
Citation: Ahmad, Y.; Ali, U.; Otera,

D.E.; Pan, X.-F. Study of Random

Walk Invariants for Spiro-Ring

Network Based on Laplacian Matrices.

Mathematics 2024, 12, 1309. https://

doi.org/10.3390/math12091309

Academic Editor: Andrea Scozzari

Received: 17 March 2024

Revised: 15 April 2024

Accepted: 23 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Study of Random Walk Invariants for Spiro-Ring Network Based
on Laplacian Matrices
Yasir Ahmad 1 , Umar Ali 2, Daniele Ettore Otera 3,* and Xiang-Feng Pan 1

1 School of Mathematical Sciences, Anhui University, Hefei 230601, China; yasirahmad6667@gmail.com (Y.A.);
xfpan@ahu.edu.cn (X.-F.P.)

2 Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;
umarali@usst.edu.cn or umarali.msc@gmail.com

3 Institute of Data Science and Digital Technologies, Vilnius University, 08412 Vilnius, Lithuania
* Correspondence: daniele.otera@mif.vu.lt or daniele.otera@gmail.com

Abstract: The use of the global mean first-passage time (GMFPT) in random walks on networks
has been widely explored in the field of statistical physics, both in theory and practical applications.
The GMFPT is the estimated interval of time needed to reach a state j in a system from a starting
state i. In contrast, there exists an intrinsic measure for a stochastic process, known as Kemeny’s
constant, which is independent of the initial state. In the literature, it has been used as a measure
of network efficiency. This article deals with a graph-spectrum-based method for finding both the
GMFPT and Kemeny’s constant of random walks on spiro-ring networks (that are organic compounds
with a particular graph structure). Furthermore, we calculate the Laplacian matrix for some specific
spiro-ring networks using the decomposition theorem of Laplacian polynomials. Moreover, using
the coefficients and roots of the resulting matrices, we establish some formulae for both GMFPT and
Kemeny’s constant in these spiro-ring networks.

Keywords: spiro-ring network; random walk; global mean first-passage time; Kemeny’s constant
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1. Introduction

The empirical investigation of real-world networks has inspired many scientists to
study complex chemical networks in detail. They have many useful applications in physics
and biophysics, as well as in quantum chemistry for molecular modeling, in statistical
mechanics for bulk matter properties, and in molecular dynamics simulations for the study
of molecular behavior. These networks aid in the understanding of atomic and molecular
structures, electronic properties, and fundamental physical origins in various physical
contexts of materials science.

Recently, several scientific research fields have shown a particular interest in the
study of random walks on complex networks. Random walks [1] are stochastic processes
characterized by irregular fluctuations, where each step in the process is determined
randomly, independently from past events. The mathematical theory of random walks has
been widely applied in several domains, such as machine learning [2], optimization [3],
artificial intelligence [4], engineering [5], biology [6], physics, and other disciplines [7,8].

In order to motivate our study, which concerns some specific chemical structures
called spiro compounds, and to provide an explanation of the physical significance and
justification behind the spreading processes on spiro-ring networks, we briefly highlight
some practical implications and potential real-world applications of our findings, even
if our main focus is more in chemistry than in physics. Random walks are often used as
essential models in the field of physical systems to describe the probabilistic movement of
particles or entities in different media, such as gases, liquids, or solids. To better understand
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the connections between the selected structures and physical processes, it is crucial to
investigate the fundamental principles and behaviors which lie behind them. This involves
exploring the geometric properties, topological arrangements, and dynamic aspects of
these formations.

1.1. Global Mean First-Passage Time and the Kemeny Constant

Given a network, the so-called first-passage time (FPT) [9] is the estimated time needed
by a random walker, starting from an initial point, to reach a particular target point. It
represents a sort of metric, associated with a random walk, which helps the understanding
of the physical system under observation. On the other hand, the global mean first-passage
time (GMFPT), denoted also by ⟨T⟩g (where g stands for ‘global’), is a related valuable tool
for analyzing the behavior of random walks, since it describes the average of the FPT’s
obtained from all of the source points in the network.

The GMFPT measures the information propagation efficiency, discovery time, and
predicted time for a random walker to visit a target node in a network. It is significant in
order to measure the capability of transport operations between nodes in the context of a
spiro-ring network. For instance, the GMFPT helps to indicate how quickly particles or
information can travel between nodes in spiro-ring networks.

It is useful to emphasize the relevance of the GMFPT over other metrics used to analyze
system dynamics. In fact, it presents a unique perspective by measuring the average time it
takes for a message, particle, or entity to move from one place to another within the system.
With this system-wide perspective, the GMFPT may measure the entire efficiency and
dynamics of communication or particle movements, allowing research to find bottlenecks,
inefficiencies, or preferred paths. Furthermore, its flexibility to varying system parameters,
enables its use in a variety of scenarios, making it an effective tool for evaluating a wide
range of systems, including networks, stochastic optimization [9], biological processes [10],
finance [11], complex network analysis [12], and many others.

On the other hand, another important probabilistic notion directly associated with
random walks in graphs and networks, is the Kemeny constant (also known as the Kemeny
score), denoted by K. It is a mathematical concept used to rank or order items based on
preferences or pairwise comparisons. In the 1950s, Kemeny and Snell [13] established a
model that represents the total time-scale associated with relaxation in a Markov chain or
kinetic network. In one sentence, the Kemeny constant roughly measures the expected time
it takes to go from a randomly chosen state of the network to another randomly chosen
one. What is interesting here is that this quantity only depends on the network, and not on
the chosen starting state!

The Kemeny constant can be thought of as an indicator of network effectiveness, since
it represents the estimated minimum number of steps for a random walk on the network to
attain a stationary distribution. It is a helpful statistic to differentiate networks on the basis
of their traversal times. Furthermore, the analysis of random walk behavior on a spiro-ring
network and the comparison of its characteristics with those of other networks requires the
application of the Kemeny constant. It can be used to figure out how information spreads
in a spiro-ring network.

