
Citation: Xu, L.; Qin, K. Neural

Network-Based Distributed

Consensus Tracking Control for

Nonlinear Multi-Agent Systems with

Mismatched and Matched

Disturbances. Mathematics 2024, 12,

1319. https://doi.org/10.3390/

math12091319

Academic Editors: Zhi Li and

Sihai Guan

Received: 7 March 2024

Revised: 14 April 2024

Accepted: 23 April 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Neural Network-Based Distributed Consensus Tracking Control
for Nonlinear Multi-Agent Systems with Mismatched and
Matched Disturbances
Linxi Xu 1,2 and Kaiyu Qin 1,2,*

1 School of Aeronautics and Astronautics, University of Electronic Science and Technology of China,
Chengdu 611731, China; 201811100601@std.uestc.edu.cn

2 Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province,
Chengdu 611731, China

* Corresponding: kyqin@uestc.edu.cn

Abstract: In practice, disturbances, including model uncertainties and unknown external disturbances,
are always widely present and have a significant impact on the cooperative control performance of
a networked multi-agent system. In this work, the distributed consensus tracking control problem
for a class of multi-agent systems subject to matched and mismatched uncertainties is addressed.
In particular, the dynamics of the leader agent are modeled with uncertain terms, i.e., the leader’s
higher-order information, such as velocity and acceleration, is unknown to all followers. To solve
this problem, a robust consensus tracking control scheme that combines a neural network-based
distributed observer, a barrier function-based disturbance observer, and a tracking controller based
on the back-stepping method was developed in this study. Firstly, a neural network-based distributed
observer is designed, which is able to achieve effective estimation of leader information by all
followers. Secondly, a tracking controller was designed utilizing the back-stepping technique, and
the boundedness of the closed-loop error system was proved using the Lyapunov-like theorem,
which enables the followers to effectively track the leader’s trajectory. Meanwhile, a barrier function-
based disturbance observer is proposed, which achieves the effective estimation of matched and
mismatched uncertainties of followers. Finally, the effectiveness of the robust consensus tracking
control method designed in this study was verified through numerical simulations.

Keywords: consensus tracking; neural network; distributed observer; barrier function; multi-agent
systems

MSC: 93C10; 93D50

1. Introduction

In recent years, there has been a significant increase in research attention toward the
cooperative management of multi-agent systems, owing to its extensive applications in
engineering, particularly in scenarios such as multi-UAV flights [1], multi-robot explo-
ration [2], smart grids [3], and multi-sensor networks [4]. In summary, there are three
typical architectures for the cooperative control of existing works in multi-agent systems,
i.e., centralized, decentralized, and distributed [5,6]. Among them, distributed cooperative
control architectures have been widely studied due to their advantages such as scalability
and robustness. Existing studies on distributed cooperative control have concentrated on
the following behaviors, i.e., consensus [7], formation [8], containment [9], and flocking [10]
and distributed estimation [11]. Among them, consensus is the fundamental one, which
refers to the eventual convergence of the states of all the agents in a multi-agent system.
On the basis of the presence or absence of a leader agent, the issue of consensus for the
multi-agent system can be further divided into two distinct categories: leaderless consensus
and consensus tracking.
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Consensus tracking refers to the capability of all followers in a multi-agent system
to track the leader agent’s trajectory. Recently, researchers have conducted thorough
analyses on the constraints associated with multi-agent systems at the informational and
physical layers and designed consensus tracking control schemes such as event-triggered
control [12,13], finite-time control [14,15], bipartite consensus [16–18], security control [19],
and fault-tolerant control schemes [20]. The issue of consensus tracking control for first-
order multi-agent systems under a directed network topology was studied in [21]. On this
basis, the authors in [22] focused on analyzing the problem of distributed consensus track-
ing for multi-agent systems that exhibit Lipschitz node dynamic models. They devised a
consensus tracking protocol relying solely on the neighboring agents’ relative states. They
also demonstrated that with an appropriate selection of control parameters, achieving
consensus tracking under a switching-directed topology is feasible. In addition, consid-
ering the bound of the control input, the authors in [23] put forward restrictions on the
control input, and studies the tracking consensus under linear systems. Further, the authors
in [24] used output feedback to design a distributed adaptive control input to implement
output asymptotic tracking consensus. The adaptive protocol proposed was not reliant on
system parameters and solely utilizes the relative outputs of adjacent agents. In addressing
the convergence speed of consensus tracking control for multi-agent systems, the authors
in [14] investigated the finite-time consensus tracking control issue formulated in the form
of non-strict feedback. In utilizing the Lyapunov stability theory and the back-stepping
method, an adaptive control input was developed to guarantee that the tracking error
converges to a small neighborhood of zero in finite time. Furthermore, for high-order
systems, a novel adaptive fixed-time consensus tracking control input was formulated
through the utilization of fuzzy adaptive methods and fixed-time control theory in [25].
Considering the behavior expansion of consensus tracking, the authors in [26] studied the
distributed bipartite tracking consensus problem of linear multi-agent systems under a
single leader with a signed graph, in which the control input of the leader agent is per-
mitted to be non-zero, while each follower’s control input remains unknown. In addition,
the authors in [27] considered a switched network topology and studied the distributed
bipartite tracking consensus control problem under discrete systems. To address limited
network communication resources, the sliding mode control approach with a dynamic
event-triggered mechanism was employed in [28] to tackle the consensus tracking challenge
in discrete-time multi-agent systems; meanwhile, the authors integrated a dynamic event-
triggered mechanism into the sliding mode control system to reduce unnecessary data
transmission. Furthermore, in [29], a novel approach was presented, involving the introduc-
tion of a fixed-time distributed observer with an event-triggered mechanism. Additionally,
to effectively stabilize the tracking error system, an event-based fixed-time controller with
an adaptive dynamic surface was developed.

