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Abstract: The early and accurate detection of Distributed Denial of Service (DDoS) attacks is a
fundamental area of research to safeguard the integrity and functionality of organizations’ digital
ecosystems. Despite the growing importance of neural networks in recent years, the use of classical
techniques remains relevant due to their interpretability, speed, resource efficiency, and satisfactory
performance. This article presents the results of a comparative analysis of six machine learning
techniques, namely, Random Forest (RF), Decision Tree (DT), AdaBoost (ADA), Extreme Gradient
Boosting (XGB), Multilayer Perceptron (MLP), and Dense Neural Network (DNN), for classifying
DDoS attacks. The CICDDoS2019 dataset was used, which underwent data preprocessing to remove
outliers, and 22 features were selected using the Pearson correlation coefficient. The RF classifier
achieved the best accuracy rate (99.97%), outperforming other classifiers and even previously pub-
lished neural network-based techniques. These findings underscore the feasibility and effectiveness
of machine learning algorithms in the field of DDoS attack detection, reaffirming their relevance as a
valuable tool in advanced cyber defense.

Keywords: cybersecurity; DDoS attacks; CICDDoS2019 dataset; attack detection; data preprocessing;
feature selection; outlier removal; interpretability
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1. Introduction

The importance of cybersecurity in contemporary society is undeniable. With the
increase in digital communication, cloud computing, mobile devices, and the Internet of
Things (IoT), the number of possible points of attack has significantly increased [1]. Cyber-
security is responsible for protecting computer systems and networks against unauthorized
intrusions, theft, damage, and service interruptions. In a landscape where cyber threats are
becoming increasingly complex and sophisticated, the protection of digital assets becomes
critical. Cyber attacks can have significant economic consequences, damage to reputa-
tion, and even the loss of confidential information. These attacks can target individuals,
organizations, or governments, and their repercussions can be far-reaching.

In the context of contemporary cybersecurity, Distributed Denial of Service (DDoS)
attacks constitute a formidable class of cyberattacks whose purpose is to overload or
overwhelm access to a network or server’s resources. This goal is achieved by sending large
volumes of traffic to hinder its regular operation and, consequently, induce the inoperability
of these systems [2–4]. As a result, the affected network or server may become inaccessible
or operate extremely slowly, causing disruptions in functionality and economic losses for
the affected organization. An illustrative example of this problem is CloudFlare, a network
services company, which suffered a DDoS attack in early 2023, with over 71 million requests
per second, marking the largest DDoS attack experienced that year [5]. Even the artificial
intelligence company behind the development of ChatGPT confirmed the impact of its
services by this type of attack [6].
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Modern DDoS attacks exhibit notable complexity, characterized by the use of a dy-
namic combination of multiple attack vectors, and follow a process of continuous evolution
and expansion [3,7]. These vectors include volumetric attacks that involve considerable
bandwidth consumption, TCP state exhaustion attacks, and low-and-slow application layer
attacks. Multivector DDoS attacks are not new, but their launch has increased by attackers,
due to the wide availability of specialized tools and online rental services. These strategies
are typically driven by attackers who use a network of compromised computers, commonly
referred to as a botnet, further complicating the task of identifying the origin of an attack.
The proliferation of these botnets has increased the difficulty of mitigating DDoS attacks
and has increased the challenges in protecting critical digital infrastructures.

In the face of this growing threat of DDoS attacks, organizations and states have the
option to implement different cybersecurity solutions, such as Digital Attack Map [8],
Fortinet [9] and Darktrace [10], among others, which offer advanced real-time monitoring
capabilities and ensure multilayered protection to detect and mitigate DDoS attacks [11].
However, it is important to note that these solutions, especially in the case of small-scale
networks, tend to involve significant costs [12], largely owing to the need for continu-
ous training and the demand for highly skilled professionals to manage these solutions,
which affects their accessibility. On the other hand, other solutions based on traditional
approaches, such as traffic protection systems, firewalls, and managed security services,
are proving to be increasingly less effective in containing the constant flow of these attacks
circulating on the network [13].