The Kemeny constant has also sparked great attention in network research, graph
theory, and data analysis. For instance, it is used to compute the Kirchhoff index of graphs,
and it is offered as an objective function for optimization in graph clustering algorithms.

1.2. Notation and Definitions

All of the networks and graphs considered in this article are undirected and simple. Let
G be an undirected graph with |EG | = m and |VG | = n, where EG and VG are, respectively,
the sets of edges and of vertices of G. In this study, any standard notation and terminology
that are not defined will be as defined in the classical literature, e.g., [14].

Let DG = diag(d1, . . . , d|VG |) be the diagonal matrix representing the vertex degrees,
where di indicates the degree of the vertex vi in the graph G; and denote by AG the
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adjacency matrix, that is, the square matrix whose entry (i, j) is 1 if vi is adjacent to vj, and
0 otherwise. The standard matrix representation of a graph is given by its Laplacian matrix
LG , which may be defined as DG − AG . The Laplacian matrix is positive semi-definite, and
so its eigenvalues can be ordered in an ascending manner, and it turns out that a graph is
connected if and only if the first eigenvalue of its Laplacian matrix is zero (see [14]).

In order to evaluate the spread of the signal network, one may use the first-passage
time (FPT), that is, the time needed for a random walker to arrive at a target point starting
from a given origin in a minimum number of steps. But also the mean first-passage time
(MFPT), which is the average time it takes for a diffusing particle to reach a target position
for the first time. One area of research investigates just the relationships between the
distribution of the MFPT and the structural features of a network. This relationship can be
used to improve search efficiency, but it requires prior knowledge of the target. Hence, in
the absence of knowledge regarding the target node, the issue of search efficiency becomes
a very difficult problem.

The average expected time across all point pairings of a graph G, represented by
⟨T(G)⟩g, is referred to as the global mean first-passage time (g stands for global), and it is
defined as

⟨T(G)⟩g =
1

|VG |(|VG | − 1)
× ∑

i ̸=j
Tij(G), (1)

where Tij is the number of steps taken for a random walker between nodes i and j.
For a linked network G with n nodes, Zhu et al. [15] and Gutman and Mohar [16] have

separately demonstrated that

n
n

∑
i=2

1
γi

= ∑
i<j

rij, (2)

where 0 = γ1 < γ2 ≤ γ3 ≤ . . . ≤ γn are the eigenvalues of L(G), and rij denotes the electric
resistance distance between the vertices of the graph G, namely, the resistance between the
two respective vertices of an electrical network corresponding to G, with the property that
the resistance of each bond joining adjacent vertices is 1.

Chandra et al. [17] presented a novel method for a connected graph G, discovering
the following relationship between Tij and rij:

Tij + Tji = 2|EG | × rij. (3)

Equation (3) implies, in particular, that ∑
i ̸=j

Tij(G) = 2|EG | × ∑
i<j

rij.

Therefore, by using all the equations above, we obtain formulae for MFPT:

⟨T(G)⟩g =
2|EG |

|VG |(|VG | − 1)
× ∑

i<j
rij =

2|EG |
(|VG | − 1)

×
n

∑
i=2

1
γi

(4)

On the other hand the Kemeny constant is given by the following formula (see [18]):

K(SPn) =
n

∑
j=2

1
γj

, where, again, γj are the eigenvalues of L(G). (5)

Remark 1. Note that in both formulae, the first eigenvalue (i.e., for j = 1) is zero due to the
connectedness of the graph.

In order to give an idea of the importance and use of the Laplacian matrix in practical
applications, let us note that Xiao and Gutman [19] established the feasibility of calculating
the resistance distance using the eigenvalues of the Laplacian matrix. In 2018, Zhang
et al. [20] determined the GMFPT duration of random walks on Vicsek fractals by means
of the Laplacian matrix eigenvalues. In [21], Zeman et al. determined the GMFPT and
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Kemeny constant of a random walk of pentagonal networks. In 2021, Ali et al. [22,23]
obtained the resistance-distance-based indices of linear pentagonal–quadrilateral networks.
Topological indices for chemical graph products, carbon nanotubes, and generalized bridge
molecular graphs were discussed by Zhang et al. [24]. Finally, the study conducted by
Ullah et al. [25] determined degree-based topological indicators for molecular graphs.

In this article, motivated by previous works [26–28], we establish some explicit closed-
form formulae for the GMFPT and Kemeny constant in the context of spiro-ring networks,
using the Laplacian decomposition theorem. On the basis of the obtained results, compara-
tive studies are carried out for them.

1.3. Spiro-Ring Networks

Spiro compounds represent a fundamental category of cycloalkanes within the field
of organic chemistry. They are biologically active organic compounds with a particular
structure, that can be found in a wide variety of natural products. More specifically, these
compounds consist of two or more rings which have at least one common atom, represented
by a cut-vertex in the corresponding molecular graph. A spiro-hexagonal chain SPn is
created when a spiro compound consists of hexagonal rings and every cut-vertex is shared
by precisely two hexagons. The length of a spiro-hexagonal chain is defined as the number
of hexagons it contains. There are different types of substances based on the number of
spiro atoms (i.e., the common atoms) they contain, such as monospiro, dispiro, trispiro, and
so on. Three straight polyspiro alicyclic hydrocarbons are shown in Figure 1. The basic idea
and practical applications of modeling random paths on spiro-ring networks are related in
particular to the representation of the structures of spiro compounds in chemistry.

In the present work, we will examine a subcategory of unbranched multispiro molecules
whose corresponding graphs are referred to as spiro-hexagonal chains (or chain hexagonal
cacti [29], or six-membered ring spiro chains [30]). In particular, these chains, denoted by
SPn, consist of hexagonal rings, while the corresponding networks have 5n nodes and 6n
edges (see Figure 2).

