
Citation: Selvaraj, J.; Alrasheedi, M. A

Few Similarity Measures on the Class

of Trapezoidal-Valued Intuitionistic

Fuzzy Numbers and Their

Applications in Decision Analysis.

Mathematics 2024, 12, 1311. https://

doi.org/10.3390/math12091311

Academic Editor: Gia Sirbiladze

Received: 25 March 2024

Revised: 19 April 2024

Accepted: 19 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Few Similarity Measures on the Class of Trapezoidal-Valued
Intuitionistic Fuzzy Numbers and Their Applications in
Decision Analysis
Jeevaraj Selvaraj 1,* and Melfi Alrasheedi 2,*

1 Department of Engineering Sciences (Mathematics), Atal Bihari Vajpayee Indian Institute of Information
Technology and Management, Gwalior 474015, India

2 Department of Quantitative Methods, School of Business, King Faisal University, Al-Ahsa 31982, Saudi Arabia
* Correspondence: jeevaraj@iiitm.ac.in (J.S.); malrasheedy@kfu.edu.sa (M.A)

Abstract: Similarity measures on trapezoidal-valued intuitionistic fuzzy numbers (TrVIFNs) are
functions that measure the closeness between two TrVIFNs, which has a lot of applications in the
area of pattern recognition, clustering, decision-making, etc. Researchers around the world are
proposing various similarity measures on the generalizations of fuzzy sets. However, many such
measures do not satisfy the condition that “the similarity between two fuzzy numbers is equal to
1 implies that both the fuzzy numbers are equal” and this gives a pathway for the researchers to
introduce different similarity measures on various classes of fuzzy sets. Also, all of them try to find
out the similarity by using a single function, and in the present study, we try to propose a combined
similarity measure principle by using four functions (four similarity measures). Thus, the main aim
of this work is to introduce a few sets of similarity measures on the class of TrVIFNs and propose
a combined similarity measure principle on TrVIFNs based on the proposed similarity measures.
To do this, in this paper, firstly, we propose four distance-based similarity measures on TrVIFNs
using score functions on TrVIFNs and study their mathematical properties by establishing various
propositions, theorems, and illustrations, which is achieved by using numerical examples. Secondly,
we propose the idea of a combined similarity measure principle by using the four proposed similarity
measures sequentially, which is a first in the literature. Thirdly, we compare our combined similarity
measure principle with a few important similarity measures introduced on various classes of fuzzy
numbers, which shows the need for and efficacy of the proposed similarity measures over the existing
methods. Fourthly, we discuss the trapezoidal-valued intuitionistic fuzzy TOPSIS (TrVIF-TOPSIS)
method, which uses the proposed combined similarity measure principle for solving a multi-criteria
decision-making (MCDM) problem. Then, we discuss the applicability of the proposed modified
TrVIF-TOPSIS method by solving a model problem. Finally, we discuss the sensitivity analysis of the
proposed approaches by using various cases.

Keywords: trapezoidal-valued intuitionistic fuzzy number; membership score; core length;
non-hesitancy score; non-membership score; distance measure; similarity measure; MCDM

MSC: 03B52; 03E72; 26E50

1. Introduction

Zadeh thought about a new class of sets that can generalize the idea of classical sets
and named them fuzzy sets. Mathematically, the main idea of fuzzy sets is that the sum of
the degree of membership and non-membership value of any element in the underlying set
must be equal to one. That is, the information about an object is 100%, but in real life, it
may be possible to have incomplete information in addition to imprecision, which leads
to the introduction of intuitionistic fuzzy sets (IFSs), an idea introduced by Atanassov [1].
In the year 2011, Zadeh [2] introduced the idea of fuzzy Z-numbers by incorporating the
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uncertainty of the decision-maker’s opinion. Fuzzy Z-numbers could be a better option
for modelling real-life decision problems than picture fuzzy sets [3], Pythagorean fuzzy
sets [4], fuzzy-rough sets [5], spherical fuzzy sets [6], etc., since these generalizations did
not consider the decision-maker’s uncertainty. Tian et al. [7] extended the idea of fuzzy
Z-numbers to “extended fuzzy z-numbers (ZE-numbers)” to incorporate the uncertainty
of decision-makers and experts’ opinions in two different groups. The introduction of
fuzzy ZE numbers played a significant role in GDM. Atanassov and other researchers
studied various mathematical properties in subsequent years. Ecer et al. [8] proposed
a decision framework by integrating the Logarithm Methodology of Additive Weights
(LMAW) and TOPSIS methods under an extended fuzzy Z-number environment. Also,
they applied the proposed framework in solving a case example within the “Indian health
sector”. Senapati and Yager [9] introduced Feramtean fuzzy sets (FFS) as a generalization
to IVIFSs. Apart from the above discussions, there are many more generalizations available
in the literature to model real-life problems. Each type of fuzzy set has its advantages in
modelling real-life problems. We shall not say that a specific type of fuzzy set is best for
modelling a real-life problem.

In this study, we consider intuitionistic fuzzy sets for modelling a decision-making
problem. In particular, we use trapezoidal-valued intuitionistic fuzzy numbers (TrVIFNs)
for the modelling. Many researchers from diverse areas have proposed different classes of
fuzzy sets as a generalization to IFSs; trapezoidal-valued intuitionistic fuzzy numbers (TrV-
IFNs) are one among them which generalizes the idea of real-valued and interval-valued
intuitionistic fuzzy sets (IVIFSs). Also, different ranking principles were discussed in the
literature for ranking IVIFSs, interval-valued Pythagorean fuzzy sets, and generalized trape-
zoidal fuzzy numbers. “Conventional trapezoidal intuitionistic fuzzy numbers (CTrIFNs)”
were discussed long before; however, the concept of TrVIFNs was recently proposed by
Jeevaraj et al. [10] in 2023. Jeevaraj et al. [10] introduced the set of TrVIFNs as a real
generalization of IVIFNs, and it overlapped with the set of CTrIFNs. They defined various
basic definitions of TrVIFNs, studied numerous mathematical properties by establishing
various theorems and propositions and discussed the applications of TrVIFNs in decision-
making. Distance measures on the set of intuitionistic fuzzy sets have been widely studied,
and various distance-based similarity measures have been introduced in the literature by
renowned researchers worldwide. Researchers have applied the idea of similarity measures
in various fields. Xu and Chen [11] gave an overview of a few similarity measures on IFSs
and studied their mathematical properties properly. In 2011, Ye [12] proposed the idea of
a cosine similarity measure and studied its mathematical properties. Further, he applied
cosine similarity to solve pattern recognition problems. Later, Ye [13] proposed another
similarity measure on the set of IVIFNs and discussed its application in decision-making.
Song et al. [14] proposed a new similarity measure which could overcome the issues
of a few earlier similarity measures. Also, they studied the application of the proposed
similarity measure to the field of pattern recognition. Song and Wang [15] introduced a new
similarity measure on the set of IFSs and showed the efficacy of their proposed similarity
measure using a detailed comparative analysis. Jeevaraj [16] proposed a new similarity
measure on IVIFNs using a score function and studied its mathematical properties. He
also compared the proposed score-based similarity measure with a few existing methods,
and finally, the proposed similarity measure was used to solve a decision-making problem.

Various similarity measures are available on different classes and generalizations
of fuzzy sets. One of the important properties of similarity measure is that “A = B
iff S(A, B) = 1”, and many similarity measures satisfy the condition “A = B implies
S(A, B) = 1”. However, many such measures do not satisfy the condition that “the
similarity between two fuzzy numbers is equal to 1 implies that both the fuzzy numbers
are equal (that is, S(A, B) = 1 implies A = B )” and this gives a pathway for researchers to
introduce different similarity measures on various classes of fuzzy sets. Also, all of them
try to find out the similarity by using a single function (similarity measure) and, in the
present study, we try to propose a combined similarity measure principle by using four
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functions (four similarity measures) which is the first in the literature. Thus, the main
aim of this work is to introduce a few sets of similarity measures on the class of TrVIFNs
and propose a combined similarity measure principle on TrVIFNs based on the proposed
similarity measures. In this study, we aim to introduce a few similarity measures on the set
of TrVIFNs and propose a similarity principle based on the introduced similarity measures.
The main contribution of this paper is given as follows:

• To propose four new distance-based similarity measures by using four score functions
on TrVIFNs.

• To analyse the mathematical properties of the proposed similarity measures by deriv-
ing propositions and theorems.

• To define a combined similarity measure principle on TrVIFNs using the proposed
four similarity measures.

• To compare the proposed combined similarity measure with a few existing similarity
measures on different classes of fuzzy sets.

• To establish a new MCDM algorithm by using a combined similarity measure-based
TOPSIS method for solving a decision-making problem.

• To study the sensitivity analysis of the proposed MCDM algorithm by changing the
weights of the criteria.

The remainder of the paper is arranged in the following manner. After the introduction,
a few important basic definitions are given in Section 2. Section 3 is used to discuss four
similarity measures on TrVIFNs and study their mathematical properties. Also, a combined
similarity measure principle is proposed in Section 3. A detailed comparative analysis is
given in Section 4. Section 5 establishes a new multi-criteria decision-making algorithm by
modifying the steps of the trapezoidal-valued intuitionistic fuzzy TOPSIS (TrVIF-TOPSIS)
method by integrating the proposed combined similarity measure principle in TrVIFNs.
The applicability of the proposed MCDM algorithm in solving some real-life decision-
making problems is discussed in Section 6 by using numerical examples. The sensitivity
analysis of the proposed decision-making algorithm is discussed by considering different
weights for the criteria in Section 7, and Section 8 discusses the conclusions.

2. Preliminaries

This section discusses a few important definitions related to the proposed study.

Definition 1 (Atanassov [1]). An intuitionistic fuzzy set (IFS) T in a non-empty set UX is defined
as T = {⟨u, χT(u), ψT(u)⟩|u ∈ UX}, where χT(u) : UX → [0, 1] and ψT(u) : UX → [0, 1], u ∈
UX with 0 ≤ χT(u) + ψT(u) ≤ 1, ∀u ∈ UX , where χT(u), ψT(u) ∈ [0, 1] and denote the degree
of membership and non-membership of u to lie in T, respectively. For each intuitionistic fuzzy subset
T in UX , πT(u) = 1 − χT(u)− ψT(u) is called the incompleteness degree of u to lie in T.

Definition 2 (Atanassov and Gargov [17]). Let D[0, 1] be the collection of closed sub-intervals of
the unit interval ([0, 1]). An IVIFS on a non-empty set UX ̸= ϕ is given by T = {⟨u, χT(u), ψT(u)⟩ :
u ∈ UX}, where µT : UX → D[0, 1], νT : UX → D[0, 1] with the condition 0 < supuχT(u) +
supuψT(u) ≤ 1.

