
Citation: Lin, J.-L. Interpolation Once

Binary Search over a Sorted List.

Mathematics 2024, 12, 1394.

https://doi.org/10.3390/

math12091394

Academic Editors: Jou-Ming Chang,

Ling-Ju Hung and Chia-Wei Lee

Received: 12 April 2024

Revised: 30 April 2024

Accepted: 30 April 2024

Published: 2 May 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Interpolation Once Binary Search over a Sorted List
Jun-Lin Lin 1,2,3

1 Department of Information Management, Yuan Ze University, Taoyuan 32003, Taiwan; jun@saturn.yzu.edu.tw
2 Innovation Center for Big Data and Digital Convergence, Taoyuan 32003, Taiwan
3 Zhen Ding Tech. Group—Yuan Ze University Joint R&D Center for Big Data, Taoyuan 32003, Taiwan

Abstract: Searching over a sorted list is a classical problem in computer science. Binary Search takes
at most blog2 nc+ 1 tries to find an item in a sorted list of size n. Interpolation Search achieves an
average time complexity of O(log log n) for uniformly distributed data. Hybrids of Binary Search
and Interpolation Search are also available to handle data with unknown distributions. This paper
analyzes the computation cost of these methods and shows that interpolation can significantly affect
their performance—accordingly, a new method, Interpolation Once Binary Search (IOBS), is proposed.
The experimental results show that IOBS outperforms the hybrids of Binary Search and Interpolation
Search for nonuniformly distributed data.

Keywords: binary search; interpolation search; interpolated binary search

MSC: 68P10; 68W40

1. Introduction

Searching over a sorted list is a fundamental yet crucial operation in computer science,
serving as the backbone for many applications. Several algorithms have been proposed for
this operation in the literature [1]. Most of these algorithms share a similar structure: select
a pivot element ap from the sorted list

[
alow, alow+1, . . . , ap, . . . ahigh−1, ahigh

]
, and if ap does

not match the searching item x, repeat the same process on either
[
alow, alow+1, . . . , ap−1

]
or[

ap+1, . . . ahigh−1, ahigh

]
, depending on the ordering between ap and x.

Various algorithms apply different strategies to select the pivot element. Some algo-
rithms determine the pivot element’s index without using x or any element in the sorted
list. For example, Binary Search [1] chooses the middle element (i.e., p = b(low + high)/2c)
as the pivot element and reduces the search range by half after each unsuccessful try. On
the other hand, Exponential Search [2] starts with a small index for the pivot element, keeps
doubling the index until x < ap, and finally applies Binary Search on

[
a p

2 +1, . . . , ap−1

]
.

Fibonacci Search [3] divides the search range into two parts, with sizes that are consecutive
Fibonacci numbers. All three algorithms mentioned above have a time complexity of
O(log n), where n is the number of elements in the sorted list [1].

In contrast, Interpolation Search [4] needs to access the data elements in the sorted
list to determine the index of the pivot element. Specifically, it uses linear interpolation
to derive the pivot element’s index. This algorithm has an average time complexity of
O(log log n) for uniformly distributed data [5–7]. However, in the worst-case scenario, its
time complexity is O(n) for nonuniformly distributed data.

Variants of Interpolation Search have been proposed to alleviate the impact of nonuni-
formly distributed data [8–13]. For example, Interpolation-Sequential Search uses inter-
polation to determine the first pivot element and then applies Sequential Search to find
the exact location of the search key [8]. Adaptive Search [11] and Interpolated Binary
Search [12] are hybrids of Interpolation Search and Binary Search. For ease of exposition,
denote the middle element in the sorted list as amid (used in Binary Search), and the element

Mathematics 2024, 12, 1394. https://doi.org/10.3390/math12091394 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12091394
https://doi.org/10.3390/math12091394
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6844-1182
https://doi.org/10.3390/math12091394
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12091394?type=check_update&version=1


Mathematics 2024, 12, 1394 2 of 12

calculated through interpolation as ainter (used in Interpolation Search). Interpolated Binary
Search alternately uses ainter and amid as the pivot elements. Adaptive Search uses ainter as
the pivot element, except when the current ainter is not as effective as the current amid in
reducing the searching range, then the new amid is used as the next pivot element. Although
Adaptive Search seems more sophisticated than Interpolated Binary Search, Interpolated
Binary Search outperforms Adaptive Search [12].