Figure 1. (i) Dispiro[5,2,5]hexadecane, (ii) spiro[4,5]decane, and (iii) dispiro[3,2,3,2]dodecane.

Figure 2. A spiro-ring network SPn.

The choice of spiro-ring networks as the subject for our study is inspired by their
representation of spiro-compound structures in chemistry. Providing a better understand-
ing of the physical principles underpinning the modeling of random walks on molecular
structures gives valuable insights for the fundamental dynamics of molecular systems.
Random walks are a key framework used to describe the stochastic movement of particles,
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explore structural distance, and study the kinetics of molecular interactions. By revealing
the physical intuition and practical implications of modeling random walks on molecular
structures, researchers may increase their knowledge of complex systems and propose
novel ways for tackling contemporary issues.

Spreading processes, such as disease transmission or information propagation, are
complicated phenomena impacted by multiple variables, including network structure,
connection, and dynamics. Although spiro-ring-network-based theoretical models could
provide insight into certain elements of spreading processes, their relevance to actual
situations has to be carefully considered. Constructing physical spiro-ring networks and
performing controlled tests to confirm theoretical predictions may offer considerable ob-
stacles owing to the intricate architecture of these networks and the intricacy of spreading
processes. Additionally, turning theoretical models into practical applications, such as
creating efficient communication networks or forecasting disease outbreaks, needs exacting
empirical evidence and validation from empirical data.

2. Main Lemmas

In the present context, and all through the paper, a square matrix B of order n will be
represented by its characteristic polynomial φ(B), defined as follows: φ(B) = det(xIn − B).
Also, given a graph G, an automorphism of it will be represented as a permutation π of VG
(the set of vertices of the graph), for which the following property holds: vivk ∈ E(G) if and
only if π(vj)π(vk) is a path in G (where E(G) is the set of edges of the graph G). Finally,
from now on, we will use the notation ⟨T⟩g and K for the global mean first-passage time
(GMFPT) and the Kemeny constant, respectively.

Based on the vertex labeling of the spiro-ring network SPn shown in Figure 2, it is
clear that VG can be expressed as the union of three disjoint sets: V0 = {10, 20, . . . , n0},
V1 = {1, 2, . . . , 2n}, and V2 = {1̌, 2̌, . . . , 2̌n}. This means that |VG | = 5n, while |EG | = 6n. It
is also obvious that

π = (10)(20) · · · (n0)(1, 1̌)(2, 2̌) · · · (2n, 2̌n),

is an automorphism of SPn. Thus, the Laplacian matrix L(SPn) can be represented in the
form of the following block matrices:

L(SPn) =

LV00 LV01 LV02

LV10 LV11 LV12

LV20 LV21 LV22

,

where LVik represents the sub-matrix corresponding to the vertices of Vi and Vk, respectively,
where i, k ∈ {0, 1, 2}. Further, LV11 = LV22 thanks to the automorphism of G associated with
π. Let

P =

In 0 0
0 1√

2
I2n

1√
2

I2n

0 1√
2

I2n − 1√
2

I2n


be the matrix of blocks whose dimensions are the same as those of the blocks in L(SPn).
Then, we have that

PL(SPn)P′ =

(
LR(SPn) 0

0 LS(SPn)

)
,

where P′ represents the transpose of P,

LR(SPn) =

(
LV00

√
2LV01√

2LV10 LV11 + LV12

)
, and LS(SPn) = LV11 − LV12 . (6)

The Laplacian polynomial decomposition theorem is expressed by the following
lemma:
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Lemma 1 ([31]). Assume that LR(SPn) and LS(SPn) are the matrices described above. Then,

φ(L(SPn)) = φ(LR(SPn)) · φ(LS(SPn)).

In accordance with Lemma 1, we initially determine the eigenvalues of the Laplacian
for SPn. Subsequently, we will provide the formula for the summation of the reciprocal and
products of the eigenvalues of the Laplacian. This formulation serves as the motivation
for calculating K and ⟨T(G)⟩g. According to the structure of Figure 2, we obtain that
LV00 = 4In and LV12 = O2n×2n So, LV01 and LV11 are matrices of sizes n × (2n) and (2n)×
(2n), respectively, as shown below:

LV01 =


−1 0 0 0 0 · · · −1
0 −1 −1 0 0 · · · 0
0 0 0 −1 −1 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0

, and LV11 =



2 −1 0 0 · · · 0 0
−1 2 0 0 · · · 0 0
0 0 2 −1 · · · 0 0
0 0 −1 2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2 −1
0 0 0 0 · · · −1 2


2n×2n

.

Therefore,

LR =



4 0 0 · · · 0 −
√

2 0 0 0 0 · · · −
√

2
0 4 0 · · · 0 0 −

√
2 −

√
2 0 0 · · · 0

0 0 4 · · · 0 0 0 0 −
√

2 −
√

2 · · · 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
0 0 0 · · · 4 0 0 0 0 0 · · · 0

−
√

2 0 0 · · · 0 2 −1 0 0 0 · · · 0
0 −

√
2 0 · · · 0 −1 2 0 0 0 · · · 0

0 −
√

2 0 · · · 0 0 0 2 −1 0 · · · 0
0 0 −

√
2 · · · 0 0 0 −1 2 0 · · · 0

0 0 −
√

2 · · · 0 0 0 0 0 2 · · · 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
−
√

2 0 0 · · · 0 0 0 0 0 0 · · · 2


3n×3n

,

and LS = LV11 .
The matrix determinant lemma can be used in order to calculate the determinant of a

square matrix of a rank-one perturbation.

Lemma 2 ([32]). Let H11, H12, H21, and H22 be matrices of orders n × m, n × n, m × n, and
m × m, respectively. Assume that H22 is invertible. Then,

det
(

H11 H12
H21 H22

)
= det(H22) · det(H11 − H12H−1

22 H21),

and H11 − H12H−1
22 H21 is called the Schur complement of H22.