The intervals χT(u) and ψT(u) denote the membership degree and non-membership
degree of u in T. For each u ∈ UX, χT(u) and ψT(u) are closed intervals with lower
and upper endpoints represented by χTL(u), χTU (u) and ψTL(u), ψTU (u), respectively.
We denote

T =
{〈

u, [χTL(u), χTU (u)], [ψTL(u), ψTU (u)]
〉

: u ∈ UX
}

,

where 0 < χT(u) + ψT(u) ≤ 1.
For each u ∈ UX, the unknown degree πT(u) can be calculated by πT(u) = 1 −

µT(u)− νT(u) = [1 − µTU (u)− νTU (u), 1 − µTL(u)− νTL(u)].
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Definition 3 (Jeevaraj et al. [10]). Let ST(0, 1) be the collection of trapezoidal fuzzy numbers in
the unit interval ([0, 1]). A trapezoidal-valued intuitionistic fuzzy set on a non-empty set UX is
defined by T = {⟨u, χT(u), ψT(u)⟩ : u ∈ UX}, where µT : UX → ST(0, 1), νT : UX → ST(0, 1),
with the condition 0 < supuχT(u) + supuψT(u) ≤ 1.

The trapezoidal fuzzy numbers χT(u) and ψT(u) denote, respectively, the membership
degree and non-membership degree of u in T, and for each u ∈ UX and χT(u), ψT(u) are
trapezoidal fuzzy numbers (TrFNs) with their legs represented by χTL(u), χTm1

(u), χTm2
(u),

χTU (u) and ψTL(u), ψTm1
(u), ψTm2

(u), ψTU (u). We denote T = {⟨u, (χTL(u), χTm1
(u), χTm2

(u),
χTU (u)), (ψTL(u), ψTm1

(u), ψTm2
(u), ψTU (u))⟩ : u ∈ UX}, where 0 < χTU (u) + ψTU (u) ≤ 1.

We denote the set of TrVIFNs in UX by TrVIFN(UX). A TrVIFN is denoted by
T = ⟨(t1, t2, t3, t4), (t′1, t′2, t′3, t′4)⟩ with t4 + t′4 ≤ 1 for convenience. If χTm1

(u) = χTm2
(u)

and ψTm1
(u) = ψTm2

(u), then the TrVIFNs become “triangular-valued intuitionistic fuzzy
numbers (TVIFNs)” and we denote the collection of all TVIFNs in UX by TVIFN(UX).
A TVIFN is denoted by T = ⟨(t1, t2, t3), (t′1, t′2, t′3)⟩ with t3 + t′3 ≤ 1 convenience.

Definition 4 (Jeevaraj et al. [10]). Let TI , VI ∈ TrVIFN. Then, the arithmetic operations
between T and V are defined as follows:

T + V =
〈
(t1 + u1, t2 + u2, t3 + u3, t4 + u4), (t′1 + u′

1, t′2 + u′
2+, t′3 + u′

3, t′4 + u′
4)
〉
,

T − V =
〈
(t1 − u4, t2 − u3, t3 − u2, t4 − u1), (t′1 − u′

4, t′2 − u′
3, t′3 − u′

2, t′4 − u′
1)
〉
,

TV =


〈
(t1u1, t2u2, t3u3, t4u4), (t′1u′

1, t′2u′
2, t′3u′

3, t′4u′
4)
〉

i f T > 0, V > 0,〈
(t1u4, t2u3, t3u2, t4u1), (t′1u′

4, t′2u′
3, t′3u′

2, t′4u′
1)
〉

i f T < 0, V > 0,〈
(t4u4, t3u3, t2u2, t1u1), (t′4u′

4, t′3u′
3, t′2u′

2, t′1u′
1)
〉

i f T < 0, V < 0,

T/V =



〈
(t1/u4, t2/u3, t3/u2, t4/u1), (t′1/u′

4, t′2/u′
3, t′3/u′

2, t′4/u′
1)
〉

i f T > 0, V > 0,〈
(t4/u4, t3/u3, t2/u2, t1/u1), (t′4/u′

4, t′3/u′
3, t′2/u′

2, t′1/u′
1)
〉

i f T < 0, V > 0,〈
(t4/u1, t3/u2, t2/u3, t1/u4), (t′4/u′

1, t′3/u′
2, t′2/u′

3, t′1/u′
4)
〉

i f T < 0, V < 0,
where u1, u2, u3, u4, u′

1, u′
2, u′

3, u′
4 are strictly positive.

λT =

{〈
(λt1, λt2, λt3, λt4), (λt′1, λt′2, λt′3, λt′4)

〉
λ > 0 and λ ∈ ℜ,〈

(λt4, λt3, λt2, λt1), (λt′4, λt′3, λt′2, λt′1)
〉

λ < 0 and λ ∈ ℜ,

T−1 =
〈
(1/t4, 1/t3, 1/t2, 1/t1), (1/t′4, 1/t′3, 1/t′2, 1/t′1)

〉
.

where t1, t2, t3, t4, t′1, t′2, t′3, t′4 are strictly positive.

3. A Few Similarity Measures on the Set of TrVIFNs

Usually, any similarity measure divides the entire class of TrVIFNs into two clusters.
One cluster consists of elements that are closely related to each other, and the other one
consists of elements that do not possess common properties. In this work, we aim to
increase the number of clusters to obtain effective results in clustering/pattern recognition
problems. The idea of this paper is to introduce four different similarity measures on the
class of TrVIFNs using four different score functions defined on TrVIFNs. Here, we discuss
the definition of distance and similarity measures between any two TrVIFNs.

Definition 5. A real-valued function d : TrVIFN(UX)×TrVIFN(UX) → [0, 1] is called a distance
measure between two TrVIFNs T, V ∈ TrVIFN(UX), if d(T, V) satisfies the following axioms:

(d1) 0 ≤ d(T, V) ≤ 1;
(d2) d(T, V) = 0 ⇔ T = V;
(d3) d(T, V) = d(V, T);
(d4) If T ⊆ V ⊆ W, then d(T, V) ≤ d(T, W) and d(V, W) ≤ d(T, W), ∀T, V, W ∈ TrVIFN(UX).
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Definition 6. A real-valued function S :: TrVIFN(UX)× TrVIFN(UX) → [0, 1] is called a simi-
larity measure between two TrVIFNs T, V ∈ TrVIFN(UX), if S(T, V) satisfies the following axioms:

(s1) 0 ≤ S(T, V) ≤ 1;
(s2) S(T, V) = 1 ⇔ T = V;
(s3) S(T, V) = S(V, T);
(s4) If T ⊆ V ⊆ W, then S(T, V) ≥ S(T, W) and S(V, W) ≥ S(T, W), ∀T, V, W ∈

TrVIFN(UX).

3.1. Similarity Measure Using Membership Score

This subsection proposes a new similarity measure on TrVIFNs using the membership
score proposed on TrVIFNs.

Definition 7 (Jeevaraj et al. [10]). Let TI =
〈
(t1µ, t2µ, t3µ, t4µ), (t1ν

′, t2ν
′, t3ν

′, t4ν
′)
〉
∈ TrVIFN.

The membership score function M of TI is given by M(TI) =
t2µ+t3µ+t3ν

′−t2ν
′

2 .

Definition 8. Let T =
〈
(t1µ, t2µ, t3µ, t4µ), (t1ν

′, t2ν
′, t3ν

′, t4ν
′)
〉

and V = ⟨(v1µ, v2µ, v3µ, v4µ),
(v1ν

′, v2ν
′, v3ν

′, v4ν
′)⟩ be two TrVIFNs. The distance measure between T and V on TrVIFNs is denoted

by dm(T, V) and defined as dm(T, V) = |M(T)− M(V)| = | t2µ+t3µ+t3ν
′−t2ν

′−v2µ−v3µ−v3ν
′+v2ν

′

2 |.

Definition 9. Let T and V be two TrVIFNs. Then, the similarity measure between T and V
on TrVIFNs is denoted by Sm(T, V) and defined as Sm(T, V) = 1 − |M(T) − M(V)| = 1 −
| t2µ+t3µ+t3ν

′−t2ν
′−v2µ−v3µ−v3ν

′+v2ν
′

2 |.

The following theorems are derived from Definition 9.

Theorem 1. dm(T, V) is the distance between any two TrVIFNs T and V.

Proof. It is trivial from Definitions 5, 7, and 9. Hence, it is omitted.

Theorem 2. Sm(T, V) is the similarity measure between any two TrVIFNs T and V.

Proof. 0 ≤ Sm(T, V) ≤ 1, T = V ⇒ Sm(T, V) = 1 and Sm(T, V) = Sm(V, T) are obvious
from Definition 9. We claim that T ⊆1 V ⊆1 W ⇒ Sm(T, W) ≤ Sm(T, V) and Sm(T, W) ≤
Sm(V, W) where T, V, W ∈ TrVIFN. If we apply Definition 8 to T, V, and W, we obtain
Dm(T, W) ≥ Dm(T, V), Dm(T, W) ≥ Dm(V, W) ⇒ Sm(T, W) ≤ Sm(T, V), and Sm(T, W)
≤ Sm(V, W). Hence, the proof.

Proposition 1. Let T = (tµ, 1 − tµ) be a fuzzy number (FN). Then, M(T) = tµ, M(Tc) =
1 − tµ ⇒ S(T, Tc) = 1 − |2tµ − 1|.

Proposition 2. Let TI = (tµ, tν) be an intuitionistic fuzzy number (IFN). Then, M(TI) =
tµ, M(Tc) = tν ⇒ S(T, Tc) = 1 − |tµ − tν|.

Proposition 3. Let TI = ([t1µ, t2µ], [1− t2µ, 1− t1µ]) be an interval-valued fuzzy number (IVFN).
Then, M(TI) = t2µ, M(Tc) = 1 − t1µ ⇒ S(T, Tc) = 1 − |t1µ + t2µ − 1|.

Proposition 4. Let TI = ([t1µ, t2µ], [t1ν
′, t2ν

′]) be an IVIFN. Then, M(TI) =
(t1µ+t2µ)+(t2ν

′−t1ν
′)

2 ,

M(Tc) =
(t1ν

′+t2ν
′)+(t2µ−t1µ)

2 ⇒ S(T, Tc) = 1 − |2(t1µ − t1ν
′)|.

Proposition 5. Let TI =
〈
(t1µ, t2µ, t3µ), (1 − t3µ, 1 − t2µ, 1 − t1µ)

〉
be a triangular-valued fuzzy

number (TVFN). Then, M(TI) = t2µ, M(Tc) = 1 − t2µ ⇒ S(T, Tc) = 1 − |2t2µ − 1|.



Mathematics 2024, 12, 1311 6 of 19

Proposition 6. Let TI =
〈
(t1µ, t2µ, t3µ), (t1ν

′, t2ν
′, t3ν

′)
〉

be a TVIFN. Then, M(TI) = t2µ,
M(Tc) = t2ν

′ ⇒ S(T, Tc) = 1 − |t2µ − t2ν
′|.

