstates of (σx ± σz)/
√

2. Thus, if Alice could steer Bob’s state to
these maximally certain states, they would be able to achieve the maximum winning probability—i.e.,
the degree of nonlocality would be determined solely by the strength of the uncertainty relation.
This, indeed, is the case in quantum theory. If, as a part of their strategy, Alice and Bob share the
singlet state then by measuring her system in the basis given by the eigenstates of (σx + σz)/

√
2 or

(σx − σz)/
√

2, Alice can steer Bob’s state to the said maximally certain states. On the other hand,
classical theories are fully certain, but there is no steering present and hence these theories are local.
PR box theories are fully steerable and fully certain, and hence the maximum value of the Bell-CHSH
expression in these theories is 4 (and correspondingly the maximum winning probability of the CHSH
game in these theories is 1).

It is noteworthy that the connections discussed in this section and in the previous section hold
good not only in Hilbert space quantum mechanics, but also in a more general convex structure
discussed earlier. However, in the following, we will discuss these connections in a toy model
introduced by Spekkens, which, truly speaking, does not belong to the said convex framework.

5. Spekkens’ Toy Theory: Steerable But Local

Spekkens has introduced a toy theory in order to argue for an epistemic view of quantum
states; i.e., to argue that quantum states are states of knowledge rather than the states of reality [12].
The latter is called the ontic view for quantum states. This theory is based on a principle—namely,
the knowledge balance principle—according to which the number of questions about the physical state
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of a system that are answered must always be equal to the number that are unanswered in a state of
maximal knowledge.

The most fine-grained description of a system in this toy theory is its ontic state, but we might not
know exactly which of the ontic states the system is in, and hence our knowledge about the system
is described by a probability distribution over the ontic states. This probability distribution is our
epistemic state. The “knowledge balance principle” puts restrictions on the set of epistemic states that
may be assigned to the system.

Elementary system: For the elementary system, the number of questions in the canonical set is
two, and consequently the number of ontic states is four. Denote the four ontic states as “1”, “2”, “3”,
and “4”. One can fully specify the ontic state of the system by asking the following set of “yes-no”
questions: “Is it in the set {1, 2}—yes or no?” and “Is it in the set {1, 3}—yes or no?”. An epistemic state
is nothing but a probability distribution {(p1, p2, p3, p4)| pi ≥ 0 ∀i & ∑4

i = 1 pi = 1} over the ontic states.
Denoting disjunction by the symbol “∨” (read as or), the six possible states of maximal knowledge
(termed as the pure epistemic states) allowed by the knowledge balance principle, read as:

1∨ 2↔ {1
2

,
1
2

, 0, 0} =

3∨ 4↔ {0, 0,
1
2

,
1
2
} =

1∨ 3↔ {1
2

, 0,
1
2

, 0} =

2∨ 4↔ {0,
1
2

, 0,
1
2
} =

1∨ 4↔ {1
2

, 0, 0,
1
2
} =

2∨ 3↔ {0,
1
2

,
1
2

, 0} =

For an epistemic state of the form a ∨ b (with a 6= b), a and b are its ontic supports.
For such a system, one has less than maximal knowledge if both questions in the canonical set

are unanswered. This corresponds to the epistemic mixed state:

1∨ 2∨ 3∨ 4↔ {1
4

,
1
4

,
1
4

,
1
4
} =

The mixed state has following different convex decompositions:

1∨ 2∨ 3∨ 4 = (1∨ 2) +cx (3∨ 4) (22)

= (1∨ 3) +cx (2∨ 4) (23)

= (1∨ 4) +cx (2∨ 3) (24)

where +cx denotes the convex sum. The above set of decompositions can be thought of as
different preparation procedures for the same mixed state—a phenomenon that can be observed
in quantum theory. However, the convex combinations in this toy theory are not defined for arbitrary
probability distributions, and hence the theory lacks the general mathematical structure discussed in
Section 2.1.

Measurement: The knowledge balance principle imposes restrictions on the sort of possible
measurements that can be implemented in this model. Compatible with this principle, the smallest
number of ontic states that can be associated with a single outcome of a measurement is two. Thus,
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the only valid reproducible measurements are those which partition the four ontic states into two sets
of two ontic states. There are only three such partitionings:

M1 ≡ {1∨ 2, 3∨ 4}
M2 ≡ {1∨ 3, 2∨ 4}
M3 ≡ {1∨ 4, 2∨ 3} (25)

If the initial epistemic state has its ontic support inside the ontic support of a particular outcome,
then that outcome is certain to occur; otherwise, the outcome is not determined by the initial
epistemic state. For instance, suppose the epistemic state is 1 ∨ 2, and the measurement M1 is
performed. Then, the first outcome is certain to occur. On the other hand, if the measurement M2 is
performed, then two outcomes occur with equal frequency. (At this point please note that, to define
the measurement procedure completely, one needs to define the update rule in the toy theory which
should be compatible with the knowledge balance principle. Such an appropriate rule is given in the
original paper [12]. However, for our purpose this is not required.) Denoting the outcomes for the
measurement Mk as mk ∈ {0, 1}, the expressions of Equation (7) in this toy theory become