3. Kemeny’s Constant and the GMFPT of Spiro-Ring Networks

Spiro-ring networks, known for their hexagonal configuration of interconnected nodes
in a spiral pattern, are widely used in several fields due to their specific topology and
features. Thanks to their distinctive topology, with a spiral arrangement of interconnected
nodes, they have various applications. Researchers can use the implications of the GMFPT
and the Kemeny constant to make informed choices that improve the reliability, efficiency,
and scalability of spiro-ring networks in many areas, like telecommunications, transporta-
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tion systems, and biological modeling. Furthermore, these observations provide new
opportunities for the creation of innovative applications and technologies which employ
the distinct characteristics of spiro-ring networks to tackle complex issues and propel
progress in connectivity and communication.

One can easily apply Lemma 1 and Equation (5) in order to obtain the Laplacian
spectrum of SPn by adding the eigenvalues LS and LR. In particular, we obtain the follow-
ing result.

Proposition 1. Let SPn be a spiro-ring network of length n. We have

K(SPn) =
3n

∑
j=2

1
ϕj

+
2n

∑
k=1

1
ψk

, n ≥ 2

where ϕj, with 1 ≤ j ≤ 3n, and ψk, with 1 ≤ k ≤ 2n, represent the eigenvalues of LR and LS,
respectively.

The following propositions give the formulae for
2n
∑

k=1

1
ψk

and
3n
∑

j=2

1
ϕj

in accordance with

the relationship between the roots and coefficients of LS and LR.

Proposition 2. Assume that 0 = ψ1 < ψ2 ≤ · · · ≤ ψ2n are the eigenvalues of LS. Then,
2n
∑

j=1

1
ψj

= 4n
3 , for n ≥ 2.

Proof. Let φ(LS) = x2n + c1x2n−1 + · · ·+ c2n−1x2 + c2n be the characteristic polynomial.
Now, we can precisely affirm that ψ1, ψ2, . . . , ψ2n are actually the roots of the equation
x2n−1 + c1 · x2n−2 + · · ·+ c2n−2 · x + c2n−1 = 0. By Vieta’s theorem,

2n

∑
j=1

1
ψj

=
(−1)2n−1c2n−1

(−1)2nc2n
= − c2n−1

det(LS)
. (7)

Lemma 3. The constant c2n−1 is equal to − 4
3 n · 3n.

Proof. We know that

LS =



2 −1
−1 2

2 −1
−1 2

. . .
2 −1
−1 2


2n×2n

.

We have det(LS(1)) = 3, det(LS(2)) = 9 and det(LS) = 3n, and so

c3n−1 =
2n

∑
j=1

det(−LS({j}|{j})) = (−1)2n−1
2n

∑
j=1

det(−LS({j}|{j}))

= −2
3

2n

∑
j=1

3n

= −4
3

n · 3n.
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As a result, we have proved Proposition 2.

Proposition 3. Assume that 0 = ϕ1 < ϕ2 ≤ · · · ≤ ϕ3n are the eigenvalues of LR. Then, we have

that
3n
∑

j=2

1
ϕj

= 75n2−11
120 .

Proof. As before, let φ(LR) = x3n + b1x3n−1 + · · ·+ b3n−2x2 + b3n−1x be the characteristic
polynomial. We can precisely determine ϕ2, ϕ3, . . . , ϕ3n as the roots of the equation: x3n−1 +
b1x3n−2 + · · ·+ b3n−2x + b3n−1 = 0. From Vieta’s formula, we have

3n

∑
j=2

1
ϕj

= − b3n−2

b3n−1
. (8)

The following two lemmas specify the expressions for b3n−2 and b3n−1,
respectively.

Lemma 4. b3n−1 = (−1)n−1 15
2 · n22n.

Proof. Refer to the Appendix A for the proof.

Lemma 5. b3n−2 = (−1)n2n 15(75n4−11n2)
16 .

Proof. Refer to the Appendix A for the proof. As a result, we have proved Proposi-
tion 3.

Theorem 1. Let SPn be a spiro-ring network of length n (i.e., with n hexagons) and denote by K
its Kemeny’s constant. Then,

K(SPn) =
75n2 + 160n − 11

120
.

Proof. Putting together Propositions 2 and 3 in the formula from Proposition 1, we obtain
the desired result.

Theorem 2. Let ⟨T(SPn)⟩g represent the GMFPT of SPn (a spiro-ring network of length n).
Then,

⟨T(SPn)⟩g =
12

5(5n − 1)

(
75n2 + 160n − 11

120

)
.

Proof. Putting together Propositions 2 and 3 in Equation (4), and noting that |ESPn | = 6n,
the desired result follows easily.

In order to overcome any potential limitations of the graph spectrum method, we used
the decomposition theorem of Laplacian polynomials to compute the Laplacian matrix,
GMFPT, and Kemeny’s constant for spiro-ring networks. This methodology enabled us
to surpass the constraints of the graph spectrum method by integrating supplementary
mathematical tools to obtain more precise analysis and outcomes.

Comparison

In this section, we present graphical representations of the relationship between Ke-
meny’s constant K and GMFPT ⟨T⟩g. The results obtained in Theorems 1 and 2 suggest
that, within the network scales under consideration, there exists a linear and direct pro-
portional connection between the quantities K(SPn) and ⟨T(SPn)⟩g as n varies. Our exact
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results are confirmed in Figure 3a,b, which indicate how K(SPn) and ⟨T(SPn)⟩g rises as
the value of n increases. Similarly, in Figure 4, we just compare K(SPn) and ⟨T(SPn)⟩g.
Our analysis presents some fresh perspectives that make it simple to identify the structure
of our network.

Figure 3. (a) Kemeny’s constant K(SPn) and (b) GMFPT ⟨T(SPn)⟩g.

Figure 4. Comparison of K(SPn) and ⟨T(SPn)⟩g.