Machine learning techniques have emerged as promising tools for the effective iden-
tification and mitigation of these attacks. Classical approaches, such as Random Forest,
Decision Trees, AdaBoost, Extreme Gradient Boosting, and others, remain relevant in DDoS
detection because of their interpretability, speed, resource efficiency, and satisfactory per-
formance. Additionally, they are valuable complements to more modern machine learning
approaches, allowing them to play an essential role in cybersecurity and the protection of
networks and systems against DDoS attacks. However, it is important to note that machine
learning models often misclassify the most dangerous traffic flows owing to inadequate or
poor feature selection or using datasets that are now outdated.

For example, Sadhwani et al. [14] implemented different classifiers, such as logistic
regression (LR), Random Forest (RF), Naive Bayes (NB), artificial neural networks (ANNs),
and K-nearest neighbor (KNN), to classify DDoS attacks in the BOT-IOT and TON-IOT
datasets. During preprocessing, missing value handling was addressed, but the number
of records affected by this process was not specified. Regarding features, 15 were selected
using the ExtraTreeClassifier algorithm for both datasets. Data imbalance was addressed
using the SMOTE technique. Regarding the validation of classifier performance, it was
observed that in the TON-IOT dataset, RF was the best algorithm for multiclass classi-
fication, with an accuracy of 100%, whereas for binary classification, NB was the best
with an accuracy of 100%. In the BOT-IOT dataset, NB achieved an accuracy of 100% for
both binary and multiclass classification. Liu et al. [15] also implemented RF, SVM, KNN,
DT, and XGBoost, using the CSE-CIC-IDS2018 dataset, demonstrating that RF is the best
classifier with an accuracy of 98.95%.

Ma et al. [16] presented a DDoS attack detection algorithm that uses feature selection
along with the Random Forest (RF) algorithm, using the CIC-DDoS2019 dataset. This
dataset underwent preprocessing resulting in the final selection of 24 features. All records
were normalized to the range of [0, 1]. Hyperparameter selection for the RF classifier was
performed using built-in functions. The experimental results showed an accuracy of 100%.
It is important to note that these results may be overestimated because the model was
trained using an unequal distribution of data, with 67% for training and 33% for testing.

Lv et al. [17] proposed a Decision Tree (DT)-based classifier for DDoS attack classifi-
cation using the MBB-IoT dataset. Owing to the large size of the dataset, they used only
1% of the records, resulting in a total of 77 features to evaluate the classifier. Due to data
imbalance, four strategies were applied to address this issue: SMOTE, K-Means SMOTE,
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Gaussian Probability Distribution, and KG-SMOTE. The results of the multiclass classifi-
cation showed the clear superiority of the KG-SMOTE method over the other methods,
with precision, recall, F1, and AUC rates of 97.61%, 96.72%, 97.12%, and 98.15%, respec-
tively. However, the study does not discuss the processing time required by this method,
which represents a significant limitation that needs to be addressed in future research.

Hnamte et al. [13] implemented a deep neural network (DNN) consisting of three
hidden layers with 128, 256, and 128 neurons, respectively. This network includes a reg-
ularization technique known as dropout with a rate of 0.1, and uses Softmax and Relu
activation functions. This architecture was trained for 30 epochs, using batch sizes of 128,
the Adam optimizer, and a learning rate of 0.0001. These hyperparameters were experi-
mentally selected to calibrate the model and improve its performance. The effectiveness
of this architecture was evaluated with different freely available datasets, such as InSDN,
CICIDS2018 and Kaggle DDoS, achieving binary classification results of 99.98%, 100%,
and 99.99%, respectively, in terms of accuracy.

Najar and Manohar [1] proposed a convolutional neural network (CNN)-based ap-
proach to detect DDoS attacks, using the CICIDS2019 dataset. From this dataset, 66 features
were selected using balanced random sampling (BRS) and arbitrary selection to balance the
data across all classes. A total of 672,300 records constituted the new dataset. However,
the amount of duplicate, empty, and other records was not specified. This new dataset
underwent min–max normalization and was used to validate the performance of the CNN
architecture, whose hyperparameters were arbitrarily selected. The model exhibited per-
formance in binary and multiple classifications, with an accuracy exceeding 99.99% and
98.64%, respectively.