This study is motivated by two questions. First, why does Interpolation Search perform
poorly over nonuniformly distributed data? Second, why does the seemly more thoughtful
strategy for selecting pivot elements in Adaptive Search yield worse performance than
the simple turn-taking strategy in Interpolated Binary Search? Answers to these questions
uncover the pros and cons of these algorithms. This study aims to improve the existing
algorithms for searching within the sorted lists, making this operation more efficient for
various applications. We propose a novel algorithm that surpasses both Adaptive Search
and Interpolated Binary Search, as demonstrated in the performance study of Section 5.

In this study, we confine the sorted list to an array-like data structure that permits
constant-time access to any element within the sorted list. However, more sophisticated
data structures have been suggested to enhance the search performance. For example,
a data structure called Dynamic Interpolation Search Tree [14] and its variant [15] can
support Interpolation Search to achieve O(log log n) time complexity for a broad range of
data distributions. Searching algorithms can also be used for sorting. For example, Binary
Search Sort Algorithm [16] uses Binary Search to add elements to a sorted list incrementally.

The rest of this paper is organized as follows. Section 2 reviews Interpolation Search
and discusses its performance bottleneck. Section 3 compares Interpolated Binary Search
and Adaptive Search, and explains why the former outperforms the latter. Based on
the findings from Sections 2 and 3, Section 4 proposes a new algorithm called Interpola-
tion Once Binary Search. Section 5 shows the experimental results of these algorithms.
Discussion and conclusions are given in Sections 6 and 7, respectively.

2. Comparison of Binary Search and Interpolation Search

The algorithms for Binary Search and Interpolation Search are shown in Algorithm 1.
To search for x from a sorted list

[
alow, alow+1, . . . , ahigh−1, ahigh

]
, Binary Search and Interpo-

lation Search differ only in how the pivot elements are determined. Binary Search uses the
middle element as the pivot element ap, i.e.,

p =

⌊
(high + low)

2

⌋
. (1)

Interpolation Search determines the pivot element’s index p by assuming that point

(p, x) is on the straight line with the endpoints (low, alow) and (high, a high

)
. Then, p can

be derived as follows:

p =

⌊
(high− low) (x− alow)

ahigh − alow

⌋
+ low. (2)

The time complexities of both algorithms have been extensively studied in the lit-
erature. As described in Section 1, Binary Search has a time complexity of O(log n);
Interpolation Search has an average-case time complexity of O(log log n) if the data el-
ements are uniformly distributed [5,6]. However, the time complexity of Interpolation
Search can degrade to O(n) if the data distribution is highly uneven. Notably, the time
complexity analysis focuses on the number of iterations within the while-loop (lines 2–6 in
Algorithm 1).



Mathematics 2024, 12, 1394 3 of 12

Algorithm 1 The Algorithms for Binary Search and Interpolation Search

Input: a sorted list [a1, a2, . . . , an] and the searching item x
Output: the index of x in [a1, a2, . . . , an], or −1 if not found.
1. low = 1 and high = n;
2. While (low ≤ high) do
3. Calculate p using Equation (1) for Binary Search or Equation (2) for

Interpolation Search;
4. If (x = ap), return p;
5. Else if (x > ap), low = p + 1;
6. Else high = p − 1;
7. Return −1;

One iteration in the while-loop of Interpolation Search is much slower than that of Bi-
nary Search in terms of computational cost and data access cost. First, Equation (1) involves
only operations on integers, and a bit-right-shift operation can accomplish the division-by-
two operation. In contrast, Equation (2) requires multiplication and division operations on
floating-point values, making it much more computation costly than Equation (1). Second,
Equation (1) does not need to access any data element in the sorted list, but Equation (2)
needs access to two data elements (i.e., ahigh and alow). That is, one iteration in the while-
loop of Binary Search accesses only one data element ap, but Interpolation Search requires
three data elements (i.e., ap, ahigh and alow). Notably, with Binary Search, the search range
can be reduced by 7/8 with three accesses of data elements. Thus, interpolation should
be avoided for performance reasons unless it’s highly effective at reducing the number of
iterations. In Section 4, this observation is applied to design the proposed algorithm that
minimizes interpolation.