The comparison study of Kemeny’s constant and the GMFPT entails the examination of
resulting metrics to evaluate the network efficiency, navigability, robustness, and scalability.
The GMFPT gives insight into the average time it takes for objects to traverse the spiro-ring
network, which is useful for assessing the overall network efficiency. Researchers can
evaluate the impact of various network configurations or characteristics on the network
efficiency and navigability by comparing the resulting matrices of the GMFPT and the
Kemeny constant. These comparative studies offer useful insights into the efficiency and
features of spiro-ring networks (see also Figure 5). They inform the design of networks,
optimization methodologies, and decision-making processes to improve network efficacy
in different applications.
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Figure 5. Comparative graph with existing spiro techniques.

4. Conclusions

In the present study, we have dealt with the analysis of some important quantities for
spiro-ring networks SPn that are very relevant in network theory. For instance, the famous
Kemeny constant K is a significant and valuable quantifier that finds several applications
in a wide range of topics, particularly within the realm of Markov chains; whereas the
GMFPT (global mean first-passage time) is the average of the mean first-passage times
over the starting point of the walker, and it is considered as a quantitative indicator of the
transport efficiency of a network.

In this paper, we emphasize the importance of employing the Laplacian matrix when
analyzing graph structures, specifically when performing operations like partitioning a
graph into communities or clusters. We demonstrate that the Laplacian matrix’s eigenvalues
provide useful insights into different elements of a graph, such as its connectivity qualities,
spectrum, and the behavior of random walks inside the network. The Laplacian matrix is a
powerful tool that may be utilized to analyze the intricate architecture of complex networks,
such as social networks, transportation networks, and biological networks.

For instance, through the utilization of the spectra of the Laplacian of SPn, precise
closed-form formulae have been established both for the GMFPT and K for SPn networks.
Finally, we performed a graphic comparison between them. The results derived from this
study will be useful for further investigations in the field of network science.

Research in the field of deterministic structures is both relevant and intriguing due to
the significant advancements in supramolecular experimental methods, which enable the
chemical synthesis of a wide range of polymers with controlled molecular architectures,
including molecular fractals. These models could assist in chemistry by providing insight
into solvent effects, molecule binding, and reaction kinetics, which can then be used to
develop novel materials or catalysts. Random walk models are used in biophysics to clarify
the processes of molecular transport inside cells, the folding dynamics of proteins, and
the building of biomolecular complexes. Furthermore, the ideas described in studies of
spreading processes on spiro-ring networks could be applied to random graph models
defined by blocked structures, such as the stochastic block model (SBM). The SBM is a
widely used probabilistic model for modeling networks with a community structure, where
nodes are divided into blocks or communities with dense connections inside blocks and
sparser connections between blocks. Furthermore, expanding the research to blocked
structures allows for the examination of other aspects that may affect spreading processes,
such as the number and density of communities, the strength of inter-community linkages,
and the existence of overlapping communities.



Mathematics 2024, 12, 1309 11 of 18

Author Contributions: Investigation, Y.A., U.A., D.E.O. and X.-F.P. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We warmly thank the referees for the comments and the editor for the help.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Lemma A1. Let m ∈ {1, 2, . . . , 2n} and Am =



− 3
2 1

1 − 3
2

1
2

1
2 − 3

2 1
1 − 3

2
. . .

− 3
2 1

1 − 3
2


m×m

.

Then, det(Am) =


(

1
2

)m
2 ( 3m

4 + 1
)
, when m is even;

−
(

1
2

)m−1
2 ( 3m+3

4
)
, when m is odd.

Proof. When m = 1, 2, 3, 4, we have det(Am) = − 3
2 , 5

4 ,− 3
2 , 1, respectively, and for 5 ≤ m ≤

2n, we possess the recurrence relationship det(Am) = det(Am−2)− 1
4 det(Am−4). When

this relationship is resolved, we have

det(Am) =


(

1
2

)m
2 ( 3m

4 + 1
)
, when m is even;

−
(

1
2

)m−1
2 ( 3m+3

4
)
, when m is odd.

Lemma A2. Let m ∈ {1, 2, . . . , 2n} and Dm =



− 3
2

1
2

1
2 − 3

2 1
1 − 3

2
1
2

1
2 − 3

2
. . .

− 3
2

1
2

1
2 − 3

2


m×m

.

Then, det(Dm) =
(

1
2

)m
2 ( 3m

4 + 1
)
, when m is even.

Proof. It follows in the same vein as for the above Lemma A1.

Lemma A3. Let m ∈ {1, 2, . . . , 2n} and Cm =



−2 1
1 − 3

2
1
2

1
2 − 3

2 1
1 − 3

2
. . .

− 3
2

1
2

1
2 − 3

2 1
1 − 3

2


m×m

.

Then, det(Cm) =


(

1
2

)m
2 ( 3m

2 + 1
)
, when m is even;

−
(

1
2

)m−1
2
(

3m+1
2

)
, when m is odd.
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Proof. Let ej represent the m-vector (0, . . . , 0, 1, 0, . . . , 0), with 1 at the jth position. Then,
we have Cm = Am − 1

2 e1eT
1 .

So, det(Cm) = det(Am)− 1
2 eT

1 adj(Am)e1 = det(Am)− 1
2 co f [Am(1, 1)]. (Here, we denote by

cof[N(j, k)] the cofactor of the entry located at position (j, k) of a square matrix N).
Now, det(C1) = −2, det(C2) = 2, det(C3) = − 5

2 , and det(C4) =
7
4 . Hence, the lemma

is proved for m = 1, 2, 3, 4. In the other cases, when 5 ≤ m ≤ 2n, we obtain

det(Cm) =

{
det(Am)− 1

2 det(Am−1), when m is even;
det(Am)− 1

2 det(Dm−1), when m is odd.