Mustaphaa et al. [11] presented a method based on the Long Short-Term Mem-
ory (LSTM) model to classify Distributed Denial of Service (DDoS) attacks using the
CICIDS2019 and CICIDS2017 datasets. Both datasets were merged and preprocessed,
resulting in a new dataset with 67 features and 251,723 records for each benign traffic
and DDoS attack class. When evaluating the performance of this model, it was compared
to other machine learning classifiers such as Decision Trees (DT), Multilayer Perceptron
(MLP), XGBoost, and Random Forest (RF), resulting in the proposed LSTM-based model
outperforming the other classifiers with a true F1 score of 99% and a false F1 score of 98.25%.
In the same context, Ahmad et al. [18] presented a hybrid model called HD-IDM that com-
bines the GRU and LSTM classifiers. This model was evaluated using the CSE-CIC-IDS2017,
CSE-CIC-IDS2018, NSL KDD, and CIC-DDoS2019 datasets, achieving a maximum accuracy
of 99.91% on the CIC-DDoS2019 dataset. This result was compared to other classifiers,
including the Gaussian Naive Bayes (GNB), Gradient Boosting (GB), Multilayer Perceptron
(MLP), and Random Forest (RF) algorithms, demonstrating the superiority of the proposed
model. Ragab et al. [19] proposed a Harris Hawks optimizer called PHHO-ODLC for
feature extraction and an Attention-Based Long Short-Term Memory Bidirectional Memory
Network (ABiLSTM) for classifying DDoS attacks from the BoT-IoT dataset. The accuracy
rate obtained for binary classification was 99.2%, whereas for multiclass classification, it
was 98.83%.

Setrita et al. [20] introduced a comprehensive approach called OptMLP-CNN, which
combines advanced techniques such as SHAP feature selection, a fused architecture of
Multilayer Perceptron (MLP) and a convolutional neural network (CNN), and the use of
Bayesian optimization along with the ADAM optimizer. This model was evaluated using
the InSDN and CICDDoS-2019 datasets. In both datasets, 20 features were selected using
the SHAP method. The evaluation of the proposed model showed an accuracy rate of
99.95% and 99.98% for the CICDDoS-2019 and InSDN datasets, respectively. These results
indicate exceptional performance in DDoS attack classification. However, it is important to
note that these results only refer to binary classification.

Adeniyi et al. [21] proposed a new hybrid model called autoencoder–Multilayer
Perceptron (AE-MLP) and validated its performance using the NF-UQ-NIDS-V2 dataset.
In the first part of the experiment, by splitting the dataset into an 80/20 training and
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testing ratio, they achieved the highest model accuracy, reaching 99.98%. The recorded
training time was 4.96 s, whereas the prediction time was 0.74 s. In the second part of the
experiment, the proposed AE-MLP hybrid model was compared with other deep learning
models. It was found that the AE-MLP model outperformed LSTM and GRU, achieving
an accuracy of 99.98%, compared to 94.98% and 97.10%, respectively. Additionally, it was
compared to the MLP model, demonstrating a higher accuracy of 99.98% versus MLP’s
98.63%. Finally, it was compared to a shallow machine learning model, recording a training
time of 4.96 s, with an accuracy also of 99.98%.

Ramzan et al. [22] used three deep learning models, namely RNN, LSTM, and GRU,
to perform binary and multiclass classification of DDoS attacks using the CICDDoS2019
dataset. A total of 20 features were selected using an additional tree classifier. The dataset
was split into 70% for training and 30% for testing. The results of the binary classification
showed that RNN was the most effective method, with an accuracy of 99.99%. On the other
hand, the results of the multiclass classification indicated that GRU was the most effective
method, with an accuracy of 98%.