3. Comparison of Interpolated Binary Search and Adaptive Search

In practice, the distribution of data elements in the sorted list is often unknown or
does not follow a specific pattern. This uncertainty makes it difficult to determine whether
Binary Search or Interpolation Search is the most suitable for a given problem. To address
this, hybrid algorithms that combine aspects of both Binary Search and Interpolation
Search have been proposed. In this section, we describe and compare two such algorithms,
Interpolated Binary Search (IBS) and Adaptive Search (AS). Additionally, we derive critical
insights for designing a more effective algorithm.

IBS employs Equations (1) and (2) alternately to decide the pivot elements. A concise
version of the original algorithm [12] is depicted in Algorithm 2.

Adaptive Search (AS) employs a more sophisticated strategy than IBS does to switch be-
tween Binary Search style (i.e., Equation (1)) and Interpolation Search style (i.e., Equation (2)).
Each iteration within the while-loop of Algorithm 3 involves one or two probes for the pivot
elements. The first probe follows Interpolation Search style (line 3) and the second probe
(lines 4–9) follows Binary Search style. The second probe is added only when the first probe is
ineffective in reducing the search range by more than half.

Both IBS and AS have the same time complexity. If the data elements in the sorted
list are distributed uniformly, both algorithms will have an average time complexity of
O(log log n), which is the same as Interpolation Search. Even if the data elements are not
uniformly distributed, the worst time complexity of both algorithms will still be O(log n),
which is the same as Binary Search.

However, AS is more sophisticated than IBS, and a detailed comparison between IBS
and AS from the computational cost perspective can be found in Section 5 of Reference [12].
The key here is whether the added sophistication can help reduce the number of iterations
of the while-loop in AS. Unfortunately, there is no evidence to support the two heuristics of
AS: (1) an ineffective Interpolation Search probe should follow by a Binary Search probe,
and (2) an effective Interpolation Search probe should follow by another Interpolation
Search probe. Experimental results from Reference [12] and Section 5 also show that the
simple IBS outperforms the sophisticated AS. Therefore, unless the added sophistication to



Mathematics 2024, 12, 1394 4 of 12

a search method effectively reduces the number of iterations, it might negatively impact
the performance.

Algorithm 2 The Algorithm for Interpolated Binary Search.

Input: a sorted list [a1, a2, . . . , an] and the searching item x
Output: the index of x in [a1, a2, . . . , an], or −1 if not found.
1. low = 1, high = n, and binaryTurn = False;
2. While (low ≤ high) do
3. If (binaryTurn), calculate p using Equation (1); // a Binary Search probe
4. Else calculate p using Equation (2); // an Interpolation Search probe
5. If (x = ap), return p;
6. Else if (x > ap), low = p + 1;
7. Else high = p − 1;
8. binaryTurn = not (binaryTurn); // change turn
9. Return −1;

Algorithm 3 The Algorithm for Adaptive Search

Input: a sorted list [a1, a2, . . . , an] and the searching item x
Output: the index of x in [a1, a2, . . . , an], or −1 if not found.
1. low = 1, high = n;
2. While (low < high) do
3. Calculate p using Equation (2); // an Interpolation Search probe

4. If ap > x and (p− low) >
⌊

high−low
2

⌋
,

5. high = p− 1;
6. Calculate p using Equation (1); // insert a Binary Search probe
7. Else If ap < x and (high− p) >