=


(

1
2

)m
2 ( 3m

2 + 1
)
, when m is even;

−
(

1
2

)m−1
2
(

3m+1
2

)
, when m is odd.

And the result follows for any m = 1, 2, . . . , 2n.

Proof of Lemma 4. Let B({j}|{k}) represent the sub-matrix of B created by deleting its
jth row and kth column of B. To find b3n−1 we proceed to examine the subsequent cases.
Case A1. Let us consider 1 ≤ j ≤ n, then

det(−LR({j}|{j})) =
∣∣∣∣ −4In−1 −

√
2LV01({j}|{})

−
√

2LV01({j}|{})T χ

∣∣∣∣ = ∣∣∣∣−4In−1 0
0 ℜ

∣∣∣∣,
where ℜ = χ + 1

2 LV01({j}|{})T LV01({j}|{}) and χ = −LV11 .
By Lemma 2, we have det(−LR({j}|{j})) = det(−4In−1)det(ℜ), for j = 1, 2, . . . , n.
To estimate the det(ℜ), we have to examine the sub-cases listed below.
Subcase 1(a): When j = 1, let R2n = χ + 1

2 LV01({1}|{})T LV01({1}|{}). Then,

R2n =



−2 1
1 − 3

2
1
2

1
2 − 3

2 1
. . .

− 3
2

1
2

1
2 − 3

2 1
1 −2


2n×2n

= C2n +
1
2 e2neT

2n.

So,

det(ℜ2n) = det(C2n) +
1
2

eT
2nadj(C2n)e2n (see Lemma A3)

= det(C2n) +
1
2

co f [C2n(2n, 2n)]

=

(
1
2

)n
(3n + 1) +

1
2

(
1
2

)n−1
(3n − 1)

=

(
1
2

)n
6n.

Subcase 1(b): When 1 ≤ j ≤ n,

χ +
1
2

LV01 ({j}|{})T LV01 ({j}|{})

=



− 3
2 1 0 0 · · · 0 0 0 0 · · · 1

2
1 − 3

2
1
2 0 · · · 0 0 0 0 · · · 0

0 1
2 − 3

2 1 · · · 0 0 0 0 · · · 0
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 0 · · · −2 0 0 0 · · · 0
0 0 0 0 · · · 0 −2 1 0 · · · 0
0 0 0 0 · · · 0 0 − 3

2
1
2 · · · 0

0 0 0 0 · · · 0 0 1
2 − 3

2 · · · 0
...

...
...

...
. . .

...
...

...
...

. . .
...

1
2 0 0 0 · · · 0 0 0 0 · · · − 3

2


2n×2n
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=



− 3
2 1 0 0 · · · 0 0 0 0 · · · 0

1 − 3
2

1
2 0 · · · 0 0 0 0 · · · 0

0 1
2 − 3

2 1 · · · 0 0 0 0 · · · 0
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 0 · · · −2 0 0 0 · · · 0
0 0 0 0 · · · 0 −2 1 0 · · · 0
0 0 0 0 · · · 0 0 − 3

2
1
2 · · · 0

0 0 0 0 · · · 0 0 1
2 − 3

2 · · · 0
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 0 0 · · · − 3
2



+
1
2

e1eT
2n +

1
2

e2neT
1

=

(
C2j−2 0

0 C2n−2j+2

)
+

1
2

e1eT
2n +

1
2

e2neT
1 (see Lemma A3).

Since, det
((

C2j−2 0
0 C2n−2j+2

)
+ 1

2 e1eT
2n

)
= det

(
C2j−2 0

0 C2n−2j+2

)
,

det
(

χ +
1
2

LV01({j}|{})T LV01({j}|{})
)
= det(C2j−2) · det(C2n−2j+2)

+ (−1)2n+1 1
2
· 1

2
det(C2j−3) · det(C2n−2j+1)

=

(
1
2

)n
6n.

Therefore, det
(

χ + 1
2 LV01({j}|{})T LV01({j}|{})

)
=

(
1
2

)n
6n, for 1 ≤ j ≤ n.

Case A2. Take the case when n + 1 ≤ j ≤ 3n, let r = j − n, we have

det(−LR({r}|{r})) =
∣∣∣∣ −4In −

√
2LV01 ({}|{r})

−
√

2LV01 ({}|{r})T χ({r}|{r})

∣∣∣∣ = ∣∣∣−4In 0
0 ℜ1

∣∣∣,
where ℜ1 = χ({r}|{r}) + 1

2 LV01({}|{r})T LV01({}|{r}) and χ = −LV11 .
Apply Lemma 2, −4In in the preceding determinant, we have det(−LR({r}|{r})) =
det(−4In) · det(ℜ1), for r = 1, 2, . . . , 2n. To estimate det(ℜ1), the following subcases need
our attention:
Subcase 2(a): If 1 ≤ r ≤ 2n,

ℜ1 =χ({r}|{r}) + 1
2

LV01 ({}|{r})T LV01 ({}|{r})

=



− 3
2 1 0 0 · · · 0 0 0 0 · · · 1

2
1 − 3

2
1
2 0 · · · 0 0 0 0 · · · 0

0 1
2 − 3

2 1 · · · 0 0 0 0 · · · 0
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 0 · · · − 3
2 0 0 0 · · · 0

0 0 0 0 · · · 0 − 3
2 · · · 0 0 0

...
...

...
...

. . .
...

...
. . .

...
. . .

...
0 0 0 0 · · · 0 0 · · · − 3

2
1
2 0

0 0 0 0 · · · 0 0 · · · 1
2 − 3

2 1
1
2 0 0 0 · · · 0 0 · · · 0 1 − 3

2


2n−1×2n−1

=



− 3
2 1 0 0 · · · 0 0 0 0 · · · 0

1 − 3
2

1
2 0 · · · 0 0 0 0 · · · 0

0 1
2 − 3

2 1 · · · 0 0 0 0 · · · 0
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 0 · · · − 3
2 0 0 0 · · · 0

0 0 0 0 · · · 0 − 3
2 · · · 0 0 0

...
...