In general, these previous studies on the intrusion detection problem suffer from the
following limitations:

• In machine learning, data processing is considered essential to achieve good results using
any machine learning model. However, in some studies, the data preprocessing was not
detailed, or outliers were not taken into account [16,18,19]. In other studies [1,13,17,20,22],
it was not specified how many records were affected after processing the outliers.

• A crucial aspect when working with machine learning algorithms is the appropriate
selection of the hyperparameters that a model should use. In many studies, this
selection was performed arbitrarily [20–22]. In other cases, the hyperparameters used
were not justified, making implementation difficult, or only the author only mention
the algorithm used without specifying its hyperparameters [17].

• The distribution of data between training and validation sets is a critical factor in
evaluating algorithm performance. However, in [18], the proportion of data used in
each group was not specified. Additionally, in other studies, it was observed that
only a subset of data from the original dataset was used [14,21], which can lead to
data leakage.

• Another fundamental aspect in DDoS attack detection is the response time to these
events. In most of the reviewed studies, this factor was not addressed, except for [1],
which only specified the inference time.

To overcome the aforementioned challenges, this study compares six different machine
learning models and presents a methodology for preprocessing and feature selection using
the CICDDoS2019 dataset, achieving high accuracy despite a reduction in features. Unlike
previous approaches that often focus on individual machine learning techniques, this work
stands out for its comprehensive approach involving a detailed comparison of six different
models. We present an exhaustive methodology for preprocessing and feature selection
using the CICDDoS2019 dataset. We employed techniques such as Principal Component
Analysis (PCA) and Pearson correlation to study the features. Additionally, hyperparameter
optimization was performed using the Tree of Parzen Estimators method. This unique
approach, involving the thorough evaluation of multiple machine learning models in a
single environment alongside advanced preprocessing and feature selection techniques,
allowed us to achieve high accuracy in DDoS attack detection, despite the reduction in the
number of features. This direct and exhaustive comparison of models, together with the
use of advanced preprocessing and feature selection techniques, reinforces the premise
of our work and highlights the unique contribution of this study to the field of DDoS
attack detection.
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2. Materials and Methods
2.1. Materials

For the development of this research, the CIC-DDoS2019 dataset, published by Sharafaldin
et al. [23,24], was used, which stands out as one of the most comprehensive collections in
the field of DDoS attacks. Data were collected using the TCP/UDP protocol. In total, this
compilation covers 18 types of DDoS attacks, with a total of 431,371 records, and comprises
80 features. Of these, 333,540 records correspond to DDoS attacks, while 97,831 records
are benign.

The classification algorithms were implemented using Python 3.10 programming
language and Scikit-learn library. The calculations were performed on a system powered by
an AMD Ryzen 7 3700u processor, equipped with a Radeon Vega Mobile GPU at 2.3 GHz
(HP, Chiclayo, Lambayeque), backed by 24 GB of RAM, and running the 64-bit Windows
11 operating system.

2.2. Method
2.2.1. Data Preprocessing

Data preprocessing is a fundamental stage in which a series of transformations and
adjustments are made to the data to improve both the data quality and the results ob-
tained [25]. In our case, for the selected dataset, an analysis of the features with identical
values in all records was performed, which were eliminated. Likewise, records with
duplicate, null, positive infinite, and negative infinite values were also removed. Thus,
the original database contained 80 features and 431,371 records. To simplify it, improve
processing time, and reduce the required memory space for processing, a dataset analysis
was carried out. This analysis revealed that 12 features contained only zero values in
all records, 1 feature represented the numbering of all records, and another feature was
redundant as it contained the attack vector, which was not useful for data analysis since
another feature indicates whether the record corresponded to an attack or not. Therefore,
these 14 features were removed, reducing the number of features from 80 to 66.

Additionally, an evaluation was conducted on records with values such as NaN (Not
a Number), positive infinity (+inf), negative infinity (−inf), and duplicate values, totaling
12,612 records. These records were removed from the dataset, reducing the total from
431,371 to 418,759 records.