⌊
high−low

2

⌋
, then

8. low = p + 1;
9. Calculate p using Equation (1); // insert a Binary Search probe
10. If ap > x,
11. high = p− 1;
12. Else If ap < x
13. low = p + 1;
14. Else
15. Return p;
16. Return −1;

4. Interpolation Once Binary Search—The Proposed Method

This section proposes a hybrid of Interpolation Search and Binary Search, namely
Interpolation Once Binary Search (IOBS). First, IOBS avoids any logic in switching between
Interpolation Search and Binary Search since there is no clear evidence supporting that such
an arrangement benefits performance, as discussed in Section 3. Second, IOBS reduces the
number of interpolations to the extreme to mitigate the computational cost, as discussed in
Section 2.

The algorithm for IOBS is shown in Algorithm 4. Given a sorted list [a1, a2, . . . , an]
and the searching item x, IOBS returns the index i of ai if ai = x, and −1 otherwise. IOBS
uses Interpolation Search to determine the first pivot element (line 2). Then, all subsequent
probes follow Binary Search (line 7). The time complexity of IOBS is O(log n), the same as
Binary Search.



Mathematics 2024, 12, 1394 5 of 12

Algorithm 4 The Algorithm for Interpolation Once Binary Search

Input: a sorted list [a1, a2, . . . , an] and the searching item x
Output: the index of x in [a1, a2, . . . , an], or −1 if not found.
1. low = 1, high = n;
2. Calculate p using Equation (2); // Interpolation Search style
3. Do
4. If (x = ap

)
, return p;

5. Else if (x > ap), low = p + 1;
6. Else high = p − 1;
7. Calculate p using Equation (1); // Binary Search style
8. While (low ≤ high);
9. Return −1;

5. Performance Study

For performance comparison, we adopted the source code for AS, Interpolation Search,
and Binary Search from [17] and implemented IBS and IOBS from scratch. We also adopted
test dataset generation in the original source code. All experiments were conducted on
a PC with JRE1.8, 64-bit Windows 10 OS, Intel® CoreTM i7-7700 processor, and 8 GBs of
RAM.

The test datasets consist of ordered instances of Java double-precision floating-point
values that are randomly generated. These values are distributed uniformly, normally
or exponentially. The size of the test datasets is measured by the number of instances
present, which ranges from 5× 103 to 5× 105 for small datasets and from 106 to 108 for
large datasets.

Thirty test datasets were generated for each dataset size and data distribution. We
utilized all instances in each dataset as search keys and calculated the average running time
per instance. The process was repeated across the 30 test sets with the same size and data
distribution, and the average running time was reported. The above experiment closely
resembles the one described in [12], with two key differences. First, they randomly selected
1000 instances as the search keys, irrespective of the dataset’s size, and repeated this process
1000 times to mitigate the sampling bias. In contrast, we used all instances as the search
keys to avoid sampling bias. Second, they used only one dataset for each dataset size and
data distribution, but we used 30 datasets to minimize dataset bias.

5.1. Test Results over Uniformly Distributed Datasets

Figures 1 and 2 show the experimental results for small and large datasets with
uniform distribution. The results reflect that interpolation is highly effective at narrow-
ing the searching range and reducing the number of probes for uniformly distributed
datasets. Consequently, Binary Search and Interpolation Search yield the worst and the
best performance, respectively.

According to Algorithms 2 and 3, AS uses a higher percentage of Interpolation Search
probes than IBS does, because the former inserts a Binary Search probe only after an
ineffective Interpolation Search probe, but the latter inserts a Binary Search probe after every
Interpolation Search probe. However, the performance results show that IBS outperforms
AS. As discussed in Section 3, AS needs to evaluate the effectiveness of each Interpolation
Search probe, making it slower than IBS.

IOBS achieves the second-best result over small datasets. However, it yields the second-
worst result over large datasets, as the benefit of interpolation strengthens in Interpolation
Search, AS, and IBS for large datasets.



Mathematics 2024, 12, 1394 6 of 12

 

 

 

 
Mathematics 2024, 12, x. https://doi.org/10.3390/xxxxx  www.mdpi.com/journal/mathematics 

 

Figure 1. Average running time per search of Binary Search, Interpolation Search, AS, IBS and IOBS 

over small datasets with uniform distribution. 