...
...

. . .
...

...
. . .

...
. . .

...
0 0 0 0 · · · 0 0 · · · − 3

2
1
2 0

0 0 0 0 · · · 0 0 · · · 1
2 − 3

2 1
0 0 0 0 · · · 0 0 · · · 0 1 − 3

2



+
1
2

e1eT
2n−1 +

1
2

e2n−1eT
1
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=

(
Ar−1 0

0 A2n−r

)
+

1
2

e1eT
2n−1 +

1
2

e2n−1eT
1 (see Lemma A1)

= χ1 +
1
2

e2n−1eT
1 , where χ1 =

(
Ar−1 0

0 A2n−r

)
.

Since det
(

χ1 +
1
2 e1eT

2n−1

)
= det(χ1) = det(Ar−1) · det(A2n−r), then we have that

det
(

χ1 +
1
2

e1eT
2n−1 +

1
2

e2n−1eT
1 )

)
=

det
(

χ1 +
1
2

e1eT
2n−1

)
+

1
2

eT
1 · adj

(
χ1 +

1
2

e1eT
2n−1

)
· e2n−1 ={

det(χ1) + (−1)2n−1 det(Ar−2)·det(D2n−r−1)
4 , if r =odd;

det(χ1) + (−1)2n−1 det(A2n−r−1)·det(Dr−2)
4 , if r =even.

= −
(

1
2

)n
3n.

Subcase 2(b): If r = 2n, then:

det
(

χ({r}|{r}) + 1
2

LV01({r}|{})T LV01({}|{r})
)
= det(A2n−1)

= −
(

1
2

)n
3n.

Therefore, for 1 ≤ r ≤ 2n, i.e., for n + 1 ≤ j ≤ 3n, one has

det
(

χ({r}|{r}) + 1
2

LV01({}|{r})T LV01({}|{r})
)
= −

(
1
2

)n
3n.

So,

α3n−1 =
3n

∑
j=1

det(−LR({j}|{j}))

=
n

∑
j=1

det
(
− LR({j}|{j})

)
+

3n

∑
j=n+1

det
(
− LR({j}|{j})

)

=
n

∑
j=1

(−4)n−1 ·
(

1
2

)n
6n +

3n

∑
j=n+1

(−4)n · (−1)
(

1
2

)n
3n

= (−1)n−12n−1 · 15n2.

Proof of Lemma 5. Denote by B({j, k}|{j, k}) the sub-matrix of the matrix B after deleting
the jth and kth rows and their corresponding columns. Thus,

α3n−2 = ∑
1≤j<k≤3n

det(−LR({j, k}|{j, k}))

=

 ∑
1≤j<k≤n

+ ∑
n+1≤j<k≤3n

+ ∑
1≤j≤n

n+1≤k≤3n

det(−LR({j, k}|{j, k})).

Therefore, we evaluate the subsequent cases.
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Case A3. Take the case if 1 ≤ j ≤ n,

det(−LR({j, k}|{j, k}) =

∣∣∣∣∣ −4In−2 −
√

2LV01({j, k}|{})
−
√

2LV01({j, k}|{})T χ

∣∣∣∣∣, where χ = −LV11 .

Now, we have the subcases listed below.
Subcase 3.1: If j = 1 and 2 ≤ k ≤ n, apply the Schur complement, we have

det
(

χ +
1
2

LV01({j, k}|{j, k})T LVV01({j, k}|{j, k})
)
=

∣∣∣∣R2k−2 0
0 R2n−2k+2

∣∣∣∣
= det(R2k−2) · det(R2n−2k+2)

=

(
1
2

)n
36(k − j)(n − k + 1).

Subcase 3.2: If 1 < j < k ≤ n, R′ = χ + 1
2 LV01({j, k}|{j, k})T LVV01({j, k}|{j, k})

=



− 3
2 1 0 0 · · · 0 0 0 0 · · ·

0 0 0 0 0 · · · 0 1
2

1 − 3
2

1
2 0 · · · 0 0 0 0 · · ·

0 0 0 0 0 · · · 0 0
0 1

2 − 3
2 1 · · · 0 0 0 0 · · ·

0 0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 0 · · · −2 0 0 0 · · ·
0 0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 −2 1 0 · · ·
0 0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 1 − 3

2
1
2 · · ·

0 0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0 1

2 − 3
2 · · ·

0 0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 0 · · · 0 0 0 0 · · ·
− 3

2 1 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0 0 0 · · ·
1 −2 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0 0 0 · · ·
0 0 −2 1 0 · · · 0 0
0 0 0 0 · · · 0 0 0 0 · · ·
0 0 1 − 3

2
1
2 · · · 0 0

0 0 0 0 · · · 0 0 0 0 · · ·
0 0 0 1

2 − 3
2 · · · 0 0

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0 0 0 · · ·
0 0 0 0 0 · · · − 3

2 1
1
2 0 0 0 · · · 0 0 0 0 · · ·
0 0 0 0 0 · · · 1 − 3

2


=

C2j−2 0 0
0 R2k−2j 0
0 0 C2n−2k+2

+
1
2

e1eT
2n +

1
2

e2neT
1 .
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Now, det

C2j−2 0 0
0 R2k−2j 0
0 0 C2n−2k+2

+ 1
2 e1eT

2n

 = det(C2j−2)det(R2k−2j)det(C2n−2k+2). Then,

det(R′) = det(C2j−2)det(R2k−2j)det(C2n−2k+2)

+ (−1)2n+1 1
4

det(C2j−3) · det(C2n−2k+1)

=

(
1
2

)n
36(k − j)(n − k + 1).

So, if 1 ≤ j < k ≤ n,

∑
1≤j<k≤n

det(−LR({j, k}|{j, k})) = (−4)n−2 ∑
1≤j<k≤n

(
1
2

)n
36(k − j)(n − k + 1)

= (−4)n−2
(

1
2

)n
3n2(n − 1)(n + 1).