Definition 10. Let TI =
〈
(t1µ, t2µ, t3µ, t4µ), (1 − t4µ, 1 − t3µ, 1 − t2µ, 1 − t1µ)

〉
be a trapezoidal

fuzzy number (TrFN). Then, M(TI) = t3µ, M(Tc) = 1 − t2µ ⇒ S(T, Tc) = 1 − |t3µ + t2µ − 1|.

Proposition 7. Translation invariance: Let T, V, and W be any three TrVIFNs. Then, Sm(T +
W, V + W) = Sm(T, V).

Proposition 8. Let T, V, and W be any three TrVIFNs and let T > V and V < W. Then,
Sm(T + W, 2V) < Sm(T, V). Sm(2T, V + W) < Sm(T, V) if T > V and T > W.

Proposition 9. Let T, V, and W be any three TrVIFNs and let T > V > W. Then, Sm(T +
W, 2V) > Sm(T, V). Sm(2T, V + W) > Sm(T, V) if T > V and T < W.

From Sm(T, V), we note that M(T) is the sum of the midpoint of the membership
core and half of the non-membership core length, which implies that Sm(T, V) = 1 when
M(T) and M(V) are the same. However, if Sm(T, V) = 1 then T and V must be identical,
i.e., in some places, Sm fails to define an efficient similarity measure on the class of TrVIFNs,
which we can see using Example 1.

Example 1. Let T = ⟨(0.1, 0.3, 0.4, 0.45), (0.1, 0.2, 0.4, 0.45)⟩, V = ⟨(0.2, 0.35, 0.35, 0.4),
(0.2, 0.3, 0.5, 0.5)⟩, and W = ⟨(0, 0.3, 0.4, 0.5), (0.1, 0.1, 0.3, 0.5)⟩ be three patterns denoted as
TrVIFNs. Assume that the sample P = ⟨(0.2, 0.35, 0.35, 0.4), (0.2, 0.3, 0.5, 0.5)⟩ is given. If we
use Definition 7, we obtain M(T) = 0.45, M(V) = 0.45, and M(W) = 0.45 ⇒ Sm(T, P) =
Sm(V, P) = Sm(W, P) = 1. Hence, T, V, and W are identical with pattern P, which is a contra-
diction, i.e., if we apply Sm, the pattern V cannot be identified. Hence, we need another similarity
principle for clustering the classes of TrVIFNs which are not correctly clustered by Sm.

3.2. Similarity Measure Using Core Length

This subsection proposes a new similarity measure on TrVIFNs using the core length
of a TrVIFN.

Definition 11 (Jeevaraj et al. [10]). Let TI =
〈
(t1µ, t2µ, t3µ, t4µ), (t1ν

′, t2ν
′, t3ν

′, t4ν
′)
〉

∈
TrVIFN. The core length function CL of TI is given by CL(TI) =

t3µ−t2µ+t3ν
′−t2ν

′

2 .

Definition 12. Let T =
〈
(t1µ, t2µ, t3µ, t4µ), (t1ν

′, t2ν
′, t3ν

′, t4ν
′)
〉

and V = ⟨(v1µ, v2µ, v3µ, v4µ),
(v1ν

′, v2ν
′, v3ν

′, v4ν
′)⟩ be two TrVIFNs. Then, the core length-based distance measure between

T and V on TrVIFNs is denoted by dcl(T, V) and defined as dcl(T, V) = |CL(T)− CL(V)| =
| t3µ−t2µ+t3ν

′−t2ν
′−v3µ+v2µ−v3ν

′+v2ν
′

2 |.

Definition 13. Let T and V be two TrVIFNs. Then, the similarity measure between T and
V on TrVIFNs is denoted by Scl(T, V) and defined as Scl(T, V) = 1 − |CL(T) − CL(V)| =
1 − | t3µ−t2µ+t3ν

′−t2ν
′−v3µ+v2µ−v3ν

′+v2ν
′

2 |.

The following theorems are derived from Definition 13.

Theorem 3. dcl(T, V) is the distance between any two TrVIFNs T and V.

Proof. The proof is trivial from Definitions 5, 11, and 13. Hence, it is omitted.

Theorem 4. Scl(T, V) is the similarity measure between any two TrVIFNs T and V.
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Proof. 0 ≤ Scl(T, V) ≤ 1, T = V ⇒ Scl(T, V) = 1 and Scl(T, V) = Scl(V, T) are obvious
from Definition 13. We claim that T ⊆2 V ⊆2 W ⇒ Scl(T, W) ≤ Scl(T, V) and Scl(T, W) ≤
Scl(V, W), where T, V, W ∈ TrVIFN. If we apply Definition 12 to T, V, and W, we obtain
Dcl(T, W) ≥ Dcl(T, V), Dcl(T, W) ≥ Dcl(V, W) ⇒ Scl(T, W) ≤ Scl(T, V), and Scl(T, W)
≤ Scl(V, W). Hence, the proof.

Proposition 10. Translation invariance: Let T, V, and W be any three TrVIFNs. Scl(T + W, V +
W) = Scl(T, V).

Proposition 11. Let T, V, and W be any three TrVIFNs, and let T > V and V < W. Then,
Scl(T + W, 2V) < Scl(T, V). Scl(2T, V + W) < Scl(T, V) if T > V and T > W.

Proposition 12. Let T, V, and W be any three TrVIFNs and let T > V > W. Then, Scl(T +
W, 2V) > Scl(T, V). Scl(2T, V + W) > Scl(T, V) if T > V and T < W.

From Scl(T, V), we note that CL(T) is the sum of the core length of the membership
and non-membership function, which implies that Scl(T, V) = 1 when CL(T) and CL(V)
are the same. However, if Scl(T, V) = 1, then T and V must be identical, i.e., in some places,
Scl fails to define an effective similarity measure on the class of TrVIFNs, which we can see
using Example 2.

Example 2. Let T = ⟨(0.1, 0.3, 0.4, 0.45), (0.1, 0.2, 0.4, 0.45)⟩, V = ⟨(0.2, 0.35, 0.35, 0.4),
(0.2, 0.3, 0.5, 0.5)⟩, and W = ⟨(0, 0.3, 0.4, 0.5), (0.1, 0.1, 0.3, 0.5)⟩ be three patterns denoted as
TrVIFNs. Assume that the sample P = ⟨(0.2, 0.35, 0.35, 0.4), (0.2, 0.3, 0.5, 0.5)⟩ is given. By
applying Definition 7 to the given TrVIFNs, we obtain M(T) = 0.45, M(V) = 0.45, M(W) =
0.45 ⇒ Sm(T, P) = Sm(V, P) = Sm(W, P) = 1. Hence, T, V, and W are identical with pattern
P, which is a contradiction. Suppose we apply similarity measure Scl to T, V, W; then, we obtain
Scl(T, P) = 0.95, Scl(V, P) = 1, Scl(W, P) = 0.95, i.e., if we apply Scl , the pattern V can be
identified correctly. Hence, the patterns are clustered correctly using Scl when they are not clustered
using Sm. We need another similarity principle for clustering the classes of TrVIFNs that are not
correctly clustered by Sm.

Example 3. Let TI = ⟨(0.1, 0.3, 0.35, 0.4), (0.2, 0.2, 0.25, 0.45)⟩, VI = ⟨(0, 0.3, 0.4, 0.5),
(0.1, 0.3, 0.3, 0.5), and W = ⟨(0.1, 0.3, 0.3, 0.4), (0, 0.05, 0.15, 0.25)⟩ be three patterns denoted
as TrVIFNs. Assume that the sample P = ⟨(0.1, 0.3, 0.3, 0.4), (0, 0.05, 0.15, 0.25)⟩ is given. If
we apply Definitions 7 and 11 then we obtain M(T) = M(V) = M(W) = M(P) = 0.35 and
CL(T) = CL(V) = CL(W) = CL(P) = 0.05, which implies that Sm(T, P) = Sm(V, P) =
Sm(W, P) = 1 and Scl(T, P) = Scl(V, P) = Scl(W, P) = 1. This implies that T, V, and W are
identical with pattern P which is a contradiction, i.e., if we apply Sm, Scl , the pattern V cannot be
identified correctly. Hence, we need another similarity measure for clustering the classes of TrVIFNs
which are not correctly clustered by Sm, Scl .

3.3. Similarity Measure Using Accuracy Score

This subsection introduces a new similarity measure on TrVIFNs using the accuracy
score of a TrVIFN.

Definition 14. Let TI =
〈
(t1µ, t2µ, t3µ, t4µ), (t1ν

′, t2ν
′, t3ν

′, t4ν
′)
〉
∈ TrVIFN. The accuracy

score function NH of TI is defined as NH(TI) =
t2µ+t3µ+t2ν

′+t3ν
′

2

Definition 15. Let T =
〈
(t1µ, t2µ, t3µ, t4µ), (t1ν

′, t2ν
′, t3ν

′, t4ν
′)
〉

and V = ⟨(v1µ, v2µ, v3µ, v4µ),
(v1ν

′, v2ν
′, v3ν

′, v4ν
′)⟩. Then, the accuracy score-based distance measure between T and V on TrV-

IFNs is denoted by dnh(T, V) and defined as dnh(T, V) = |NH(T) − NH(V)| =

| t2µ+t3µ+t2ν
′+t3ν

′−v2µ−v3µ−v2ν
′−v3ν

′

2 |.



Mathematics 2024, 12, 1311 8 of 19

Definition 16. Let T, V ∈ TrVIFN. Then, the accuracy score-based similarity measure between
T and V on TrVIFNs is denoted by Snh(T, V) and defined as Snh(T, V) = 1 − |NH(T) −
NH(V)| = 1 − | t2µ+t3µ+t2ν

′+t3ν
′−v2µ−v3µ−v2ν

′−v3ν
′

2 |.

The following theorems are derived from Definition 16.

Theorem 5. dnh(T, V) is the distance between any two TrVIFNs T and V.

Proof. The proof is immediate from Definitions 5, 14, and 16. Hence, it is omitted.

Theorem 6. Snh(T, V) is the similarity measure between any two TrVIFNs T and V.

Proof. 0 ≤ Snh(T, V) ≤ 1, T = V ⇒ Snh(T, V) = 1 and Snh(T, V) = Snh(V, T) are obvious
from Definition 16. We claim that T ⊆3 V ⊆3 W ⇒ Snh(T, W) ≤ Snh(T, V) and Snh(T, W) ≤
Snh(V, W), where T, V, W ∈ TrVIFN. If we apply Definition 15 to T, V, and W, we ob-
tain Dnh(T, W) ≥ Dnh(T, V), Dnh(T, W) ≥ Dnh(V, W) ⇒ Snh(T, W) ≤ Snh(T, V), and
Snh(T, W) ≤ Snh(V, W). Hence, the proof.