 

Figure 1. Average running time per search of Binary Search, Interpolation Search, AS, IBS and IOBS
over small datasets with uniform distribution.

 

 

 

 
Mathematics 2024, 12, x. https://doi.org/10.3390/xxxxx  www.mdpi.com/journal/mathematics 

 

Figure 1. Average running time per search of Binary Search, Interpolation Search, AS, IBS and IOBS 

over small datasets with uniform distribution. 

 

Figure 2. Average running time per search of Binary Search, Interpolation Search, AS, IBS and IOBS
over large datasets with uniform distribution.



Mathematics 2024, 12, 1394 7 of 12

5.2. Test Results over Normally Distributed Datasets

Figures 3 and 4 show the experimental results for small and large datasets with normal
distribution, where the result of Interpolation Search is excluded for its poor performance
and clear demonstration of other methods’ results. IOBS consistently outperforms IBS and
AS and achieves performance only next to Binary Search.

Mathematics 2024, 12, x FOR PEER REVIEW  2  of  5 
 

 

Figure 2. Average running time per search of Binary Search, Interpolation Search, AS, IBS and IOBS 

over large datasets with uniform distribution. 

 

Figure 3. Average running time per search of Binary Search, AS, IBS and IOBS over small datasets 

with normal distribution. 
Figure 3. Average running time per search of Binary Search, AS, IBS and IOBS over small datasets
with normal distribution.

Mathematics 2024, 12, x FOR PEER REVIEW  3  of  5 
 

 

 

Figure 4. Average running time per search of Binary Search, AS, IBS and IOBS over large datasets 

with normal distribution. 

 

Figure 4. Average running time per search of Binary Search, AS, IBS and IOBS over large datasets
with normal distribution.



Mathematics 2024, 12, 1394 8 of 12

The experimental results demonstrate that interpolation is ineffective at determining
the pivot element’s index. First, interpolation often fails to narrow the search range for
normally distributed datasets effectively. Second, the computational cost of calculating the
index for an Interpolation Search probe exceeds that of simply using the middle element’s
index. IOBS outperforms IBS and AS when dealing with normally distributed datasets
because it applies interpolation less frequently.

5.3. Test Results over Exponentially Distributed Datasets

Figures 5 and 6 show the experimental results for small and large datasets with
exponential distribution, where the result of Interpolation Search is excluded because of
its poor performance and clear demonstration of other methods’ results. Similar to the
results for datasets with normal distribution, IOBS consistently outperforms IBS and AS,
and achieves performance only next to Binary Search.

Mathematics 2024, 12, x FOR PEER REVIEW  3  of  5 
 

 

 

Figure 4. Average running time per search of Binary Search, AS, IBS and IOBS over large datasets 

with normal distribution. 

 

Figure 5. Average running time per search of Binary Search, AS, IBS and IOBS over small datasets
with exponential distribution.

Comparing the results of IOBS in Figures 4 and 6 reveals that IOBS is almost unaffected
by data distribution. In contrast, IBS and AS exhibit poorer results with exponentially
distributed datasets than with normally distributed ones. Intuitively, the exponential
distribution is more uneven than the normal distribution, and consequently, Interpolation
Search probes are less effective with exponentially distributed datasets than with normally
distributed datasets.



Mathematics 2024, 12, 1394 9 of 12

Mathematics 2024, 12, x FOR PEER REVIEW  4  of  5 
 

 

Figure 5. Average running time per search of Binary Search, AS, IBS and IOBS over small datasets 

with exponential distribution. 

 

Figure 6. Average running time per search of Binary Search, AS, IBS and IOBS over large datasets 

with exponential distribution. 

 

Figure 6. Average running time per search of Binary Search, AS, IBS and IOBS over large datasets
with exponential distribution.