Case A4. Consider the case when n + 1 ≤ j < k ≤ 3n,

det(−LR({j, k}|{j, k}) =
∣∣∣∣∣ −4In −

√
2LV01({}|{j, k})

−
√

2LV01({}|{j, k})T χ({j, k}|{j, k})

∣∣∣∣∣ =
∣∣∣∣−4In 0

0 ℜ4

∣∣∣∣,
where ℜ4 = χ({j, k}|{j, k}) + 1

2 LV01({}|{j, k})T LVV01({}|{j, k}) and χ = −LV11 .
det(−LR({j, k}|{j, k}) = det(−4In)det(ℜ4).
Let r = j − n and t = k − n. We must examine the next subcases.
Subcase 4.1: 1 < r < t < 2n, r-even and t-odd or r and t are both odd or both even, we
have

ℜ4 =

 Ar−1 0 1
2 e1eT

2n
0 At−r−1 0

1
2 e2neT

1 0 A2n−t

.

Subcase 4.2: 1 < r < t < 2n, r-odd and t-even, so

ℜ4 =

 Ar−1 0 1
2 e1eT

2n
0 Dt−r−1 0

1
2 e2neT

1 0 A2n−t

.

Subcase 4.3: r = 1, 1 < t < 2n, and t even, we have

ℜ4 =

(
Dt−2 0

0 A2n−t

)
.

Subcase 4.4: r = 1, 1 < t < 2n, and t-odd, we have

ℜ4 =

(
At−2 0

0 A2n−t

)
.

Subcase 4.5: 1 < r < 2n, r = 2n, and r-even, we have

ℜ4 =

(
Ar−1 0

0 A2n−r−1

)
.

Subcase 4.6: 1 < r < 2n, r = 2n, and r-odd, we have

ℜ4 =

(
Ar−1 0

0 D2n−r−1

)
.

As previously, we can proceed as follows:
χ({j, k}|{j, k}) + 1

2 LV01({}|{j, k})T LVV01({}|{j, k}) =
9
(

1
2

)n+2
(t − r)(2n − t + r), if {r, t} are both even or both odd;(

1
2

)n+2
(3t − 3r − 1)(6n − 3t + 3r + 1), if r =odd, t =even;(

1
2

)n+2
(3t − 3r + 1)(6n − 3t + 3r − 1), if r =even, t =odd.
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So,

∑
n+1≤j<k≤3n

det(−LR({j, k}|{j, k})) = (−4)n
(

1
2

)n+2
{

∑
1≤r<t≤2n

{r,t}={even or odd}

9(t − r)(2n − t + r)

+ ∑
1≤r<t≤2n

r−odd,t−even

(3t − 3r − 1)(6n − 3t + 3r + 1)

+ ∑
1≤r<t≤2n

r−even,t−odd

(3t − 3r + 1)(6n − 3t + 3r − 1)

}

= (−4)n
(

1
2

)n+2
{6n(n2 − 1) + (n − 1)(3n2 + n + 2) + (n + 1)(3n2 − n + 2)}

= (−4)n
(

1
2

)n
n2(3n2 − 1).

Case A5. Suppose that 1 ≤ j ≤ n and n + 1 ≤ k ≤ 3n. In such a case, we have

that ∑
1≤j<n

n+1≤k≤3n

det(−LR({j, k}|{j, k})) =

∣∣∣∣−4In−1 V
VT χ({k}|{k})

∣∣∣∣, where V is a submatrix

of −
√

2L01 created by removing the jth row and kth column of −
√

2L01. Taking t = k − n,
we can compute det(χ({t}|{t}) + 1

2 VTV):

(−1)n−1(36(−j2+iq+in)−9(t2+2qn)+8(6j−3t−3n−2))
2n+1 , if j > 1, t < 2j − 2 and even;

(−1)n−1(36(−j2+iq+in)−9(t2+2qn)+30(2j−t−n−1)+5)
2n+1 , if j > 1, 1 < t < 2j − 2 and odd;

(−1)n−1(36(−j2+iq−in)−9(t2+2qn)+8(6j−3qn−3n−2))
2n+1 , if j > 1, 2n > t > 2j − 2 and even;

(−1)n−1(36(−j2+iq−in)−9(t2+2qn)+30(2j−qn−n−1)+5)
2n+1 , if j > 1, t > 2j − 1 and odd;

(−1)n−1(9(2nq−t2)+6(t−n)−1)
2n+1 , if j = 1, t =odd;

(−1)n−1(9(2nq−t2)+12(t−n)−4)
2n+1 , if j = 1, t =even;

(−1)n−1(3n−1)
2n−1 , if j > 1, t = 2j − 1 or 2j − 2;

(−1)n−1(9(ni−j2)+4(6j−3n−4))
2n−1 , if j > 1, t = 1;

(−1)n−1(9(ni−j2)+6(2j−n)−4)
2n−1 , if j > 1, t = 2n.

We have

∑
1≤j<n

n+1≤k≤3n

det(−LR({j, k}|{j, k})) = −(−4)n−1
(

1
2

)n−1
n2(3n2 + 1).

Thus,

α3n−2 = ∑
1≤j<k≤3n

det(−LR({j, k}|{j, k})) = ∑
1≤j<k≤n

det(−LR({j, k}|{j, k}))

+ ∑
n+1≤j<k≤3n

det(−LR({j, k}|{j, k})) + ∑
1≤j<n

n+1≤k≤3n

det(−LR({j, k}|{j, k}))

= (−4)n−2
(

1
2

)n
3n2(n2 − 1) + (−4)n

(
1
2

)n
(3n4 − n2)

+ (−4)n−1
(

1
2

)n−1
n2(3n2 + 1)

= −2nn2 15(75n2 − 11)
16

.
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