It is noteworthy that the above literature focuses more on nominal multi-agent systems,
i.e., there are no disturbances or uncertainties. However, due to the complexity of the
environment and the inaccuracy of modeling, agents are inevitably subject to external
disturbances and model uncertainties. Hence, there is a need to develop more robust
control schemes for multi-agent consensus tracking. Overall, there are two main research
ideas available for designing robust consensus tracking control schemes, i.e., feedback
control [30–32] and feedforward control [33–36]. Feedback control mainly refers to further
improving the performance of the system by suppressing disturbances or uncertainties.
Typical control methods mainly include robust adaptive control [30], sliding model variable
structure control [31], and H∞ control [32]. In employing the fractional Lyapunov direct
method, the robust consensus tracking problem in uncertain fractional-order multi-agent
systems was investigated in [30]. An algorithm based on neural networks was designed to
achieve distributed robust adaptation, ensuring exponential convergence of the consensus
tracking error with fixed topology. Additionally, to tackle and alleviate the detrimental
chattering effects associated with discontinuous controllers, a continuously distributed
robust adaptive control scheme based on neural networks was introduced. In [31], the finite-
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time consensus tracking issue for multi-agent systems with disturbances was investigated
through the application of integral sliding mode control (ISMC). Further, the adaptive
mechanism and ISMC were integrated into the system to achieve disturbance suppression.
Furthermore, in [32], the authors studied H∞ consensus tracking control problem for linear
multi-agent systems with directed and switching graphs while accounting for unknown
disturbances. In this paper, the design criteria for consensus protocols are expressed in
the form of linear matrix inequalities, leveraging the topologically dependent multiple
Lyapunov function method and algebraic graph theory. It is demonstrated that ensuring
the solvability of the consensus tracking issue for multi-agent systems under dynamic,
directed topologies hinges on meeting specific switching conditions dictated by the average
dwell time of the topology.

Different from feedback control, feedforward control mainly refers to estimating the
disturbances or uncertainties through detection or a feedback channel, as well as further
generating the feedforward term to achieve the compensation of disturbances and un-
certainties through the control protocol. The key challenge of this method is to design
an effective and easy estimation scheme to generate usable feedforward control terms.
Typical robust consensus tracking control schemes based on disturbance and uncertainty
estimation and compensation have been proposed in the literature, including active distur-
bance rejection control (ADRC) [33], an uncertainty and disturbance estimator UDE [34], a
high-gain observer HGO [35], a disturbance observer (DOB) [36], and so on. The authors
in [33] addressed the consensus tracking issue of multi-agent systems with second-order dy-
namics and unknown disturbances, employing the ADRC method. The tracking consensus
protocol with random disturbance estimation was proposed to ensure system convergence.
At the same time, real-time compensation was implemented for the random disturbance
affecting each agent. By employing the UDE-based control method, ref. [34] delved into the
robust consensus tracking control issue of switched multi-Lagrangian systems. Moreover,
the UDE-based method was used to accurately adjust and asymptotically estimate the
model uncertainty and disturbance. It is worth noting that several unbounded specified
external disturbances can be handled with the help of applying diverse filters. Furthermore,
the authors in [35] accomplished the design of a control protocol for multi-agent robust
global consensus tracking. In employing a predetermined high-gain design technique,
a control input based on the state feedback method was introduced to attain global consen-
sus tracking and disturbance suppression within these systems, considering the dynamics
of the agents and network topology. A distributed disturbance observer was developed
in [36] to estimate the disturbances affecting followers. Subsequently, in leveraging this
disturbance observer, a novel distributed control method was presented to address the
consensus tracking issue with disturbance suppression within a fixed directed network
topology, and its effectiveness was proved. It is worth noting that the above literature
has not yet taken into account the uncertainty that the leader agent may have, and mostly
focuses only on the robust control of the follower agents.

According to the above discussions, it is evident that few existing studies related
to consensus tracking control have simultaneously considered the following constraints,
i.e., external disturbances, mismatched uncertainties, and the leader agent being subject to
uncertain dynamics. Therefore, this study focuses on the problem of robust multi-agent
consensus tracking control with the above constraints. It should be noted that due to the
unknown uncertainty of the leader’s dynamics, only some of the followers are able to
obtain the leader agent’s position, while other higher-order information, such as velocity,
acceleration, etc., is not available to all the followers. The main contributions of this paper
are summarized as follows:

(1) A robust consensus tracking control scheme is proposed, which consists of three
components: a neural network-based distributed observer, a barrier function-based distur-
bance observer, and a back-stepping-based tracking controller. Each of the three compo-
nents plays a different role, and in complementing each other’s functions, it enables the
follower to track the leader agent’s trajectory. Moreover, the proposed control scheme is
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effective in achieving the convergence of the consensus tracking error and the uncertainty
estimation error.