Proposition 13. Translation invariance: Let T, V, and W be any three TrVIFNs. Snh(T + W, V +
W) = Snh(T, V).

Proposition 14. Let T, V, and W be any three TrVIFNs, and let T > V and V < W. Then,
Snh(T + W, 2V) < Snh(T, V). Snh(2T, V + W) < Snh(T, V) if T > V and T > W.

Proposition 15. Let T, V, and W be any three TrVIFNs, and let T > V > W. Then, Snh(T +
W, 2V) > Snh(T, V). Snh(2T, V + W) > Snh(T, V) if T > V and T < W.

From Snh(T, V), we note that NH(T) is the sum of the midpoint of the membership
and non-membership function which implies that Scl(T, V) = 1 when NH(T) and NH(V)
are the same. However, if Snh(T, V) = 1, then T and V must be identical, i.e., in some
places, Snh fails to define an effective similarity measure on the class of TrVIFNs which can
be seen from the following examples.

Example 4. Let TI = ⟨(0.1, 0.3, 0.35, 0.4), (0.2, 0.2, 0.25, 0.45)⟩, VI = ⟨(0, 0.3, 0.4, 0.5),
(0.1, 0.3, 0.3, 0.5), and W = ⟨(0.1, 0.3, 0.3, 0.4), (0, 0.05, 0.15, 0.25)⟩ be three patterns denoted
as TrVIFNs. Assume that the sample P = ⟨(0.1, 0.3, 0.3, 0.4), (0, 0.05, 0.15, 0.25)⟩ is given. If we
apply Definitions 7 and 11, we obtain M(T) = M(V) = M(W) = M(P) = 0.35 and CL(T) =
CL(V) = CL(W) = CL(P) = 0.05, which implies that Sm(T, P) = Sm(V, P) = Sm(W, P) = 1
and Scl(T, P) = Scl(V, P) = Scl(W, P) = 1. This implies that T, V, and W are identical with
pattern P, which is a contradiction. Suppose we apply similarity measure Snh to T, V, W; then,
we obtain Snh(T, P) = 0.85, Scl(V, P) = 0.75, Scl(W, P) = 1. Hence, the patterns are clustered
correctly using Snh when they are not clustered using Sm and Scl .

Example 5. Let TI = ⟨(0.1, 0.3, 0.35, 0.4), (0.2, 0.2, 0.25, 0.45)⟩, VI = ⟨(0, 0.3, 0.4, 0.6),
(0.1, 0.2, 0.2, 0.3), and W = ⟨(0, 0.3, 0.3, 0.45), (0, 0.2, 0.3, 0.3)⟩ be three patterns denoted as TrV-
IFNs. Assume that the sample P = ⟨(0, 0.3, 0.3, 0.45), (0, 0.2, 0.3, 0.3)⟩ is given. If we apply
Definitions 7, 11, and 14, we obtain M(T) = M(V) = M(W) = M(P) = 0.35, CL(T) =
CL(V) = CL(W) = CL(P) = 0.05 and NH(T) = NH(V) = NH(W) = NH(P) =
0.55, which implies that Sm(T, P) = Sm(V, P) = Sm(W, P) = 1, Scl(T, P) = Scl(V, P) =
Scl(W, P) = 1 and Snh(T, P) = Snh(V, P) = Snh(W, P) = 1. This implies that T, V, and W are
identical with pattern P, which is a contradiction, i.e., if we apply Sm, Scl , the pattern V cannot
be identified correctly. Hence, we need another similarity principle for clustering the classes of
TrVIFNs which are not correctly clustered by Sm, Scl and Snh.
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3.4. Similarity Measure Using Non-Membership Score

This subsection introduces a new similarity measure on TrVIFNs using the non-
membership score of a TrVIFN.

Definition 17. Let TI =
〈
(t1µ, t2µ, t3µ, t4µ), (t1ν

′, t2ν
′, t3ν

′, t4ν
′)
〉

∈ TrVIFN. The non-

membership score function NM of TI is given as NM(TI) =
t2µ−t3µ+t2ν

′+t3ν
′

2

Definition 18. Let T =
〈
(t1µ, t2µ, t3µ, t4µ), (t1ν

′, t2ν
′, t3ν

′, t4ν
′)
〉

and V = ⟨(v1µ, v2µ, v3µ, v4µ),
(v1ν

′, v2ν
′, v3ν

′, v4ν
′)⟩ be two TrVIFNs. Then, the non-membership score-based distance measure

between T and V on TrVIFNs is denoted by dnm(T, V) and defined as dnm(T, V) = |NM(T)−
NM(V)| = | t2µ−t3µ+t2ν

′+t3ν
′−v2µ+v3µ−v2ν

′−v3ν
′

2 |.

Definition 19. Let T and V be two TrVIFNs. Then, the non-membership score-based similarity
measure between T and V on TrVIFNs is denoted by Snm(T, V) and defined as Snm(T, V) =

1 − |NM(T)− NM(V)| = 1 − | t2µ−t3µ+t2ν
′+t3ν

′−v2µ+v3µ−v2ν
′−v3ν

′

2 |.

The following theorems are derived from Definition 19.

Theorem 7. dnm(T, V) is the distance between any two TrVIFNs T and V.

Proof. The proof of this theorem is trivial from Definitions 5, 17, and 19. Hence, it is
omitted.

Theorem 8. Snm(T, V) is the similarity measure between any two TrVIFNs T and V.

Proof. 0 ≤ Snm(T, V) ≤ 1, T = V ⇒ Snm(T, V) = 1, and Snm(T, V) = Snm(V, T) are
obvious from Definition 19. We claim that T ⊆4 V ⊆4 W ⇒ Snm(T, W) ≤ Snm(T, V) and
Snm(T, W) ≤ Snm(V, W), where T, V, W ∈ TrVIFN. If we apply Definition 15 to T, V,
and W, we obtain Dnm(T, W) ≥ Dnm(T, V), Dnm(T, W) ≥ Dnm(V, W) ⇒ Snm(T, W) ≤
Snm(T, V), and Snm(T, W) ≤ Snm(V, W). Hence, the proof.

Proposition 16. If TI = (tµ, 1 − tµ) is an FN, then NM(TI) = 1 − tµ, NM(Tc) = t1µ ⇒
S(T, Tc) = 1 − |1 − 2t1µ|.

Proposition 17. If TI = (tµ, tν) is an IFN, then NM(TI) = tν, NM(Tc) = tµ ⇒ S(T, Tc) =
1 − |tν − tµ|.

Proposition 18. Let TI = ([t1µ, t2µ], [1 − t2µ, 1 − t1µ]) be an IVFN. Then, NM(TI) = (1 −
t2µ), NM(Tc) = t1µ ⇒ S(T, Tc) = 1 − |1 − t2µ − t1µ|.

Proposition 19. Let TI = ([t1µ, t2µ], [t1ν
′, t2ν

′]) be an IVIFN. Then, NM(TI) =
(t1µ−t2µ)+(t1ν

′+t2ν
′)

2 ,

NM(Tc) =
(t1ν

′−t2ν
′)+(t1µ+t2µ)

2 ⇒ S(T, Tc) = 1− |t2ν
′ − t2µ|.

Proposition 20. Let TI =
〈
(t1µ, t2µ, t3µ), (1− t3µ, 1− t2µ, 1− t1µ)

〉
be a TVFN. Then, NM(TI) =

1− t2µ, NM(Tc) = t2µ ⇒ S(T, Tc) = 1− |1− 2t2µ|.

Proposition 21. Let TI =
〈
(t1µ, t2µ, t3µ), (t1ν

′, t2ν
′, t3ν

′)
〉

be a TVIFN. Then, NM(TI) =
t2ν

′, NM(Tc) = t2µ ⇒ S(T, Tc) = 1 − |t2ν
′ − t2µ|.

Proposition 22. Translation invariance: Let T, V, and W be any three TrVIFNs. Then, Snm(T +
W, V +W) = Snh(T, V).
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Proposition 23. Let T, V, and W be any three TrVIFNs and let T > V and V < W. Then,
Snm(T + W, 2V) < Snm(T, V). Snm(2T, V + W) < Snm(T, V) if T > V and T > W.

Proposition 24. Let T, V, and W be any three TrVIFNs and let T > V > W. Then, Snm(T +
W, 2V) > Snm(T, V). Snm(2T, V + W) > Snm(T, V) if T > V and T < W.

From Snm(T, V), we note that NM(T) is the sum of the length of the membership core
and the midpoint of the non-membership core.

Example 6. Let TI = ⟨(0.1, 0.3, 0.35, 0.4), (0.2, 0.2, 0.25, 0.45)⟩, VI = ⟨(0, 0.3, 0.4, 0.6),
(0.1, 0.2, 0.2, 0.3), and W = ⟨(0, 0.3, 0.3, 0.45), (0, 0.2, 0.3, 0.3)⟩ be three patterns denoted as
TrVIFNs. Assume that the sample P = ⟨(0, 0.3, 0.3, 0.45), (0, 0.2, 0.3, 0.3)⟩ is given. If we use
Definitions 7, 11, and 14, we obtain M(T) = M(V) = M(W) = M(P) = 0.35, CL(T) =
CL(V) = CL(W) = CL(P) = 0.05 and NH(T) = NH(V) = NH(W) = NH(P) =
0.55, which implies that Sm(T, P) = Sm(V, P) = Sm(W, P) = 1, Scl(T, P) = Scl(V, P) =
Scl(W, P) = 1 and Snh(T, P) = Snh(V, P) = Snh(W, P) = 1. This implies that T, V, and W
are identical with pattern P, which is a contradiction. Suppose we apply similarity measure
Snm to T, V, W; then, we obtain Snm(T, P) = 0.95, Snm(V, P) = 0.9, Snm(W, P) = 1. Hence,
the patterns are clustered correctly using Snm, whereas they are not clustered using Sm, Scl and Snh.

3.5. A Combined Similarity Measure Principle on the Set of TrVIFNs

This subsection proposes the idea of a combined similarity measure principle on the set
of TrVIFNs. In the literature, every researcher uses only one similarity measure to measure
the closeness between any two intuitionistic fuzzy sets. Because of this, the similarity
measures on various sets of intuitionistic fuzzy sets have their own drawbacks, which
are studied in Section 4. In most of the similarity measures, T = V ⇒ S(T, V) = 1,
but S(T, V) = 1 ⇏ T = V. Our main aim in this work is to overcome this drawback, which
we achieve by defining different similarity measures on the set of TrVIFNs and proposing
a new combined similarity measure principle on the set of TrVIFNs which can overcome
most of the famous similarity measures on different classes of fuzzy and intuitionistic
fuzzy sets.