2.2.2. Feature Selection

The reduced database was analyzed using the Principal Component Analysis (PCA)
algorithm to determine the data variability and establish the number of descriptors that
provide significant information for detecting DDoS attacks. As shown in Figure 1, 95%
of the variance is explained by 23 principal components, where the x-axis represents the
number of components and the y-axis represents the cumulative explained variance.

To determine the possible relationships between the 23 principal components and
the highly correlated descriptors, the correlation between each pair of descriptors was
calculated. In order to simplify the process and avoid using PCA, which would increase the
database processing time, a new dimensionality reduction analysis was performed using
the Pearson correlation coefficient (represented as r) as a similarity metric, as described in
the following equation:

r =
n ∑ (xi − x̄)(yi − ȳ)√

n ∑ (xi − x̄)2 ∑ (yi − ȳ)2
, (1)

where xi and yi are the values of the variables x and y for the i-th data point; x̄ and ȳ
are the means of the variables x y y. This coefficient is a measure that ranges from −1 to
1. Its primary function is to evaluate both the strength and direction of the relationship
between two variables, in this case, the observed value (X) and the predicted value (Y).
A value of “0” indicates no linear relationship between the two variables, while “1” denotes
a perfect positive correlation where both variables increase simultaneously. On the other
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hand, a value of “−1” suggests a perfect negative correlation where one variable decreases
as the other increases. In Figure 2, the results obtained by applying the Pearson correlation
coefficient to the 66 features of the new dataset are presented.

Figure 1. Cumulative variance analysis by number of components with a 95% variance threshold.

Figure 2. Correlated values between each feature of the new dataset CIC-DDoS2019.

Given that these types of DDoS attacks need to be detected quickly, our goal was to
minimize the number of features to simplify detection. In this context, a feature reduction
was performed, looking for those whose mutual correlation exceeded 0.9 or was below
−0.9, and keeping only one of them. As a result, a new dataset was obtained consisting of
22 non-redundant features, along with their respective label, where 0 represents a benign
event and 1 represents an attack. These values are detailed in Table 1.
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Table 1. Final features of the CIC-DDoS2019 dataset.

# Characteristics Min and Max Values

1 Protocol [0; 17]
2 Fwd Packet Length Max [0; 32,120]
3 Fwd Packet Length Std [0; 2221.5562]
4 Bwd Packet Length Min [0; 1460]
5 Flow Bytes/s [0; 2,944,000,000]
6 Bwd IAT Total [0; 119,943,720]
7 Bwd IAT Min [0; 249]
8 Bwd Header Length [−2,125,437,950; 1,478,492,170]
9 Bwd Packets/s [0; 2,000,000]
10 Packet Length Max [0; 37,960]
11 Packet Length Variance [0; 43,778,892]
12 SYN Flag Count [0; 1]
13 ACK Flag Count [0; 1]
14 URG Flag Count [0; 1]
15 CWE Flag Count [0; 1]
16 Down/Up Ratio [0; 23]
17 Init Fwd Win Bytes [−1; 65,535]
18 Init Bwd Win Bytes [−1; 65,535]
19 Fwd Act Data Packets [0; 18,766]
20 Active Std [0; 21,352,442]
21 Active Max [0; 45,536,680]
22 Idle Std [0; 45,536,680]

2.2.3. Data Normalization

After obtaining a simplified dataset with various features (Table 1), the normalization
of records was carried out using the min–max technique to confine values within a range
between 0 and 1. This was performed with the aim of optimizing the performance of
the classifiers used and mitigating the effect of outliers. Normalization was conducted
according to the following mathematical formula:

X′ =
X − Xmin

Xmax − Xmin
(2)

where X represents the original value of the feature, X′ is the normalized value, Xmin is
the minimum value of the feature, and Xmax is the maximum value of the same. This
ensures that all features in the dataset are within the same range, facilitating comparison
and enhancing result interpretation in subsequent stages of the analysis.