(2) A distributed observer based on neural networks was designed, and an adaptive
update law of the parameters is provided, which can effectively realize the online estima-
tion of leader information. The proposed distributed observer can estimate the leader’s
dynamic states (e.g., velocity, acceleration) for all follower agents despite the absence of
direct higher-order information, enhancing the system’s adaptability and responsiveness in
uncertain environments.

(3) A barrier function-based disturbance observer was designed for a follower agent
to estimate the unknown matched/mismatched uncertainties. In turn, the effective com-
pensation of disturbances and uncertainties can be achieved using a simple feedforward
control component design. Furthermore, the boundedness of the closed-loop error system
was rigorously proved, while extra assumptions on the derivatives of the uncertainty terms
were avoided.

The subsequent sections of this paper are structured as follows. Some theories that
need to be used in this paper are introduced in Section 2, including graph theory, barrier
function, etc. Section 3 then firstly establishes the dynamic model of the followers and
leaders and describes the problem studied. The proposed robust coherent tracking control
scheme is presented in Section 4. Firstly, a distributed observer based on neural networks is
introduced, followed by the design of a perturbation observer based on the barrier function,
and then the back-stepping method is introduced for the design of the robust tracking
controller. Section 5 verifies the effectiveness of the control method designed through some
simulation examples. Lastly, Section 6 summarizes the full work and discusses some of the
future research directions.

2. Preliminaries

The relevant mathematical theories related to graphs (for network connections) and
barrier functions will be covered in this part. Next, we shall provide the following defini-
tions for several types of widely used notations.

Notation coln
i [δi] ≜ [δT

1 , δT
2 , . . . , δT

n ]
T or coln[δ] ≜ [δT , δT , . . . , δT ]Tn generates a vector in

the form of a column. The vector 1n is thus represented as 1n ≜ coln[1]. ∥ · ∥ represents the
Euclidean norm. For a matrix M ∈ Rn×n with all the eigenvalues being real, M’s max-
imum and minimum eigenvalues are represented as λmin(M) and λmin(M). Moreover,
exp(·) denotes an exponential function.

2.1. Graph Theories

A connected undirected graph with n agents is denoted as G = (V, E), in which a node
is represented as an agent and V = {1, 2, . . . , n} is the node set of the multi-agent system.
The set of edges E ⊆ V × V defines the communication topology relationship between
the agents, where the presence of an edge (i, j) ∈ E signifies the existence of information
exchange between agent i and agent j. The adjacency matrix A = [aij] ∈ Rn×n represents
the connectivity relationship of the multi-agent system. L = [lij] ∈ Rn×n is a Laplacian
matrix, which is defined as the difference between the degree matrix D and the adjacency
matrix A. Specifically, the degree matrix D is represented by D = diag[d1, . . . , dn] with
di = ∑n

j=1,i ̸=j aij.
This paper explores leader-tracking issues, with the leader being treated as an external

entity in a multi-agent system. Specifically, the node set related to G excludes the leader
agent node. To express the relationship between the leader and a follower, we define
B = diagn

i [bi], where the ith agent can receive state information from the leader agent; we
denote this using bi > 0 to represent information weight, or else bi = 0. Hence, it can be
derived that (L + B) forms a positive definite matrix.

2.2. Barrier Function

Definition 1 ([37]). A barrier function is defined for some λ > 0 as follows:
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Fp(x) =
|x|

λ − |x| . (1)

It is a continuous even function with the following three properties:

• Fp : x ∈ (−λ, λ) → Fp(x) ∈ [0, ∞) is strictly increasing in the interval [0, λ).
• lim

|x|→λ
Fp(x) = +∞.

• The function Fp(x) has a unique minimum as Fp(0) = 0.

Lemma 1 ([37]). Take into account the following system:

δ̇(t) = u(t) + d(t), (2)

in which 0 ≤ |d(t)| ≤ dmax, and dmax is a positive constant that is unknown. Assume that the
function u(t) is represented as

u(t) = −F(t, δ(t))sgn(δ(t)), (3)

and

F(t, δ(t)) =
{

Fδ(t), Ḟδ(t) = F̄|δ(t)|, i f 0 < t ≤ t̄,
Fp(δ(t)), i f t > t̄,

(4)

where Fδ(0) and F̄ hold the following conditions Fδ(0) > 0 and F̄ > 0, respectively. sgn(·)
denotes a signum function. Then, we can obtain that the variable δ(t) can converge to the domain
|δ(t)| ≤ δ1 within a finite amount of time Tδ, where δ1 = λ

(
dmax

dmax+1

)
.

3. Problem Statement

In this paper, we consider the following second-order nonlinear multi-agent system
with both unmatched and matched uncertainties:

ẋi1(t) = xi2(t) + di1(t),

ẋi2(t) = fi(xi1(t), xi2(t)) + gi(xi1(t), xi2(t))ui(t) + di2(t),

yi(t) = xi1(t),

(5)

where xi1 ∈ R and xi2 ∈ R are the system states, yi ∈ R is the system output, fi(xi1, xi2) ∈
R is the known nonlinear function, gi(xi1, xi2) ∈ R\{0} is the non-zero control gain, and
di1 ∈ R and di2 ∈ R represent the aggregated uncertainties across various channels, encom-
passing model and parameter uncertainties as well as external disturbances. The agents are
indexed by i ∈ {1, 2, . . . , n} ≜ I . The system described by Equation (5) is taken from [38],
which describes the motion of objects in general, such as angular motion.