Definition 20. Let T, V ∈ TrVIFN. The similarity measure between T and V is denoted by
SJ(T, V) and defined as

1. If Sm(T, V) ̸= 1, then SJ(T, V) = Sm(T, V);
2. If Sm(T, V) = 1 and Scl(T, V) ̸= 1, then SJ(T, V) = Scl(T, V),
3. If Sm(T, V) = 1, Scl(T, V) = 1, and Snh(T, V) ̸= 1, then SJ(T, V) = Snh(T, V),
4. If Sm(T, V) = 1, Scl(T, V) = 1, Snh(T, V) = 1, and Snm(T, V) ̸= 1, then SJ(T, V) =

Snm(T, V),
5. If Sm(T, V) = 1, Scl(T, V) = 1, Snh(T, V) = 1, Snm(T, V) = 1, then T = V,

4. Comparative Analysis

This section discusses the detailed comparative study of the proposed combined
similarity measure with various existing similarity measures.

4.1. Ye’s [12] Cosine Similarity Measure

In this subsection, we discuss the drawbacks of the cosine similarity measure and how
the proposed combined similarity measure overcomes those drawbacks.

Definition 21 (Ye [12]). Let T = (ui, (χT(ui), ψT(ui))), V = (ui, (χV(ui), ψV(ui))) be
any two IFNs. The cosine similarity measure between T and V is given by CYe

IFS(T, V) =
1

n1
∑n1

i=1
χT(ui)χV(ui)+ψT(ui)ψV(ui)√

(χT(ui))2+(ψT(ui))2
√

(χV(ui))2+(ψV(ui))2
.

A few limitations of the cosine similarity measure:
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• Suppose T = (0.3, 0.3) and V = (0.9, 0.9) are two IFNs, if we use cosine similarity mea-

sure to identify their similarity, we obtain CYe
IFS(T, V) = 1

1 ∑1
i=1

(0.3)(0.9)+(0.3)(0.9)√
(0.3)2+(0.3)2

√
(0.9)2+(0.9)2

= 1 ⇒ A = B. This shows that the cosine similarity measure is unsuitable for a few
classes of IFNs.

• Let T = (0.4, 0) and V = (0.8, 0) be any two IFNs. Then, CYe
IFS(T, V) = 1

1 ∑1
i=1

(0.3)(0.9)+(0.3)(0.9)√
(0.3)2+(0.3)2

√
(0.9)2+(0.9)2

= 1. =⇒ T = V. But T ̸= V.

• Let T = (0, 0.6) and V = (0, 0.2) be any two IFNs. Then, CYe
IFS(T, V) = 1

1 ∑1
i=1

(0.6)(0.2)+(0.6)(0.2)√
(0.6)2+(0.6)2

√
(0.2)2+(0.2)2

= 1. =⇒ T = V. But T ̸= V.

• Let T = (0, 0.55), V = (0.65, 0), W = (0.75, 0) be any three IFNs with 0.65 < 0.75.
Then, CYe

IFS(T, V) = 0 = CYe
IFS(T, W). In these cases, the cosine similarity might not

perform well, and the similarity measure fails to discriminate T, V, and W.

Results of the proposed similarity measure:

• Let T = ⟨(0.3, 0.3, 0.3, 0.3), (0.3, 0.3, 0.3, 0.3)⟩ V = ⟨(0.9, 0.9, 0.9, 0.9), (0.9, 0.9, 0.9, 0.9)⟩
be any two IFNs. By using Definition 20 with T and V, we obtain SJ(T, V) =

Sm(T, V) = 1 − 1
2 |(0.3 + 0.3 + 0.3 − 0.3)− (0.9 + 0.9 + 0.9 − 0.9)| = 0.4 ̸= 1. This

shows the effectiveness of the combined similarity measure.
• Let T = ⟨(0.4, 0.4, 0.4, 0.4), (0, 0, 0, 0)⟩ and V = ⟨(0.8, 0.8, 0.8, 0.8), (0, 0, 0, 0)⟩ be any

two IFNs. By applying Definition 20 to T and V, we obtain SJ(T, V) = Sm(T, V) =

1− 1
2 |(0.4+ 0.4+ 0− 0)− (0.8+ 0.8+ 0− 0)| = 0.6 ̸= 1, which means that a combined

similarity measure identifies the correct closeness between two given IFNs.
• Let T = ⟨(0, 0, 0, 0), (0.6, 0.6, 0.6, 0.6)⟩ and V = ⟨(0, 0, 0, 0), (0.2, 0.2, 0.2, 0.2)⟩ be any

two IFNs. By applying Definition 20 to T and V, we obtain Sm(T, V) = 1 − 1
2 |(0 +

0 + 0.6 − 0.6)− (0 + 0 + 0.2 − 0.2)| = 1, Scl(T, V) = 1 − 1
2 |(0 − 0 + 0.6 − 0.6)− (0 −

0 + 0.2 − 0.2)| = 1, and SJ(T, V) = Snh(T, V) = 1 − 1
2 |(0 + 0 + 0.6 + 0.6)− (0 + 0 +

0.2 + 0.2)| = 0.6 ̸= 1. This shows the efficacy and the need for a combined similarity
measure principle.

• Let T = ⟨(0, 0, 0, 0), (0.55, 0.55, 0.55, 0.55)⟩, V = ⟨(0.65, 0.65, 0.65, 0.65), (0, 0, 0, 0)⟩,
and W = ⟨(0.75, 0.75, 0.75, 0.75), (0, 0, 0, 0)⟩ be any three IFNs. By applying
Definition 20 to T, V and W, we obtain SJ(T, V) = Sm(T, V) = 1 − 1

2 |(0 + 0 + 0.55 −
0.55) − (0.65 + 0.65 + 0 − 0)| = 0.35, and SJ(T, W) = Sm(T, W) = 1 − 1

2 |(0 + 0 +
0.55 − 0.55)− (0.75 + 0.75 + 0 − 0)| = 0.25. =⇒ SJ(T, W) ≤ SJ(T, V). Hence, our
proposed method is superior to the cosine similarity measure in all the above cases.

4.2. Ye’s [13] Similarity Measure on the Set of IVIFSs

This subsection discusses how the combined similarity measure principle overcomes
the limitations of the similarity measure on IVIFSs proposed by Ye [13].

Definition 22 (Ye [13]). Let T = {⟨ui, [χTL(ui), χTU(ui)], [ψTL(ui), ψTU(ui)]⟩ |ui ∈ X} and
V = {⟨ui, [χVL(ui), χVU(ui)], [ψVL(ui), ψVU(ui)]⟩ |ui ∈ UX} ∈ IVIFS. The similarity mea-
sure between T and V is defined as SIVIFS(T, V) = 1

n ∑n
i=1

χTL(ui)χVL(ui)+ψTL(ui)ψVL(ui)+χTU(ui)χVU(ui)+ψTU(ui)ψVU(ui)+πTL(ui)πVL(ui)+πTU(ui)πVU(ui)√
µ2

TL(ui)+ν2
TL(ui)+π2

TL(ui)+µ2
TU(ui)+ν2

TU(ui)+π2
TU(ui)

√
µ2

VL(ui)+ν2
VL(ui)+π2

VL(ui)+µ2
VU(ui)+ν2

VU(ui)+π2
VU(ui)

.

A few limitations of the similarity measure on IVIFNs from (Ye [12]):

• Suppose T = ([1, 1], [0, 0]), V = ([0, 0], [0.5, 0.7]), and W = ([0, 0], [0.4, 0.8]) are three
IVIFNs. Then, SIVIFS(T, V) = 0 and SIVIFS(T, W) = 0. In this case, Ye’s method fails
to distinguish the considered IVIFNs.

• Let T = ([0, 0], [1, 1]), V = ([0.65, 0.75], [0, 0]), and W = ([0.5, 0.65], [0, 0]) be any three
IVIFNs. Then, SIVIFS(T, V) = 0 and SIVIFS(T, W) = 0. Thus, from this case, we
conclude that Ye’s similarity measure on IVIFSs might not perform well for a few
classes of IVIFSs.
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Results of the combined similarity measure principle:

• Let T = ⟨(1, 1, 1, 1), (0, 0, 0, 0)⟩, V = ⟨(0, 0, 0, 0), (0.5, 0.5, 0.7, 0.7)⟩, and W = ⟨(0, 0, 0, 0),
(0.4, 0.4, 0.8, 0.8)⟩ be any three IVIFNs. By applying Definition 20 to T, V, we obtain
SJ(T, V) = Sm(T, V) = 1 − 1

2 |(1 + 1 + 0 − 0)− (0 + 0 + 0.7 − 0.5)| = 0.1 ̸= 0.2 =

Sm(T, W) = 1 − 1
2 |(1 + 1 + 0 − 0)− (0 + 0 + 0.8 − 0.4)|. Hence, our proposed method

is more reliable in this case.
• Let T = ⟨(0, 0, 0, 0), (1, 1, 1, 1)⟩, V = ⟨(0.65, 0.65, 0.75, 0.75), (0, 0, 0, 0)⟩, and W =

⟨(0.5, 0.5, 0.65, 0.65), (0, 0, 0, 0)⟩ be any three IVIFNs. By applying Definition 20 to T, V,
and W, we obtain SJ(T, V) = Sm(T, V) = 1 − 1

2 |(0 + 0 + 1 − 1)− (0.65 + 0.75 + 0 −
0)| = 0.3 ̸= 0.425 = Sm(T, W) = 1 − 1

2 |(0 + 0 + 1 − 1)− (0.5 + 0.65 + 0 − 0)|. Hence,
our proposed combined similarity measure performs better in both cases.

4.3. Song and Wang’s [15] Similarity Measure on IFNs

This subsection compares the combined similarity measure principle with Song and
Wang’s similarity measure on IFNs by discussing a few limitations.