2.2.4. Hyperparameter Tuning

The proper selection of hyperparameters is crucial to achieve optimal performance in
implementing any machine learning algorithm [20]. While various studies have employed
grid search methods or random hyperparameter selection, it is important to note that such
approaches are computationally expensive when exploring the entire search space [26].
For this reason, it was decided to use a Bayesian search algorithm, proposed by [27], which
allows for the efficient search of the optimal set of hyperparameters through an iterative
process. This method, known as Tree of Parzen Estimators (TPE), has proven to be highly
effective in hyperparameter optimization for machine learning models. Through TPE,
the hyperparameter space can be explored systematically and efficiently, resulting in a
better fit for the selected machine learning models and, ultimately, in improved performance
in DDoS attack detection.

The TPE algorithm is a Bayesian method for hyperparameter optimization. It is based
on constructing a Tree of Parzen Estimators to approximate the posterior distribution of the
hyperparameters. The TPE algorithm operates as follows:

We define a search space containing the set of all possible values for each hyperparam-
eter of the machine learning model.
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We define the likelihood function, which measures the probability of observing the
data given by a set of hyperparameters. It is expressed as

P(D|θ) = ∏
i

P(yi|xi, θ) (3)

where the variables are as follows:

• D: data.
• θ: hyperparameters.
• P(D|θ): likelihood of the data given the hyperparameters.
• P(yi|xi, θ): likelihood of the observation yi given a point xi in the search space and the

hyperparameters θ.

Bayes’ rule is used to update the probability of the hyperparameters given the data,
using the following expression:

P(θ|D) ∝ P(D|θ)P(θ) (4)

where the variables are as follows:

• P(θ|D): posterior probability of the hyperparameters given the data.
• P(θ): prior of the hyperparameters.

The Parzen Estimator is used to estimate the probability density of a distribution,
defined as

f (x) = ∑
i

K(x − xi)/h (5)

where the variables are as follows:

• K: kernel function.
• h: bandwidth.

The Tree of Parzen Estimators was constructed recursively by dividing the search space
into subsets. In each subset, a Parzen Estimator was used to estimate the probability density.

Finally, the selection criterion was used to choose the next set of hyperparameters to
evaluate. This was based on information acquisition, such as entropy reduction.

Table 2 shows a comparison of the tuning time to adjust the hyperparameters of four
machine learning methods and two hyperparameter optimization methods, GridSearch
and TPE. The results highlight the superior performance of the TPE method, which is why
this method was chosen to search for the best set of hyperparameters in our study. TPE
proved to be more efficient in exploring the hyperparameter space, resulting in significantly
shorter tuning times compared to GridSearch. This efficiency in the hyperparameter search
allowed for faster and more effective optimization of our machine learning models, thus
contributing to improved accuracy and overall performance in DDoS attack detection.

Table 2. Comparison of the time taken for hyperparameter selection between GridSearch and TPE.

ML Classifier GridSearch TPE

RF 768 m 13.7 s 11 m 51 s
ADA 653 m 17.5 s 9 m 36 s
XGB 616 m 56.2 s 2 m 4 s
DT 207 m 47.6 s 25 s

2.2.5. Machine Learning Algorithms and Performance Evaluation

To identify DDoS attacks, six machine learning algorithms were selected: Random
Forest (RF), Decision Tree (DT), AdaBoost (ADA), XGBoost (XGB), Multilayer Perceptron
(MLP), and Deep Neural Network (DNN). These selections were based on their proven
effectiveness in attack detection from previous studies. RF and DT algorithms are known
for handling complex and large datasets, along with their strength in identifying patterns
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in nonlinear data. ADA and XGB are ensemble methods that improve model accuracy
by combining weaker models. MLP and DNN, on the other hand, are neural network
models capable of learning and adapting to complex, nonlinear data patterns, making
them particularly suitable for DDoS attack detection due to the diverse characteristics and
behaviors these attacks can exhibit. This combination of six algorithms provided a variety
of approaches and techniques, ultimately improving the system’s ability to effectively
identify and mitigate DDoS attacks in real time.