Assumption 1. The mismatched uncertainties di1 and external disturbances di2 are bounded,
i.e., |di1| ≤ D1 and |di2| ≤ D2 hold, where D1 and D2 are unknown positive constants.

Furthermore, the target agent with an index of 0 can be modeled as a differential equa-
tion: {

ẋ0(t) = f0(x0, t),

y0(t) = x0(t),
(6)

where the smooth function f0(x0, t) is unknown to all other agents. x0(t) represents the
state variable. The agent designated as the leader is referred to as the target agent, while
the other ith agents (i ∈ I) are referred to as followers. The output y0(t) corresponds to the
information that is accessible to at least one follower.
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Definition 2 (Bounded Consensus Tracking Control). The control protocol ui(t) in (5) is said
to be a bounded consensus tracking control if the state variables xi(t) of all the followers end up
boundedly tracking the leader’s, i.e., for all i ∈ I

|xi1(t)− x0(t)| ≤ b, ∀t ≥ tb, (7)

where b ≥ 0 is the ultimate bound of the tracking error, and tb ≥ 0 is the corresponding settling time.

In order to realize the bounded consensus tracking control problem proposed by the
above definition, we need to design the corresponding control strategy for the followers.

4. Main Results

In this section, a two-module robust consensus tracking control scheme is proposed
for the ith agent shown in Figure 1 to tackle the issue at hand. The scheme combines a
neural network-based distributed observer and a back-stepping-based tracking controller.
Firstly, the neural network-based distributed observer is able to efficiently estimate the
information of the leader through all the followers. Then, the back-stepping-based tracking
controller was designed to enable the followers to track the estimates of the trajectory of
the leader, which is generated by a distributed observer. Eventually, the tracking of the
leader’s trajectory can be achieved.

NN-based 
distributed observer followerRobust tracking 

controllerLeader

Figure 1. The proposed control scheme.

As discussed in the preceding section, there are two issues that need to be addressed
in this process: (1) the leader dynamics involve an uncertainty term, thereby causing each
follower agent to lack precise velocity and acceleration information about the leader agent;
and (2) each follower agent is subject to matched and mismatched uncertainties. Thus,
followers need not only a valid estimate of the leader’s information, but also compensation
for the unknown uncertainty terms.

4.1. Neural Network-Based Distributed Observer Design

The initial step in addressing the robust consensus tracking issues involves mitigating
uncertainties within the leader agent model. In order to achieve this goal, we need to use neu-
ral networks to fit unknown function values. Therefore, we need the following assumption:

Assumption 2. γ(x, t) ≜ f0(x, t) can be expressed on a prescribed compact set Ωγi ⊂ R2 using
linearly parameterized neural networks as follows:

γ(x, t) = ϕT
γ (x, t)θγ + eγ, (8)

where ϕT
γ (x, t) = col

hγi
k [ϕγi,k(x, t)] ∈ Rhγi ; the parameter θγ = col

hγi
k [θγi,k] ∈ Rhγi is an

unknown constant vector; and eγ is the NN approximation error.

Remark 1. In traditional adaptive control theories, extensive research has focused on linearly
parameterized models of unknown nonlinear dynamics [39,40]. Assumption 2 will be satisfied once
the fundamental function ϕγ is suitably chosen, and the receptive fields cover the respective value
ranges of the smooth functions γ(x, t).
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Throughout the paper, α̂ is used to represent the estimate of a quantity α, and α̃ ≜ α̂− α,
to denote its estimation error. Then, the estimate of the ith agent for γ(x, t) is γ̂i(x, t) ≜
ϕT

γ (x, t)θ̂γi, and the corresponding estimate error is designated by γ̃i(x, t). The following
formula shows that

γ̃i(x, t) ≜ ϕT
γ (x, t)θ̃γi = ϕT

γ (x, t)[θ̂γi − θγ], (9)

and the estimation errors can also be represented as

γ̃i(x, t) = γ̃i(x, t)− eγ. (10)

Based on the NN’s approximation theorems, we can make the following assumption.

Assumption 3. The approximation error eγ is bounded by unknown constants δγ in the corre-
sponding compact set Ωγ. That is, |eγi| ≤ δγi.

In order to obtain the estimated value of the leader’s state, we can construct the
following neural network-based distributed observer:

ζ̇i =ηi,

η̇i =− kϵϵ1i − kp p2i + ϕT
γ (ζi, t) ˙̂θγi +

∂

∂ζ
ϕT

γ (ζi, t)θ̂γiηi +
∂

∂t
ϕT

γ (ζi, t)θ̂γi

− rec(p2i)(|kϵϵ1i|+ |kϵϵ1i|δ̂γi),

ϵ1i =
n

∑
j=1

lij(ζi − ζ j) + bi(ζi − x0),

(11)

where ζi and ηi are distributed observer states, and kϵ and kp are distributed observer
gains. Moreover, rec(α) is the safe reciprocal function such that rec(α) · α equals unity for
non-zero α, or equals zero otherwise.