Definition 23 (Song and Wang [15]). Let T = (ui, T(ui) = (χT(ui), ψT(ui))) and V =
(ui, V(ui) = (χV(ui), ψV(ui))) be any two IFNs. Then, the similarity measure between T and V
is defined as

SSW
F (T, V) =

1
2
(CYe

IFS(T, V) + 1 − D0(T, V))

CYe
IFS =

1
n

n

∑
i=1

χT(ui)χV(ui) + ψT(ui)ψV(ui)√
(χT(ui))2 + (ψT(ui))2

√
(χV(ui))2 + (ψV(ui))2

,

and

D0(T, V) =

√
∑n

i=1((χT(ui)− χV(ui))2 + (ψT(ui)− ψV(ui))2)

2n

A few drawbacks of the similarity measure proposed by Song and Wang [15]:

• Suppose T = ([0, 0], [0, 0]), V = ([0.6, 0.6], [0, 0]), and W = ([0, 0], [0.6, 0.6]) are

three IFNs. Then, SSW
F (T, V) = 1

2 (C
Ye
IFS(T, V) + 1 − D0(T, V))= 1

2
(
0 + 1 −

√
∑n

i=1(0.6)2

2n
)

and SSW
F (T, W) = 1

2 (C
Ye
IFS(T, W) + 1 − D0(T, W))= 1

2
(
0 + 1 −

√
∑n

i=1(0.6)2

2n
)

=⇒
SSW

F (T, V) = SSW
F (T, W). This shows that Song and Wang’s similarity measure on

IFNs is not a better choice for these kinds of IFNs.
• Let T = ([0, 0], [0, 0]), V = ([0, 0], [0.55, 0.55]) and W = ([0.55, 0.55], [0, 0]) be any

three IFNs. Then, SSW
F (T, V) = 1

2 (C
Ye
IFS(T, V)+ 1− D0(T, V))= 1

2
(
0+ 1−

√
∑n

i=1(0.55)2

2n
)

and SSW
F (T, W) = 1

2 (C
Ye
IFS(T, W) + 1 − D0(T, W))= 1

2
(
0 + 1 −

√
∑n

i=1(0.55)2

2n
)

=⇒
SSW

F (T, V) = SSW
F (T, W). In this case, Song and Wang’s similarity measure fails

to show which IFN is similar to T.
• Let T = ([0, 0], [0, 0]), V = ([0.85, 0.85], [0.25, 0.25]), and W = ([0.25, 0.25], [0.85, 0.85])

be any three IFNs. Then, SSW
F (T, V) = 1

2 (C
Ye
IFS(T, V) + 1 − D0(T, V))= 1

2
(
0 + 1 −√

∑n
i=1(0.85)2+(0.25)2

2n
)
, and SSW

F (T, W) = 1
2 (C

Ye
IFS(T, W) + 1 − D0(T, W))= 1

2
(
0 + 1−√

∑n
i=1(0.85)2+(0.25)2

2n
)

=⇒ SSW
F (T, V) = SSW

F (T, W). This shows that the similar-
ity measure proposed by Song and Wang is not the right choice for finding similarities
between these kinds of IFNs.

Result of the combined similarity measure principle:

• Let T = ⟨(0, 0, 0, 0), (0, 0, 0, 0)⟩, V = ⟨(0.6, 0.6, 0.6, 0.6), (0, 0, 0, 0)⟩, and W = ⟨(0, 0, 0, 0),
(0.6, 0.6, 0.6, 0.6)⟩ be any three IFNs. By applying Definition 20 to T, V, and W, we
obtain SJ(T, V) = Sm(T, V) = 1 − 1

2 |(0 + 0 + 0 − 0) − (0.6 + 0.6 + 0 − 0)| = 0.4.
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Similarly, Sm(T, W) = 1 − 1
2 |(0 + 0 + 0 − 0) − (0 + 0 + 0.6 − 0.6)| = 1. Hence,

Sm(T, V) ̸= Sm(T, W).
• Let T = ⟨(0, 0, 0, 0), (0, 0, 0, 0)⟩, V = ⟨(0, 0, 0, 0), (0.55, 0.55, 0.55, 0.55)⟩, and W =

⟨(0.55, 0.55, 0.55, 0.55), (0, 0, 0, 0)⟩ be any three IFNs. By applying Definition 20 to T, V,
and W, we obtain SJ(T, V) = Sm(T, V) = 1 − 1

2 |(0 + 0 + 0 − 0) − (0 + 0 + 0.55 −
0.55)| = 1. Similarly, Sm(T, W) = 1− 1

2 |(0+ 0+ 0− 0)− (0.55+ 0.55+ 0− 0)| = 0.45.
Hence, SJ(T, V) ̸= SJ(T, W), which shows that these kinds of IFNs are properly
distinguishable using our combined similarity measure.

• Let T = ⟨(0, 0, 0, 0), (0, 0, 0, 0)⟩, V = ⟨(0.85, 0.85, 0.85, 0.85), (0.25, 0.25, 0.25, 0.25)⟩, and
W = ⟨(0.25, 0.25, 0.25, 0.25), (0.85, 0.85, 0.85, 0.85)⟩ be any three TrVIFNs. By applying
Definition 20 to T, V, and W, we obtain SJ(T, V) = Sm(T, V) = 1 − 1

2 |(0 + 0 + 0 −
0)− (0.85 + 0.85 + 0.25 − 0.25)| = 0.15. Similarly, SJ(T, W) = Sm(T, W) = 1 − 1

2 |(0 +
0 + 0 − 0)− (0.25 + 0.25 + 0.85 − 0.85)| = 0.75. Hence, SJ(T, V) ̸= SJ(T, W). Thus,
the proposed combined similarity measure principle outperforms Song and Wang’s
similarity measure.

4.4. Xu and Chen’s [11] Similarity Measure

This subsection explores the advantages of the combined similarity measure principle
when compared with Xu and Chen’s [11] similarity measure.

Definition 24 (Xu and Chen [11]). Let T = (xj, T(xj) = ([χTL(xj), χTU (xj)], [ψTL(xj),
ψTU (xj)])) and V = (xj, V(xj) = ([χVL(xj), χVU (xj)], [ψVL(xj), ψVU (xj)])) be any two IVIFN.

Then, the similarity measure between T and V is defined as S(T, V) = 1 −
[

1
4n ∑n

j=1

(
|χTL(xj)−

χVL(xj)|α + |χTU (xj)− χVU (xj)|α + |ψTL(xj)− ψVL(xj)|α + |ψTU (xj)− ψVU (xj)|α
)] 1

α
, α > 0.

This method also has the same drawback as discussed in Section 4.3. So, the detailed
explanation is omitted here.

4.5. Comparison with Jeevaraj’s [16] IVIF Similarity Measure

In this subsection, we discuss the efficacy of the combined similarity measure principle
over the similarity measure proposed by Jeevaraj [16].

Definition 25 (Jeevaraj [16]). Let T = {⟨ui, [χTL(ui), χTU(ui)], [ψTL(ui), ψTU(ui)]⟩ |ui ∈ X}
and V = {⟨ui, [χVL(ui), χVU(ui)], [ψVL(ui), ψVU(ui)]⟩ |ui ∈ UX} ∈ IVIFS. The similarity
measure between T and V is given as SIVIFS(T, V) = 1 − 3

4 |J(T)− J(V)|.
where J(T) = χTL(ui)+χTU(ui)+ψTL(ui)−ψTU(ui)+χTL(ui)χTU(ui)+ψTL(ui)ψTU(ui)

3 , and

J(V) = χVL(ui)+χVU(ui)+ψVL(ui)−ψVU(ui)+χVL(ui)χVU(ui)+ψVL(ui)ψVU(ui)
3

Drawbacks of Jeevaraj’s [16] similarity measure:

• Let T = ([0, 0.50], [0, 0.45]) and V = ([0, 0.30], [0, 0.25]) be any two IVIFNs. Then,
SIVIFS(T, V) = 1, since J(T) = J(V) = 0.05

3 . In this case, Jeevaraj’s method fails to
distinguish the considered IVIFNs.

• Let T = ([0.1, 0.4], [0.1, 0.2]) and V = ([0.2, 0.25], [0.2, 0.3]) be any two IVIFNs. Then,
SIVIFS(T, V) = 1, since J(T) = J(V) = 0.46

3 . In this case, Jeevaraj’s method fails to
distinguish the considered IVIFNs.

• Let T = ([0.3, 0.7], [0.3, 0.3]) and V = ([0.4, 0.7], [0.1, 0.2]) be any two IVIFNs. Then,
SIVIFS(T, V) = 1, since J(T) = J(V) = 1.30

3 . In this case, Jeevaraj’s method fails to
distinguish the considered IVIFNs.

• Let T = ([0.2, 0.3], [0.7, 0.7]) and V = ([0.3, 0.3], [0.6, 0.6]) be any two IVIFNs. Then,
SIVIFS(T, V) = 1, since J(T) = J(V) = 0.35. In this case, Jeevaraj’s method fails to
distinguish the considered IVIFNs.
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Results of our proposed similarity measure:

• Let T = ⟨(0, 0, 0.50, 0.50), (0, 0, 0.45, 0.45)⟩ and V = ⟨(0, 0, 0.30, 0.30), (0, 0, 0.25, 0.25)⟩
be any two IVIFNs. By applying Definition 20, we obtain SJ(T, V) = Sm(T, V) =

1 − 1
2 |(0 + 0.50 + 0.45 − 0)− (0 + 0.30 + 0.25 − 0)| = 0.80 ̸= 1. This shows that the

combined similarity principle is more suitable for these classes of IVIFNs.
• Let T = ⟨(0.1, 0.1, 0.4, 0.4), (0.1, 0.1, 0.2, 0.2)⟩ and V = ⟨(0.2, 0.2, 0.25, 0.25), (0.2, 0.2, 0.3,

0.3)⟩ be any two IVIFNs. By applying Definition 20, we obtain SJ(T, V) = Sm(T, V) =

1 − 1
2 |(0.1 + 0.4 + 0.2 − 0.1)− (0.2 + 0.25 + 0.3 − 0.2)| = 0.975 ̸= 1. This shows that

the combined similarity principle is more suitable for these classes of IVIFNs.
• Let T = ⟨(0.3, 0.3, 0.7, 0.7), (0.3, 0.3, 0.3, 0.3)⟩ and V = ⟨(0.4, 0.4, 0.7, 0.7), (0.1, 0.1, 0.2,

0.2)⟩ be any two IVIFNs. By applying Definition 20, we obtain SJ(T, V) = Sm(T, V) =

1 − 1
2 |(0.3 + 0.7 + 0.3 − 0.3)− (0.4 + 0.7 + 0.2 − 0.1)| = 0.90 ̸= 1. This shows that the

combined similarity principle is more suitable for these classes of IVIFNs.
• Let T = ⟨(0.2, 0.2, 0.3, 0.3), (0.7, 0.7, 0.7, 0.7)⟩ and V = ⟨(0.3, 0.3, 0.3, 0.3), (0.6, 0.6, 0.6,

0.6)⟩ be any two IVIFNs. By applying Definition 20, we obtain SJ(T, V) = Sm(T, V) =

1 − 1
2 |(0.2 + 0.3 + 0.7 − 0.7)− (0.3 + 0.3 + 0.6 − 0.6)| = 0.95 ̸= 1. This shows that the

combined similarity principle is more suitable for these classes of IVIFNs.

5. A New Algorithm for Solving an MCDM Problem Modelled under a
Trapezoidal-Valued Intuitionistic Fuzzy Environment

In this section, we establish a new MCDM algorithm (modified TOPSIS) for solving an
MCDM problem modelled under a trapezoidal-valued intuitionistic fuzzy environment by
modifying a few steps of the conventional TOPSIS method. The TOPSIS method was first
developed by Hwang and Yoon [18] and has a lot of applications in decision-making. We
modified the TOPSIS algorithm by including a combined similarity measure principle for
calculating the closeness coefficient. The trapezoidal-valued intuitionistic fuzzy TOPSIS (TrVIF
TOPSIS) method is a more generalized method since it can deal with all types of IFNs (such as
real-valued fuzzy numbers, interval-valued fuzzy numbers, intuitionistic fuzzy numbers, interval-
valued intuitionistic fuzzy numbers, and triangular-valued intuitionistic fuzzy numbers).