All analyses of these classifiers were carried out using the simplified and normalized
dataset. This dataset was randomly split into 80% for hyperparameter tuning using cross-
validation, with k = 5. This splitting strategy ensured the use of all training data over the
five iterations, thus reducing potential biases and data leakage. The remaining 20% was
reserved as a test set.

The performance evaluation of the classifiers was conducted by analyzing various
metrics, including accuracy, precision, recall, F1 score, and the area under the curve (AUC),
whose mathematical expressions are presented in the corresponding equations:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 score = 2 × Precision × Recall
Precision + Recall

(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

AUC = 1 − FP + FN
TP + TN

(10)

where TP, FP, TN, and FN represent the number of true positives, false positives, true
negatives, and false negatives, respectively.

3. Results

To determine the optimal hyperparameter values, an iterative process was conducted.
Initially, 10% of the training dataset was randomly selected, and arbitrary values were as-
signed to the hyperparameters. Subsequently, the performance of the model was evaluated
using the TPE algorithm. If satisfactory results were not achieved, additional adjustments
were made to the hyperparameter values to improve the model’s performance. Once an
accuracy greater than 99% was achieved for all models, fine-tuning was performed by
reducing the search range for the hyperparameter values, detailed in Table 3, and the full
training set was used to find the optimal hyperparameters.

Table 3. Range of hyperparameters used for tuning DDoS attack classification models.

ML Classifier Space Values

RF max_depth = range(10, 16)
n_estimators = range(35, 46)
criterion = [“gini”, “entropy”]
max_features = range(0.01, 1)

DT criterion = [“gini”, “entropy”]
splitter =[“best”, “random”]
max_depth = range(1, 10)
min_samples_split = range(2, 30)
min_samples_leaf = range(1, 15)
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Table 3. Cont.

ML Classifier Space Values

ADA learning_rate= range(0, 1)
n_estimators= range(20, 75)
algorithm = [“SAMME, “SAMME.R”]

XGB n_estimators = range(50, 100)
max_depth = range(1, 10)
learning_rate = range(0, 1)
gamma = range(0.0, 1.0)
min_child_weight = range(1, 10))

MLP hidden_layer_sizes = [(32,), (64,), (128,)]
activation = [“relu”, “tanh”, “logistic”]
alpha = [0.0001, 0.01]
solver = [“adam”]

DNN layers = [[64, 32], [128, 64], [256, 128]]
activation= [“relu”, “tanh”]
dropout_rate = range(0.0, 0.5)
optimizer = [“adam”, “rmsprop”]
batch_size=[32, 64, 128]
epochs = [10, 20, 30, 40, 50]

In Table 4, the optimal hyperparameter configurations obtained from the search space
for the different machine learning models are presented, along with the accuracy and
training time. As can be seen, the RandomForest and Xtreme Gradient Boosting techniques
achieved the highest accuracy of 99.95%, while Decision Tree closely followed with 99.88%.
However, the training time for the Decision Tree method was much shorter, at only 25 s,
followed by Xtreme Gradient Boosting with 2 min and 4 s. On the other hand, the MLP
and DNN methods achieved slightly lower accuracies of 99.66% and 99.70%, respectively,
but required considerably longer training times, with 2 h, 14 min, and 40 s for MLP and
50 min and 14 s for DNN.

Table 4. Optimal hyperparameter configurations, accuracy, and time for DDoS attack classifica-
tion models.

ML Classifier Best Hyperparameters Accuracy Training Time

RF {‘criterion’: ‘entropy’, ‘max_depth’: 12,
‘max_features’: 0.9145, ‘n_estimators’: 43}

99.95% 11 m 51 s%

DT {‘criterion’: ‘gini’, ‘min_samples_split’: 24,
‘max_depth’: 7, ‘min_samples_leaf’: 10,
‘splitter’: ‘best’}

99.88% 25 s%

ADA {‘algorithm’: ‘SAMME.R’, ‘learning_rate’:
0.55, ‘n_estimators’: 68}

99.59% 9 m 36 s%

XGB {‘gamma’: 0.21, ‘learning_rate’: 0.65,
‘max_depth’: 8, ‘min_child_weight’: 1,
‘n_estimators’: 80}