Through formulating the subsequent coordinate transformation,

p1i = ζi − x0,

p2i = ηi − γ̂i(ζi, t),
(12)

one obtains

ṗ2i =η̇i − ϕT
γ (ζi, t) ˙̂θγi −

∂

∂ζ
ϕT

γ (ζi, t)θ̂γi ζ̇i −
∂

∂t
ϕT

γ (ζi, t)θ̂γi

=η̇i − ϕT
γ (ζi, t) ˙̂θγi −

∂

∂ζ
ϕT

γ (ζi, t)θ̂γiηi −
∂

∂t
ϕT

γ (ζi, t)θ̂γi.
(13)

Accordingly,

ṗ2i = −kϵϵ1i − kp p2i − rec(p2i)(|kϵϵ1i|+ |kϵϵ1i|δ̂γi). (14)

Let X ≜ coln
i [ζi], P1 ≜ coln

i [p1i], P2 ≜ coln
i [p2i], X0 ≜ x01n, ∆ = coln

i [rec(p2i)(|kϵϵ1i +
|kϵϵ1i|δ̂γi)], E1 ≜ coln

i [ϵ1i], R̂ ≜ coln
i [γ̂i(ζi, t)], R̃ ≜ coln

i [γ̃(ζi, t)], and Eγ = coln
i [eγi].

Apparently, E1 = (L + B)P1.
The matrix forms of state variables p1i and p2i are as follows:

P1 = X − X0,

P2 = Ẋ − R̂ = Ẋ − R − R̃ + Eγ,
(15)
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with the following compact models:

Ṗ1 = Ẋ − Ẋ0,

Ṗ2 = −kϵ(L + B)P1 − kpP2 − ∆.
(16)

Their adaptive rules are

˙̂θγi = −k f kϵϵ1iϕγ(ζi, t),
˙̂δγi = kδ|kϵϵ1i|.

(17)

Remark 2. As shown in (17), the adaptive law of δ̂γi contains an absolute value function |kϵϵ1i|.
This implies that δ̂γi is an increasing function until the consensus tracking error ϵ1i is 0. When this
parameter δ̂γi remains constant, it also indicates that the consensus tracking control objective of
this paper is achieved. It should be noted that this absolute value function |kϵϵ1i| does not produce
chattering. In fact, this estimation value δ̂γi compensates for the neural network fitting error eγi.
In the proof, how to ensure the convergence of the closed-loop error system will be further described
later on.

Theorem 1. The distributed observer given by (11) with the adaptive algorithm established
in (17) achieves the estimation of the leader’s states, i.e., limt→∞(ζi − x0) = 0 for all i ∈ I , under
Assumptions 2 and 3, if

∂

∂x
γ(x, t) < 0. (18)

Proof. The positive definite Lyapunov function is

V1 =
kϵ

2
PT

1 (L + B)P1 +
1
2

PT
2 P2 +

1
2k f

n

∑
i=1

θ̃T
γi θ̃γi +

1
2kδ

n

∑
i=1

δ̃T
γi δ̃γi, (19)

and its derivative is

V̇1 =kϵPT
1 (L + B)(Ẋ − Ẋ0)− kϵ(Ẋ − R − R̃ + Eγ)

T(L + B)P1 − PT
2 ∆

+
1
k f

n

∑
i=1

θ̃T
γi

˙̂θγi +
1
kδ

n

∑
i=1

δ̃T
γi

˙̂δγi − kpPT
2 P2

=kϵ(R − Ẋ0)
T(L + B)P1 + kϵR̃TE1 +

1
k f

n

∑
i=1

θ̃T
γi

˙̂θγi

− kpPT
2 P2 − kϵET

γ E1 − PT
2 ∆ +

1
kδ

n

∑
i=1

δ̃T
γi

˙̂δγi.

(20)

According to (17), we can obtain that

kϵR̃TE1 =
1
k f

n

∑
i=1

θ̃T
γi

˙̂θγi (21)

and

−kϵET
γ E1 − PT

2 ∆ +
1
kδ

n

∑
i=1

δ̃T
γi

˙̂δγi =
n

∑
i=1

[
− kϵϵ1ieγi − |kϵϵ1i|(δ̂γi − δ̃γi)

]
≤

n

∑
i=1

(
|kϵϵ1i| · |eγi| − |kϵϵ1i| · δγi

)
≤ 0,

(22)
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Moreover, the composition rule reveals that ẋ0 = γ(x0, t); then,

R − Ẋ0 = coln
i [γ(ζi, t)− ẋ0]

= coln
i [γ(ζi, t)− γ(x0, t)]

= coln
i [

∂

∂x
{γ(ξi, t)}(ζi − x0)]

= −diagn
i [−

∂

∂x
γ(ξi, t)]P1

≜ −ΞP1.

(23)

where ξi ∈ [min(ζi, x0), max(ζi, x0)]. Ξ is positive definite; consequently,

V̇1 ≤ −kϵPT
1 Ξ(L + B)P1 − kpPT

2 P2 ≤ 0. (24)

Therefore, V1 keeps decreasing until P1 ≡ P2 ≡ 0, which implies that P1(∞) → 0,
i.e., limt→∞(ζi − x0) = 0 for all i ∈ I . The theorem is proven.

4.2. Robust Tracking Controller Design

In the following, the design for a robust tracking controller will be shown for each
follower to track the corresponding estimates generated through a neural network-driven
distributed observer (11). Ultimately, consensus tracking from the followers to the leader
is achieved.