The TrVIF TOPSIS method for solving the MCDM problem using the proposed com-
bined similarity measure principle is described in the following algorithm:

Let us consider a set of alternatives AT f = {AT f1 , AT f2 , . . . , AT fm} among which the best
one is to be selected. There are n criteria, say CT f = {CT f1 , CT f2 , . . . , CT fn}. The evaluated infor-
mation of the alternative AT fi (i = 1, 2, . . . , m) with respect to the criterion CT fj

(j = 1, 2, . . . , n)
can be represented by a TrVIFN AT fij = ⟨(tT fij , bT fij , cT fij , dT fij), (eT fij , fT fij , gT fij , hT fij)⟩,
i = 1, 2, . . . , m, j = 1, 2, . . . , n, in which (tT fij , bT fij , cT fij , dT fij) represents the degree of be-
longingness, and (eT fij , fT fij , gT fij , hT fij) represents the degree of non-belongingness.

• Step 1: Let us consider a TrVIF decision matrix using linguistic terms given by the
experts (decision-makers). In general, the TrVIF decision matrix (AT fij

)m×n, which
contains the alternatives and the criteria row-wise and column-wise, respectively, is
defined as follows:

(AT fij
)m×n =


AT f11 AT f12 . . . AT f1m

. . . . . .

. . . . . .

. . . . . .
AT fm1 AT fm2 . . . AT fmn


where
AT f11 = ⟨(aT f11 , bT f11 , cT f11 , dT f11), (eT f11 , fT f11 , gT f11 , hT f11)⟩,
AT f12 = ⟨(aT f12 , bT f12 , cT f12 , dT f12), (eT f12 , fT f12 , gT f12 , hT f12)⟩,
AT f1m = ⟨(aT f1m , bT f1m , cT f1m , dT f1m), (eT f1m , fT f1m , gT f1m , hT f1m)⟩,
AT fm1 = ⟨(aT fm1 , bT fm1 , cT fm1 , dT fm1), (eT fm1 , fT fm1 , gT fm1 , hT fm1)⟩,
AT fmn = ⟨(aT fmn , bT fmn , cT fmn , dT fmn), (eT fmn , fT fmn , gT fmn , hT fmn)⟩.
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• Step 2: Let ωT f j
be the weight of each criterion CT f j

(j = 1, 2, . . . , n) with ωT f j
∈ [0, 1]

and ∑n
j=1 ωT f j

= 1 given by the decision-maker. Then, we calculate the weighted
TrVIF matrix by using the Definition 4.

• Step 3: The trapezoidal-valued intuitionistic fuzzy positive ideal solution (TrVIFPIS)
and the trapezoidal-valued intuitionistic fuzzy negative ideal solution (TrVIFNIS) for
the alternatives AT fi

are found by

A+
T f = {⟨CT f j

, (max1≤i≤maT fij
, max1≤i≤mbT fij

, max1≤i≤mcT fij
, max1≤i≤mdT fij

),

(min1≤i≤meT fij
, min1≤i≤m fT fij

, min1≤i≤mgT fij
, min1≤i≤mhT fij

)⟩|CT f j
∈ CT f },

(1)

where j = 1, 2, . . . , n.

A−
T f = {⟨CT f j

, (min1≤i≤maT fij
, min1≤i≤mbT fij

, min1≤i≤mcT fij
, min1≤i≤mdT fij

),

(max1≤i≤meT fij
, max1≤i≤m fT fij

, max1≤i≤mgT fij
, max1≤i≤mhT fij

)⟩|CT f j
∈ CT f },

(2)

where j = 1, 2, . . . , n.
• Step 4: The similarity measure S+

T fi
(A+

T f , AT fi
) and S−

T fi
(A−

T f , AT fi
) for each alternative

AT fi
based on the separation from the TrVIFPIS A+

T f and TrVIFNIS A−
T f , respectively,

that can be derived from the following formulas:

S+
T fi

(A+
T f , AT fi

) = 1 − D(A+
T f , AT fi

) (3)

and
S−

T fi
(A−

T f , AT fi
) = 1 − D(A−

T f , AT fi
) (4)

where D(A+
T f , AT fi

) and D(A−
T f , AT fi

) are distance measures.

• Step 5: The relative closeness CT fi
(AT fi

) of alternative AT fi
(i = 1, 2, . . . , m) with the

PIS A+
T f which is defined in the following formula given by

CT fi
(AT fi

) =
S+

T fi
(A+

T f , AT fi
)

S+
T fi

(A+
T f , AT fi

) + S−
T fi

(A−
T f , AT fi

)
(5)

and 0 ≤ CT fi
(AT fi

) ≤ 1. Thus, the alternative with the highest value of CT fi
(AT fi

) is
chosen as the best choice.

6. Numerical Example

In this section, we solve a real-life problem by using our proposed algorithm, which
utilizes the combined similarity measure principle.

Let us consider an MCDM problem consisting of five alternatives, out of which the
best alternative is chosen. The alternatives are (1) AT f1 is a food company; (2) AT f2 is a
computer company; (3) AT f3 is a car company; (4) AT f4 is an arms company; (5) AT f5 is
a financial company. They invest money subject to the following criteria: (1) CT f1 is the
growth analysis; (2) CT f2 is the environmental risk analysis; (3) CT f3 is the analysis of the
future; (4) CT f4 is the impact analysis.

• Step 1: Table 1 represents the linguistic information given by the decision-maker
for evaluating the best alternative among five alternatives based on the four criteria
and Table 2 represents the TrVIFN equivalent for different linguistic terms present in
Table 1. So the linguistic information given by the decision-maker in Table 1 can be
converted to TrVIFNs in Table 3 by using the conversion table given in Table 2.

• Step 2: Let ωT f1 = 0.35, ωT f2 = 0.15, ωT f3 = 0.30, and ωT f4 = 0.20 be the weights for
the criteria CT f1 , CT f2 , CT f3 , and CT f4 , respectively. Also, ωT f1 + ωT f2 + ωT f3 + ωT f4 =
0.35 + 0.15 + 0.30 + 0.20 = 1. Table 4 represents the weighted TrVIF decision matrix
by using the weights of criteria ωT f j

, (j = 1, 2, 3, 4) and the Definition 4.
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• Step 3: By using Equation (1), we can calculate the TrVIFPIS from Table 4. Thus,
we obtain A+

T f = {⟨(0.21, 0.23, 0.25, 0.26), (0.04, 0.05, 0.07, 0.09)⟩, ⟨(0.08, 0.08, 0.09, 0.10),
(0.03, 0.04, 0.05, 0.05)⟩, ⟨(0.20, 0.21, 0.23, 0.24), (0.02, 0.03, 0.05, 0.06)⟩, ⟨(0.11, 0.12, 0.13, 0.14),
(0.03, 0.04, 0.05, 0.06)⟩} using Equation (2), we evaluate the TrVIFNIS from Table 4. Hence,
we obtain A−

T f = {⟨(0.04, 0.05, 0.07, 0.09), (0.21, 0.23, 0.25, 0.26)⟩, ⟨(0.05, 0.05, 0.06, 0.07),
(0.06, 0.07, 0.08, 0.08)⟩, ⟨(0.11, 0.12, 0.14, 0.15), (0.11, 0.12, 0.14, 0.15)⟩, ⟨(0.04, 0.05, 0.06, 0.07),
(0.10, 0.11, 0.12, 0.13)⟩}

• Step 4: The similarity measure S+
T fi

(A+
T f , AT fi) between TrVIFPIS A+

T f and each alternative
AT fi can be calculated by using Equation (3), and it is tabulated in Table 5. Similarly,
the similarity measure S−

T fi
(A−

T f , AT fi
) between TrVIFNIS A−

T f and each alternative
AT fi

can be calculated by using Equation (4), and it is tabulated in Table 5.
• Step 5: Table 5 represents the closeness coefficient CT fi

(AT fi
) of each alternative AT fi

,
(i = 1, 2, 3, 4, 5). Thus, from the value of the closeness coefficient, we can rank the
alternatives as AT f2 > AT f4 > AT f1 > AT f3 > AT f5 . Therefore, AT f2 is the best
alternative among all.

Table 1. linguistic MCDM matrix.

CT f1 CT f2 CT f3 CT f4

AT f1 FVG (fairly very good) G (good) FG (fairly good) L (low)
AT f2 G (good) FG (fairly good) FH (fairly high) FH (fairly high)
AT f3 FL (fairly low) VG (very good) FH (fairly high) N (normal)
AT f4 H (high) FG (fairly good) G (good) N (normal)
AT f5 P (poor) N (normal) AH (absolutely high) FN (fairly normal)

Table 2. Conversion of linguistic variable to TrVIFNs.

Linguistic Terms TrVIFNs

AP (absolutely poor) ⟨(0.05, 0.10, 0.15, 0.20), (0.65, 0.70, 0.75, 0.80)⟩
P (poor) ⟨(0.10, 0.15, 0.20, 0.25), (0.60, 0.65, 0.70, 0.75)⟩

FL (fairly low) ⟨(0.15, 0.20, 0.25, 0.30), (0.55, 0.60, 0.65, 0.70)⟩
L (low) ⟨(0.20, 0.25, 0.30, 0.35), (0.50, 0.55, 0.60, 0.65)⟩

FN (fairly normal) ⟨(0.25, 0.30, 0.35, 0.40), (0.45, 0.50, 0.55, 0.60)⟩
N (normal) ⟨(0.30, 0.35, 0.40, 0.45), (0.40, 0.45, 0.50, 0.55)⟩

FG (fairly good) ⟨(0.35, 0.40, 0.45, 0.50), (0.35, 0.40, 0.45, 0.50)⟩
G (good) ⟨(0.40, 0.45, 0.50, 0.55), (0.30, 0.35, 0.40, 0.45)⟩

FVG (fairly very good) ⟨(0.45, 0.50, 0.55, 0.60), (0.25, 0.30, 0.35, 0.40)⟩
VG (very good) ⟨(0.50, 0.55, 0.60, 0.65), (0.20, 0.25, 0.30, 0.35)⟩
FH (fairly high) ⟨(0.55, 0.60, 0.65, 0.70), (0.15, 0.20, 0.25, 0.30)⟩

H (high) ⟨(0.60, 0.65, 0.70, 0.75), (0.10, 0.15, 0.20, 0.25)⟩
AH (absolutely high) ⟨(0.65, 0.70, 0.75, 0.80), (0.05, 0.10, 0.15, 0.20)⟩

Table 3. Conversion from linguistic to TrVIFN matrix.