1
2

p(mk|Mk) +
1
2

p(ml |Ml) ≤
3
4

, ∀ ~x = (mk, ml) (26)

for any two measurements Mk and Ml , k 6= l. The bound is saturated on those epistemic states which
have their ontic supports inside the ontic support of any of the outcomes of any measurement Mk
or Ml . For example, if we consider the measurement M1 and M2, then the bound is saturated on
the epistemic states 1 ∨ 2, 3 ∨ 4, 1 ∨ 3, and 2 ∨ 4. On the other hand, for the two epistemic states
(i.e., on 1∨ 4 and 2∨ 3), the right hand side of the above inequality takes the value 1/2.

Steering in toy theory: Compatible with the knowledge balance principle, there are two types of
(pure) epistemic states for a pair of elementary systems:

(1) (a ∨ b).(c ∨ d) ≡ (a.c) ∨ (a.d) ∨ (b.c) ∨ (b.d); where a, b, c, d ∈ {1, 2, 3, 4} and a 6= b, c 6= d.
(2) (a.e) ∨ (b. f ) ∨ (c.g) ∨ (d. f ); where a, b, c, d, e, f , g, h ∈ {1, 2, 3, 4} and a, b, c, d are all different and

same is for e, f , g, h,

where the symbol “.” represents conjunction (read as “and”).
For the second type of states, the state for marginal elementary systems (both) is 1 ∨ 2 ∨ 3 ∨ 4

(see [12] for detail). Let Alice share with Bob a bipartite elementary system prepared in the state
(1.1) ∨ (2.2) ∨ (3.3) ∨ (4.4). If Alice implements the measurement that distinguishes 1∨ 2 from 3∨ 4
on her part of the system, then she will be able to remotely prepare Bob’s system in decomposition
of Equation (22). Similarly, implementing measurements that distinguishes 1∨ 3 from 2∨ 4 and 1∨ 4
from 2∨ 3, she can prepare the other two decompositions—i.e., the decompositions of Equations (23)
and (24), respectively, which establishes steering-like phenomena for the toy-bit theory.

It has been recently established that in quantum mechanics a set of observables does not admit
joint measurement if and only if it can be used to demonstrate steering [30–33]. From the spirit
of the proof, it is obvious that if there is steering in any no signaling theory, then there must be
incompatible measurements. Hence, in Spekkens’ toy theory, the measurements that demonstrate
steering would not admit joint measurement. With this we can say that nonlocality of this theory
(violation of Bell-CHSH inequality) is bounded by a value 2

λ
Toy
opt

which must be greater than 2 as λ
Toy
opt < 1.

The necessary condition for achieving this bound in a no signaling theory is not known, though
a sufficient condition has been provided for those theories whose state space has convex structure.
Spekkens’ toy model lacks this structure, and hence the analysis is not applicable. In this context, we
show that though there is steering, the high amount of uncertainty (as expressed in Equation (26))
constrains the toy theory to satisfy Bell-CHSH inequality, and hence the toy bit theory is local. To get
the optimal Bell-CHSH violation in this toy theory, consider a situation where Alice and Bob share a
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bipartite steerable state and Alice performs any of the two measurements of Equation (25). Now, to get
the maximum certain value on the conditional states of his part steered by Alice, Bob needs to perform
the same pair of measurements chosen by Alice, and Equation (26) shows that the Bell-CHSH value in
this theory is correspondingly bounded by 3/4—i.e., the local bound of this inequality.

6. Concluding Remarks

The concept of uncertainty and incompatibility of measurements emerge with the birth of
quantum mechanics, whereas quantum nonlocality, in its precise sense, was discovered long after the
birth of QM. It is surprising that though apparently these three concepts seem to be uncorrelated, there
are deep connections among them. Uncertainty (fine grained version) refers to dispersion property of
the state, and the amount of maximal violation of Bell’s inequality in a no signaling theory can be found
by optimizing the Bell quantity over all possible steering and uncertainty of states. On the other hand,
measurement incompatibility refers to the structure of observables over which the theory has to be
built. In this sense, it is the stronger condition which is manifested by its capacity to offer the bound
on maximal violation of Bell’s inequality without any reference to steering. Steering here decides
whether that bound will be achieved or not. In quantum mechanics, optimization over steering and
uncertainty exactly reproduce the bound for Bell violation set by the degree of incompatibility in
quantum mechanics, whereas Spekkens’ toy theory is a nice example where uncertainty destroys the
possibility of nonlocality created by the phenomena of steering and measurement incompatibility.
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