Based on the idea of the back-stepping method, the controller design process of the
second-order system (5) can be divided into two steps.

4.2.1. Step 1

Introduce a virtual control input vi and define the tracking errors as follows:

ei1 = xi1 − ζi, (25)

ei2 = xi2 − vi. (26)

When considering (5), (25), and (26), the dynamics of ei1 are

ėi1 = ei2 + vi + di1 − ηi. (27)

Design the virtual control input vi as follows:

vi = −k1iei1 − d̂i1 + ηi, (28)

where k1i is a positive constant, while d̂i1 stands for the estimate of di1 produced by a
disturbance observer, which is shown later.

Consider the following Lyapunov candidate function:

VB1 =
1
2

ei1
2. (29)

Taking the derivative of VB1 leads to

V̇B1 = −k1iei1
2 − ei1

(
d̃i1 − ei2

)
≤ −k1i|ei1|2 + |ei1|

(
|d̃i1|+ |ei2|

)
= −k1i(1 − σ)|ei1|2 − k1iσ|ei1|2 + |ei1|

(
|d̃i1|+ |ei2|

)
= −k1i(1 − σ)|ei1|2 − |ei1|

(
k1iσ|ei1|+ |d̃i1|+ |ei2|

)
,

(30)

where 0 < σ < 1, and d̃i1 ≜ d̂i1 − di1 is the estimation error of di1.
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From the above equation, it can be derived that

V̇B1 ≤ −k1i(1 − σ)|ei1|2, ∀|ei1| ≥ bB1, (31)

where bB1 = |d̃i1|+|ei2|
k1iσ

.
According to Theorem 4.18 in [41], there exists tB1i ≥ 0 such that

|ei1(t)| ≤ bB1i, ∀t ≥ tB1i. (32)

Thus, the tracking error ei1 is bounded if ei2 and d̃i1 are bounded.
In the following, the disturbance observer is shown for estimating di1 based on the

barrier function to ensure that d̃i1 is bounded.
An auxiliary system is formulated as follows:

si1 = φi1 − xi1, (33)

where the dynamic equation of φi1 is

φ̇i1 = xi2 + d̂i1. (34)

Combining (5), (33), and (34) yields

ṡi1 = d̂i1 − di1. (35)

Based on the barrier function, d̂i1 is given by

d̂i1 = −K1(si1(t))sgn(si1), (36)

and

K1(si1(t)) =

{
Ka1(t), K̇a1(t) = ka1|si1|, 0 < t ≤ t1,
Kp1(si1) =

|si1|
λ1−|si1|

, t > t1,
(37)

where ka1 and λ1 are positive constants, and t1 is the time when |si1(t)| ≤ λ1 is satisfied for
the first time.

Theorem 2. When considering the system (35) under Assumption 1, if we adopt the disturbance
observer as detailed in (36) and (37) based on the barrier function specified in Definition 1, it can be
established that si1 achieves convergence to the domain |si1(t)| ≤ λ1

(
dmax

dmax+1

)
within finite time.

Additionally, the estimation error for di1 exhibits bounded convergence.

Proof. From (35), it is obvious that
ṡi1 = d̃i1. (38)

By Definition 1, when si1 ∈ [−λ1, λ1], Kp1(si1) ∈ [0, ∞]. According to Lemma 1, it can
be inferred that when t > t1, |si1| < λ1, and thus, |d̂i1| is bounded. Meanwhile, it follows
from Lemma 1 that si1 converges to |si1(t)| ≤ λ1

(
dmax

dmax+1

)
in finite time. In combination

with with Assumption 1, both d̂i1 and di1 are bounded such that d̃i1 is bounded, and the
boundedness of the integral |si1| further ensures that the fluctuations of d̃i1 are limited. The
proof is complete.

Remark 3. Barrier function-based disturbance observers (36) and (37) have only the requirement
that the disturbance be integrable and bounded, i.e., that it is capable of estimating bounded non-
smooth nonlinear disturbances.

4.2.2. Step 2

Next, we will show the design of the control input ui to ensure that ei2 is bounded.
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Combining (26) with the second equation of (5) yields the dynamic equation of ei2:

ėi2 = fi(xi1, xi2) + gi(xi1, xi2)ui + di2 + k1i(xi2 + di1 − ηi) +
˙̂di1 − η̇i. (39)

We designed ui as follows:

ui =
1

gi(xi1, xi2)

(
−k2iei2 − fi(xi1, xi2)− d̂i2 − k1i

(
xi2 + d̂i1 − ηi

)
+ η̇i

)
, (40)

where k2i > 0, and d̂i2 is the estimate of di2.
Consider the following Lyapunov candidate function:

VB2 =
1
2

ei2
2. (41)

The derivative of VB2 is

V̇B2 = −k2iei2
2 − ei2

(
d̃i2 + k1i d̃i1 − ˙̂di1

)
≤ −k2i|ei2|2 + |ei2|

(
|d̃i2|+ k1i|d̃i1|+ | ˙̂di1|

)
= −k2i(1 − σ)|e2i|2 − |ei2|

(
k2iσ|ei2|+ |d̃i2|+ k1i|d̃i1|+ | ˙̂di1|

) (42)

where d̃i2 ≜ d̂i2 − di2 is the estimation error of di2.
From (42), it can be derived that

V̇B2 ≤ −k2i(1 − σ)|ei2|2, ∀|ei2| ≥ bB2, (43)

where bB2 = |d̃i2|+k1i |d̃i1|+| ˙̂di1|
k2iσ

.
According to Theorem 4.18 in [41], there exists tB2i ≥ 0 such that

|ei2(t)| ≤ bB2i, ∀t ≥ tB2i. (44)

Theorem 2 and Equations (36) and (37) guarantee that d̃i1 and ˙̂di1 are bounded. Conse-
quently, the tracking error ei2 is bounded as long as the disturbance estimation error d̃i2
is bounded.