CT f1 CT f2

AT f1 ⟨(0.45, 0.50, 0.55, 0.60), (0.25, 0.30, 0.35, 0.40)⟩ ⟨(0.40, 0.45, 0.50, 0.55), (0.30, 0.35, 0.40, 0.45)⟩
AT f2 ⟨(0.40, 0.45, 0.50, 0.55), (0.30, 0.35, 0.40, 0.45)⟩ ⟨(0.35, 0.40, 0.45, 0.50), (0.35, 0.40, 0.45, 0.50)⟩
AT f3 ⟨(0.15, 0.20, 0.25, 0.30), (0.55, 0.60, 0.65, 0.70)⟩ ⟨(0.50, 0.55, 0.60, 0.65), (0.20, 0.25, 0.30, 0.35)⟩
AT f4 ⟨(0.60, 0.65, 0.70, 0.75), (0.10, 0.15, 0.20, 0.25)⟩ ⟨(0.35, 0.40, 0.45, 0.50), (0.35, 0.40, 0.45, 0.50)⟩
AT f5 ⟨(0.10, 0.15, 0.20, 0.25), (0.60, 0.65, 0.70, 0.75)⟩ ⟨(0.30, 0.35, 0.40, 0.45), (0.40, 0.45, 0.50, 0.55)⟩

CT f3 CT f4

AT f1 ⟨(0.35, 0.40, 0.45, 0.50), (0.35, 0.40, 0.45, 0.50)⟩ ⟨(0.20, 0.25, 0.30, 0.35), (0.50, 0.55, 0.60, 0.65)⟩
AT f2 ⟨(0.55, 0.60, 0.65, 0.70), (0.15, 0.20, 0.25, 0.30)⟩ ⟨(0.55, 0.60, 0.65, 0.70), (0.15, 0.20, 0.25, 0.30)⟩
AT f3 ⟨(0.55, 0.60, 0.65, 0.70), (0.15, 0.20, 0.25, 0.30)⟩ ⟨(0.30, 0.35, 0.40, 0.45), (0.40, 0.45, 0.50, 0.55)⟩
AT f4 ⟨(0.40, 0.45, 0.50, 0.55), (0.30, 0.35, 0.40, 0.45)⟩ ⟨(0.30, 0.35, 0.40, 0.45), (0.40, 0.45, 0.50, 0.55)⟩
AT f5 ⟨(0.65, 0.70, 0.75, 0.80), (0.05, 0.10, 0.15, 0.20)⟩ ⟨(0.25, 0.30, 0.35, 0.40), (0.45, 0.50, 0.55, 0.60)⟩
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Table 4. Weighted TrVIFN MCDM matrix.

CT f1 CT f2

AT f1 ⟨(0.16, 0.18, 0.19, 0.21), (0.09, 0.11, 0.12, 0.14)⟩ ⟨(0.06, 0.07, 0.08, 0.08), (0.05, 0.05, 0.06, 0.07)⟩
AT f2 ⟨(0.14, 0.16, 0.18, 0.19), (0.11, 0.12, 0.14, 0.16)⟩ ⟨(0.05, 0.06, 0.07, 0.08), (0.05, 0.06, 0.07, 0.08)⟩
AT f3 ⟨(0.05, 0.07, 0.09, 0.11), (0.19, 0.21, 0.23, 0.25)⟩ ⟨(0.08, 0.08, 0.09, 0.10), (0.03, 0.04, 0.05, 0.05)⟩
AT f4 ⟨(0.21, 0.23, 0.25, 0.26), (0.04, 0.05, 0.07, 0.09)⟩ ⟨(0.05, 0.06, 0.07, 0.08), (0.05, 0.06, 0.07, 0.08)⟩
AT f5 ⟨(0.04, 0.05, 0.07, 0.09), (0.21, 0.23, 0.25, 0.26)⟩ ⟨(0.05, 0.05, 0.06, 0.07), (0.06, 0.07, 0.08, 0.08)⟩

CT f3 CT f4

AT f1 ⟨(0.11, 0.12, 0.14, 0.15), (0.11, 0.12, 0.14, 0.15)⟩ ⟨(0.04, 0.05, 0.06, 0.07), (0.10, 0.11, 0.12, 0.13)⟩
AT f2 ⟨(0.17, 0.18, 0.20, 0.21), (0.05, 0.06, 0.08, 0.09)⟩ ⟨(0.11, 0.12, 0.13, 0.14), (0.03, 0.04, 0.05, 0.06)⟩
AT f3 ⟨(0.17, 0.18, 0.20, 0.21), (0.05, 0.06, 0.08, 0.09)⟩ ⟨(0.06, 0.07, 0.08, 0.09), (0.08, 0.09, 0.10, 0.11)⟩
AT f4 ⟨(0.12, 0.14, 0.15, 0.17), (0.09, 0.11, 0.12, 0.14)⟩ ⟨(0.06, 0.07, 0.08, 0.09), (0.08, 0.09, 0.10, 0.11)⟩
AT f5 ⟨(0.20, 0.21, 0.23, 0.24), (0.02, 0.03, 0.05, 0.06)⟩ ⟨(0.05, 0.06, 0.07, 0.08), (0.09, 0.10, 0.11, 0.12)⟩

Table 5. Similarity measure between alternatives and ideal solutions and its closeness coefficient.

Alternatives Collective Performance of PIS Collective Performance of NIS Closeness Coefficients

AT f1 S+
T fi

(A+
T f , AT fi

) = 3.7725 S−
T fi

(A−
T f , AT fi

) = 3.8625 CT fi
(AT fi

) = 0.4941
AT f2 S+

T fi
(A+

T f , AT fi
) = 3.8775 S−

T fi
(A−

T f , AT fi
) = 3.7575 CT fi

(AT fi
) = 0.5079

AT f3 S+
T fi

(A+
T f , AT fi

) = 3.7625 S−
T fi

(A−
T f , AT fi

) = 3.8725 CT fi
(AT fi

) = 0.4928
AT f4 S+

T fi
(A+

T f , AT fi
) = 3.8525 S−

T fi
(A−

T f , AT fi
) = 3.7825 CT fi

(AT fi
) = 0.5046

AT f5 S+
T fi

(A+
T f , AT fi

) = 3.7350 S−
T fi

(A−
T f , AT fi

) = 3.9000 CT fi
(AT fi

) = 0.4892

7. Sensitivity Analysis

A sensitivity analysis is very important when we talk about establishing any new
algorithm. For the sensitivity analysis, we checked the ranking of alternatives by intro-
ducing small changes in the weights of criteria. To find the changes “in the result due to
the changes in the criteria weights”, we considered various cases. We considered different
weights for a set of different criteria and ran the algorithm to find out the final ranking of
alternatives. In Section 6, we considered an MCDM problem with four criteria whose sum
of weights was equal to one. In this section, we considered 10 different cases for criteria
weights and in each case, we used the TrVIF TOPSIS method to solve the MCDM problem;
the results are given under a “Ranking order of Alternatives”. For example, if an alternative
always comes first among changes in different criteria weights (multiple times in different
ways), then that alternative is considered the best among all.

Table 6 represents the different sets of criteria weights and their ranking of alternatives.
From the column corresponding to the “ Ranking order of Alternatives” in Table 6, we
can say that the alternative AT f2 is the best alternative among all. Figure 1 represents the
pictorial representation of the sensitivity analysis for all 10 cases.

Table 6. Sensitivity analysis with respect to various weights of the criteria.

Various Weights of Criteria Ranking Order of Alternatives

1 (CT f1 , CT f2 , CT f3 , CT f4 ) = (0.35, 0.20, 0.15, 0.30) AT f2 > AT f4 > AT f1 > AT f3 > AT f5

2 (CT f1 , CT f2 , CT f3 , CT f4 ) = (0.15, 0.20, 0.30, 0.35) AT f2 > AT f3 > AT f4 > AT f5 > AT f1

3 (CT f1 , CT f2 , CT f3 , CT f4 ) = (0.35, 0.20, 0.30, 0.15) AT f2 > AT f4 > AT f1 > AT f3 > AT f5

4 (CT f1 , CT f2 , CT f3 , CT f4 ) = (0.15, 0.20, 0.35, 0.30) AT f2 > AT f3 > AT f4 > AT f5 > AT f1

5 (CT f1 , CT f2 , CT f3 , CT f4 ) = (0.35, 0.30, 0.15, 0.20) AT f2 > AT f4 > AT f1 > AT f3 > AT f5

6 (CT f1 , CT f2 , CT f3 , CT f4 ) = (0.30, 0.20, 0.15, 0.35) AT f2 > AT f4 > AT f1 > AT f3 > AT f5

7 (CT f1 , CT f2 , CT f3 , CT f4 ) = (0.20, 0.35, 0.15, 0.30) AT f2 > AT f4 > AT f3 > AT f1 > AT f5

8 (CT f1 , CT f2 , CT f3 , CT f4 ) = (0.30, 0.15, 0.35, 0.20) AT f2 > AT f4 > AT f3 > AT f1 > AT f5

9 (CT f1 , CT f2 , CT f3 , CT f4 ) = (0.20, 0.30, 0.15, 0.35) AT f2 > AT f4 > AT f3 > AT f1 > AT f5

10 (CT f1 , CT f2 , CT f3 , CT f4 ) = (0.30, 0.35, 0.15, 0.20) AT f2 > AT f4 > AT f1 > AT f3 > AT f5
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Figure 1. Sensitivity analysis with respect to various weights of the criteria.

8. Conclusions and Future Work

In this paper, we introduced a few similarity measures on the set of TrVIFNs using
score functions and discussed their important mathematical properties by using propo-
sitions and theorems. For the first time in the literature, in this paper, we proposed the
idea of a combined similarity measure principle on the set of TrVIFNs. Further, we showed
the efficacy of the proposed combined similarity measure principle by analysing and dis-
cussing the drawbacks of a few important similarity measures on various classes of fuzzy
sets. Then, we established a new MCDM algorithm by integrating the idea of a combined
similarity measure principle and modifying the steps of the TOPSIS algorithm under a
trapezoidal-valued intuitionistic fuzzy environment. Also, we discussed the applicability
of the proposed MCDM algorithm in solving a numerical problem. Finally, a sensitivity
analysis was performed by considering various weights for different criteria.

The combined similarity measure proposed in this paper overcomes the limitations of
many similarity measures available on different classes of fuzzy sets. However, the number
of similarity measures used for the proposed combined similarity measure principle is
still debatable, and in the future, one shall work on this issue. The idea of the proposed
combined similarity measure principle can be extended to the other generalized classes of
fuzzy sets such as GTrFNs, IVIFNs, TVIFNs, TrIFNs, interval-valued Pythagorean fuzzy
sets (IVPFS), FFSs, Spherical fuzzy sets, etc. In this study, we concentrated on defining a
combined similarity measure principle mathematically; in future work, we will study the
application of the proposed combined similarity measure principle in the field of pattern
recognition, clustering, image processing, and decision sciences.
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