5.4. Test Results over Datasets with Mixed Distributions

To evaluate the performance of these search algorithms over datasets that do not
follow a specific distribution, we conduct the same experiment over the mixtures of the
large datasets from Section 5.1, Section 5.2, and Section 5.3. Specifically, each dataset is a
mixture of three equal-sized sub-datasets: one with uniform distribution, one with normal
distribution, and one with exponential distribution. Figure 7 shows the experimental
results, where Interpolation Search is excluded because of its poor performance and clear
demonstration of other methods’ results. IOBS’s performance is almost unaffected by the
data distribution and superior to that of AS and IBS.

Mathematics 2024, 12, x FOR PEER REVIEW  4  of  5 
 

 

Figure 5. Average running time per search of Binary Search, AS, IBS and IOBS over small datasets 

with exponential distribution. 

 

Figure 6. Average running time per search of Binary Search, AS, IBS and IOBS over large datasets 

with exponential distribution. 

 

Figure 7. Average running time per search of Binary Search, AS, IBS and IOBS over large datasets
with mixed distributions.



Mathematics 2024, 12, 1394 10 of 12

6. Discussion

For ease of exposition, given a dataset, a search key, and a search method, let m denote
the total number of times needed to determine the pivot element’s index, and mi denote
the number of times interpolation is used to determine the pivot element’s index. The
interpolation ratio is defined as mi/m. The values of interpolation ratio for Interpolation
Search, IOBS and Binary Search are 1, 1/m, and 0, respectively. IBS alternates between using
Interpolation Search probes and Binary Search probes, and thus yields an interpolation
ratio of 0.5. AS consistently uses Interpolation Search probes, except when the current
Interpolation Search probe is ineffective. In such cases, a Binary Search probe is used
as the next pivot element, and thus the interpolation ratio of AS is between 0.5 and 1.
Notably, if all the Interpolation Search probes in AS are effective, then no Binary Search
probe is needed, and consequently, AS uses the same probes as Interpolation Search does.
Conversely, if all the Interpolation Search probes in AS are ineffective, then they will be
followed by a Binary Search probe, and consequently, AS uses the same probes as IBS does.
For the same value of m, the ordering of interpolation ratio is Binary Search < IOBS ≤ IBS
≤ AS ≤ Interpolation Search. Notably, IOBS = IBS only when m ≤ 2; IBS = AS only when
all Interpolation Search probes of AS are ineffective; AS = Interpolation Search only when
all Interpolation Search probes of AS are effective.

Based on the experimental results with uniformly distributed datasets in Section 5.1,
using interpolation to determine the pivot element’s index is more effective at narrowing
the search range than using the index of the middle element, as done in Binary Search.
Furthermore, despite its higher computational cost, interpolation remains highly effective
for uniformly distributed datasets. A higher interpolation ratio often yields better per-
formance for uniformly distributed datasets. Consequently, Interpolation Search, Binary
Search, and IOBS exhibit the best, worst, and second-worst performances for large datasets
with uniform distribution, as shown in Figure 2.

Even though the interpolation ratio of AS is always greater than or equal to that of
IBS, this does not necessarily make AS quicker than IBS. Despite having the same average
time complexity of O(log log n) for uniformly distributed datasets and the same worst-
case time complexity of O(log n) for non-uniformly distributed datasets, IBS consistently
outperforms AS. When analyzing the time complexity of a search algorithm, the focus
is on the number of probes needed relative to the dataset size. Typically, the cost of
choosing a probe is treated as a constant. However, AS takes more time to choose a
probe than IBS does because AS needs to evaluate the effectiveness of each Interpolation
Search probe. This observation also addresses our second research question posed in
Section 1: Why does the seemly more thoughtful strategy in AS yields worse performance
compared to the straightforward turn-taking strategy in IBS? Notably, there is no evidence
to support the notion that an ineffective Interpolation Search probe should not follow
another Interpolation Search probe. As a result, the seemly thoughtful strategy in AS
becomes a computational time waste, rendering AS slower than IBS. Similarly, IOBS also
avoids complex logic to switch between Interpolation Search probes and Binary Search
probes to improve performance.