Similar to the previous step, the disturbance observer for estimating di2 was designed
based on the barrier function.

Likewise, the subsequent auxiliary system is formulated as

si2 = φi2 − xi2, (45)

where the dynamics of φi2 are given by

φ̇i2 = f (xi1, xi2) + g(xi1, xi2)ui + d̂i2. (46)

In combining the second equations of (5), (45), and (46), it can be obtained that

ṡi2 = d̂i2 − di2. (47)

Then, d̂i2 is given by
d̂i2 = −K2(si2(t))sgn(si2) (48)

and

K2(si2(t)) =

{
Ka2(t), K̇a2(t) = k̄a2|si2|, 0 < t ≤ t2,
Kp2(si2) =

|si2|
λ2−|si2|

, t > t2,
(49)
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where ka2 and λ2 are positive constants, and t2 equals the time when |si2(t)| ≤ λ2
2 is satisfied

for the first time.
It is obvious that Equations (47)–(49) have the same structure as Equations (35)–(37).

Therefore, it follows from Theorem 2 that d̃i2 is bounded. As a consequence, ei2 and ei1
are bounded.

Up to now, with the design idea of the back-stepping technique and based on the
barrier function disturbance observers (36), (37), (48) and (49), we obtained the robust
tracking controller composed by Equations (28) and (40).

Theorem 3. Under Assumptions 1–3, considering multi-agent systems (5) and (6) subject to
both matched and mismatched disturbances in combination with neural network-based distributed
observer (11), the control strategy ui achieves the bounded consensus tracking from the follower
state xi1(i ∈ I) to the leader state x0.

Proof. For all i ∈ I , define the tracking error of the ith follower with respect to the leader as

ei = xi1 − x0, (50)

which can be transformed into

ei = xi1 − ζi + ζi − x0 = ei1 + ζi − x0. (51)

From the design process of the robust tracking controller, it is evident that for
bc = max{bB1i(i ∈ I)}, there is a corresponding settling time tb such that for all i ∈ I ,

|ei1(t)| ≤ bc, ∀t ≥ tb. (52)

Disturbance observers (36), (37), (48) and (49) guarantee that bc is bounded.
According to Theorem 1, it is obtained that

lim
t→∞

(ζi − x0) = 0. (53)

Thus, for all i ∈ I and for tb, there exists a boundary bd ≥ 0 such that |ζi − x0| ≤ bd.
Hence, it can be obtained that for all i ∈ I ,

ei(t) ≤ b, ∀t ≥ tb, (54)

where b = bc + bd is the ultimate bound of the tracking error.
Subsequently, according to Definition 2, it can be deduced that the control protocol ui

is a bounded consensus tracking control. The proof is complete.

The robust tracking control scheme was shown in this section. Initially, a distributed ob-
server based on neural networks was introduced to accurately estimate leader information
for all follower nodes. Subsequently, a robust tracking controller based on back-stepping
technique was developed, demonstrating the boundedness of the closed-loop error system
through the application of the Lyapunov-like theorem. Meanwhile, a barrier function-based
disturbance observer was designed to accurately estimate matched and mismatched uncer-
tainties among followers. Ultimately, bounded consensus tracking from the followers to
the leader trajectory is achieved.

Remark 4. It can be observed from (36), (37), (48) and (49) that for j = 1, 2, the solution sij reaches
λj
2 in finite time tj. At this point, the adaptive gain Kj switches from Kaj to Kpj and remains as Kpj

thereafter. It is evident that as sij → 0, Kpj → 0. Consequently, Kpj exhibits the same behavior as
|sij |
λi

in the vicinity of zero, that is,
sij
λj

≪ 1 ⇒ Kpj
(
sij
)
=

|sij|
λj−|sij| ≈

|sij|
λj

. This implies that if dij

and sij monotonically approach zero, Kp(sij) will tend to zero as well. Hence, the discontinuity of
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the signal d̂ij only occurs once at time tj [37]. It is worth noting that d̂ij becomes continuous from
time tj, and there is no chattering generated by (36), (37), (48) or (49).

Remark 5. In the simulation, to mitigate the chattering effect resulting from discontinuous control
signals, the emulation of the signum function sgn(x) is carried out utilizing function tanh(ax) =
eax−e−ax

eax+e−ax . Here, parameter a may be set as a = 10, allowing for a smoother control signal while
closely approximating the characteristics of the signum function.

5. Simulation Results

Several simulation examples are presented to validate the efficacy of the proposed
distributed consensus tracking control scheme in this section. Here, we considered that
there are four followers and one leader, and Figure 2 depicts the communication topology
among the agents. Then, L and B were derived as follows:

L =


2 −1 0 −1
−1 3 −1 −1
0 −1 1 0
−1 −1 0 2

, B =


1.4 0 0 0
0 1.2 0 0
0 0 0 0
0 0 0 0

.

0

1

4

3 2

0

1

4

2 3

Figure 2. The communication topology among agents.

In addition, we consider that each follower agent’s dynamics are characterized by the
longitudinal height channel model of a four-rotor UAV system. According to the previous
work in [42], the transnational dynamic model of the height channel of the four-rotor UAV
system is

ẋi1 = xi2 + di1,

ẋi2 =
cos ϕi cos θiui

m
− g + di2,

(55)

in which ϕi represents the rolling angle, and θi represents the pitch angle of a follower
agent. The quadrotor’s mass is denoted by m, while U1 represents the total thrust force.
The acceleration of gravity is expressed as g. Additionally, di1 and di2 correspond to the
mismatched uncertainty and matched uncertainty, respectively.

The model parameters for the four-rotor UAV were chosen as m = 3 kg, ϕi = 0◦,
θi = 0◦, and, in the simulation verification scenario of this paper, g = 9.81 m/s2. Fur-
thermore, di1 and di2 were regarded as follows: di1 = 0.2xi1 + sin(0.2πt) and di2 =
0.2sgn(xi1xi2).

Moreover, the dynamics of the leading agent were taken into account as follows:

ẋ0 = −0.4x0 + cos(t0.8) + 0.02t + 1. (56)

A radial basis function (RBF) neural network was employed for the estimation of
γ(x, t) utilizing Gaussian basis functions:
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ϕT
γ (x, t) = e

−
(x−µγix,k)

2+(t−µγit,k)
2

η2
γi,k , k ∈ {1, 2, . . . , hγi}, (57)

The widths of the Gaussian basis functions were ηγi,k = 6, and the number of nodes
was hγi = 17 × 17. The centers (µγix,k, µγit,k) were uniformly distributed within the range
[−25, 25] × [0, 50]. The initial conditions for the system were x0(0) = 3.5, θ̂γi(0) = 0.
The observer gain and adaptive law parameters were k f = 10, kϵ = 5, kp = 5, and kδ = 5.
Let Kθ(0) = 5 and Kp(0) = 10. The step of sampling was chosen to be 0.01 s. Additionally,
the control tracking parameters are presented in Table 1.

Table 1. The control parameters of each follower agent.

Parameter Value Parameter Value Parameter Value

k1 5 ka1 100 λ1 0.1
k2 10 ka2 100 λ2 0.02

In [43], the authors addressed the consensus tracking control problem of second-
order uncertain multi-agent systems with mismatched and matched disturbances. They
designed a neural network-based consensus tracking control scheme and estimated the
compound uncertainties utilizing a neural network approximator. In the simulation, we
compared the differences between the controllers designed in this study and the controllers
designed in the literature [43]. The simulation and comparison results of the numerical
examples are illustrated in Figures 3–7. It is evident from Figure 3 that all follower agents
successfully tracked the leader’s trajectory, signifying the attainment of tracking control
within the multi-agent system. Figure 4 demonstrates the trajectory of the consensus
tracking error under the two control schemes. It can be seen that the control error judder is
more obvious using the control scheme from the literature [43], while the error trajectory
is relatively smooth using the control scheme designed in this study. In Figures 5 and 6,
the disturbance estimation errors are shown under the two control schemes. It can be seen
that the barrier function-based disturbance estimator designed in this study can effectively
achieve compensation for unknown disturbances compared to the neural network-based
estimation method in the literature [43]. Finally, the control input of each follower agent is
shown in Figure 7.

Time(s) Time(s)

Figure 3. The position and velocity trajectories of agents, respectively.
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Time(s)

(a)

Time(s)

(b)

Figure 4. The consensus tracking error trajectories of follower agents. (a) The proposed controller.
(b) The NN-based controller in [43].

Time(s)

(a)

Time(s)

(b)

Figure 5. The estimation error d̃i1 trajectories of follower agents. (a) The proposed controller. (b) The
NN-based controller in [43].

Time(s)

(a)

Time(s)

(b)

Figure 6. The estimation error d̃i2 trajectories of follower agents. (a) The proposed controller. (b) The
NN-based controller in [43].
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Time(s)

(a)

Time(s)

(b)

Figure 7. The control input trajectories of follower agents. (a) The proposed controller. (b) The
NN-based controller in [43].

6. Conclusions

This research delved into the intricacies of addressing the consensus tracking control
challenge in second-order multi-agent systems with both mismatched and matched uncer-
tainties. By integrating a neural network-based distributed observer, a barrier function-
based disturbance observer, and a back-stepping-based tracking controller, a robust tracking
control method was developed. This scheme enables the distributed estimation of leader
information, compensation for disturbances, and the effective tracking of the leader’s
trajectory by followers, despite the presence of uncertainties. Then, the stability of the
error system was demonstrated and established using the Lyapunov theory. Addition-
ally, simulation results are provided to validate the efficacy of the distributed consensus
tracking scheme. It is important to point out that in this paper, we consider that followers
can communicate with each other in both directions. In the future, there will be further
exploration of the tracking control problem for uncertain multi-agent systems under a
directed topology.
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