Based on the experimental results with nonuniformly distributed datasets in
Sections 5.2 and 5.3, using Interpolation Search probes is less effective than using Binary
Search probes. This observation also addresses our first research question posed in Section 1:
why does Interpolation Search perform poorly over nonuniformly distributed data? As
discussed in Section 2, calculating the Interpolation Search probe using Equation (2) is
costlier than calculating the Binary Search probe using Equation (1). Since the effectiveness
of an Interpolation Search probe for nonuniformly distributed datasets does not outweigh
its computational cost, a smaller interpolation ratio often yields better performance. IOBS
outperforms AS, IBS and Interpolation Search when searching nonuniformly distributed
datasets because IOBS uses Interpolation Search probe only once to mitigate the computa-
tional cost.



Mathematics 2024, 12, 1394 11 of 12

7. Conclusions

Searching over a sorted list is a common operation in many applications, and thus im-
proving this operation can greatly enhance the overall performance. The main contributions
of this work include the following:

(1) a new algorithm, IOBS, that outperforms other hybrids of Interpolation Search and
Binary Search over nonuniformly distributed datasets,

(2) exploring the tradeoff between the cost of calculating an Interpolation Search probe
and its effectiveness on reducing the search range, and

(3) showing that a seemly reasonable but unfounded heuristic (e.g., AS chooses between
an Interpolation Search probe and a Binary Search probe, based on the effectiveness
of the previous Interpolation Search probe) can be harmful to the performance.

Notably, the latter two can be checked when developing new search algorithms. The
experimental results in Section 5 show that Interpolation Search yields the worst results for
datasets with normal or exponential distributions. AS and IBS improve Interpolation Search
by integrating Binary Search and Interpolation Search to mitigate the interpolation cost.
Furthermore, IBS outperforms AS due to its simplicity. These results suggest that hybrids
of Binary Search and Interpolation Search benefit from reducing the interpolation cost and
avoiding complex rules for switching between Binary Search and Interpolation Search.
Accordingly, this study proposes IOBS, which incurs less interpolation cost and is more
straightforward than AS and IBS. Performance results show that IOBS outperforms AS
and IBS over datasets with normal or exponential distribution and that IOBS outperforms
Binary Search for uniformly distributed datasets. Thus, IOBS is a better alternative to other
hybrids of Binary Search and Interpolation Search, such as AS and IBS, unless the data
distribution is known to be uniform.

Experimental results also show that Interpolation Search performs best for datasets
with uniform distribution. Repeatedly using interpolation to determine the pivot elements
for uniformly distributed datasets improves performance. However, it is known that the
best-case time complexity of Interpolation Search is O(1) when the first pivot element
derived from interpolation is the search key. For uniformly distributed datasets, the first
pivot element by Interpolation Search is near the search key, and thus the importance of
determining the subsequent pivot elements by interpolation is reduced. How to balance
between repeated interpolation and reducing interpolation cost deserves further investiga-
tion. For example, although IOBS does not require any parameter, a more versatile version
of IOBS could incorporate a parameter to fine-tune this balance, thereby enhancing the
algorithm’s adaptability to diverse datasets.

Funding: This research received no external funding.

Data Availability Statement: Source codes for performance study are available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Knuth, D.E. The Art of Computer Programming, Volume 3, Sorting and Searching, 2nd ed.; Addison-Wesley: Boston, MA, USA, 1998.
2. Bentley, J.L.; Yao, A.C.-C. An almost optimal algorithm for unbounded searching. Inf. Process. Lett. 1976, 5, 82–87. [CrossRef]
3. Overholt, K.J. Efficiency of the Fibonacci search method. BIT Numer. Math. 1973, 13, 92–96. [CrossRef]
4. Peterson, W.W. Addressing for Random-Access Storage. IBM J. Res. Dev. 1957, 1, 130–146. [CrossRef]
5. Perl, Y.; Itai, A.; Avni, H. Interpolation search—A log logN search. Commun. ACM 1978, 21, 550–553. [CrossRef]
6. Yao, A.C.; Yao, F.F. The complexity of searching an ordered random table. In Proceedings of the 17th Annual Symposium on

Foundations of Computer Science (sfcs 1976), Houston, TX, USA, 25–27 October 1976; pp. 173–177. [CrossRef]
7. Perl, Y.; Reingold, E.M. Understanding the Complexity of Interpolation Search. Inf. Process. Lett. 1977, 6, 219–222. [CrossRef]
8. Gonnet, G.H.; Rogers, L.D. The interpolation-sequential search algorithm. Inf. Process. Lett. 1977, 6, 136–139. [CrossRef]
9. Santoro, N.; Sidney, J.B. Interpolation-binary search. Inf. Process. Lett. 1985, 20, 179–181. [CrossRef]
10. Burton, F.W.; Lewis, G.N. A robust variation of interpolation search. Inf. Process. Lett. 1980, 10, 198–201. [CrossRef]
11. Bonasera, B.; Ferrara, E.; Fiumara, G.; Pagano, F.; Provetti, A. Adaptive search over sorted sets. J. Discret. Algorithms 2015, 30,

128–133. [CrossRef]

https://doi.org/10.1016/0020-0190(76)90071-5
https://doi.org/10.1007/BF01933527
https://doi.org/10.1147/rd.12.0130
https://doi.org/10.1145/359545.359557
https://doi.org/10.1109/SFCS.1976.32
https://doi.org/10.1016/0020-0190(77)90072-2
https://doi.org/10.1016/0020-0190(77)90028-X
https://doi.org/10.1016/0020-0190(85)90046-8
https://doi.org/10.1016/0020-0190(80)90139-8
https://doi.org/10.1016/j.jda.2014.12.007


Mathematics 2024, 12, 1394 12 of 12

12. Mohammed, A.S.; Amrahov, S.E.; Çelebi, F.V. Interpolated binary search: An efficient hybrid search algorithm on ordered datasets.
Eng. Sci. Technol. Int. J. 2021, 24, 1072–1079. [CrossRef]

13. Kabir, M.N.; Alginahi, Y.M.; Ali, J.; Abdel-Raheem, E. Optimal search algorithm in a big database using interpolation–extrapolation
method. Electron. Lett. 2019, 55, 1130–1133. [CrossRef]

14. Mehlhorn, K.; Tsakalidis, A. Dynamic interpolation search. J. ACM 1993, 40, 621–634. [CrossRef]
15. Kaporis, A.; Makris, C.; Sioutas, S.; Tsakalidis, A.; Tsichlas, K.; Zaroliagis, C. Dynamic Interpolation Search revisited. Inf. Comput.

2020, 270, 104465. [CrossRef]
16. Chaitanya, P. Binary Search Sort Algorithm-Yet Another Sorting Algorithm with Binary Search having O(nlogn) and O(n) time

complexity. In Proceedings of the 2023 1st International Conference on Optimization Techniques for Learning (ICOTL), Bengaluru,
India, 7–8 December 2023; pp. 1–6. [CrossRef]

17. Bonasera, B. AdaptiveSearch (Java Source Code). Available online: https://bitbucket.org/ale66/adaptivesearch/src/master/
(accessed on 1 May 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jestch.2021.02.009
https://doi.org/10.1049/el.2019.1965
https://doi.org/10.1145/174130.174139
https://doi.org/10.1016/j.ic.2019.104465
https://doi.org/10.1109/ICOTL59758.2023.10435020
https://bitbucket.org/ale66/adaptivesearch/src/master/

	Introduction 
	Comparison of Binary Search and Interpolation Search 
	Comparison of Interpolated Binary Search and Adaptive Search 
	Interpolation Once Binary Search—The Proposed Method 
	Performance Study 
	Test Results over Uniformly Distributed Datasets 
	Test Results over Normally Distributed Datasets 
	Test Results over Exponentially Distributed Datasets 
	Test Results over Datasets with Mixed Distributions 

	Discussion 
	Conclusions 
	References