99.95% 2 m 4 s%

MLP {‘activation’: ‘relu’, ‘alpha’: 0.0001, ‘hid-
den_layer_sizes’: (32,), ‘solver’: ‘adam’}

99.66% 2 h 14 m 40 s%

DNN {‘activation’: ‘tanh’, ‘batch_size’: 128,
‘dropout_rate’: 0.070, ‘epochs’: 50, ‘layers’:
(256, 128), ‘optimizer’: ‘adam’}

99.70% 50 m 14 s%

Once the models were tuned, they were evaluated using the test set that had not
been previously used. The results obtained are presented in the confusion matrix for each
classifier shown in Table 5, where it can be observed that all models correctly classified a
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significant number of instances. The high number of true positives (TP) and true negatives
(TN) shows that the models efficiently detected normal instances and DDoS attacks, while
the number of false positives and false negatives is very low, indicating the classifiers’
adequate performance using the simplified database.

Table 5. Confusion matrix results for binary classification.

ML Classifier Benign Attack

RF
18,876 13 Benign

12 64,851 Attack

DT
18,771 66 Benign

28 64,787 Attack

ADA
18,699 190 Benign

147 64,716 Attack

XGB
18,874 15 Benign

22 64,841 Attack

MLP
18,759 130 Benign

163 64,700 Attack

DNN
18,833 56 Benign

194 64,669 Attack

With these results, the Random Forest (RF) classifier exhibited the best performance
compared to the other classifiers (Table 6). The model’s accuracy, reaching 99.97%, reflects
an exceptional level in predicting both normal and attack events. Additionally, the F1 score
of 99.98%, which balances precision and recall, highlights the model’s ability to classify
attacks and minimize false negatives accurately. This underscores the model’s ability to
achieve high precision and effectively manage false alarms. Furthermore, the AUC score of
99.96% emphasizes the model’s strong discriminatory power to effectively discern benign
and malicious network traffic.

Table 6. Performance of ML algorithms for binary classification of DDoS attacks.

ML
Classifier Accuracy (%) Precision (%) Recall (%) F1 (%) AUC (%)

RF 99.97 99.98 99.80 99.98 99.96

DT 99.89 99.90 99.96 99.23 99.80

ADA 99.60 99.70 99.77 99.74 99.38

XGB 99.96 99.98 99.97 99.97 99.94

MLP 99.65 99.80 99.75 99.77 99.53

DNN 99.70 99.91 99.70 99.80 99.70

As observed in the results, the RF model demonstrated the best performance, with an
accuracy of 99.97% and an F1 score of 99.98%, using the simplified database obtained in
this work, compared to models from other studies detailed in Table 7. This table provides
a comprehensive evaluation of previous studies that used the CICDDoS2019 dataset and
different machine learning techniques, including deep learning (DL) and the technique
proposed in this work. As can be seen, the results obtained here surpass those achieved
in previous works, except for those proposed in [16,22], with a difference of just 0.02 in
accuracy and 0.01 in the F1 score. It is worth noting that in [16], the number of features is
24, in ours it is 22, while in the research of [22] it is 20 features. Another aspect to consider
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is that both studies used a random split for training and testing, which can face the issue of
data leakage, compared to our study, where cross-validation (k = 5) was applied to ensure
the representativeness of all data during the training phase.

Table 7. Comparison of the results obtained in other work.

Ref. Approach Features Accuracy
(%)

Precision
(%)

Recall
(%) F1 (%)

[1] CNN 66 98.64 99.0 99.0 99.0

[11] LSTM 67 - - - 99.0

[16] RF 24 99.99 99.99 99.99 99.99

[18] Hybrid GRU and LSTM - 99.91 99.62 99.43 99.52

[20] OptMLP-CNN 20 99.95 99.90 99.98 99.93

[22]

RNN

20

99.99 99.99 99.99 99.99

LSTM 99.99 99.0 99.0 99.0

GRU 99.99 99.0 100 100

Our
study RF (Our approach) 22 99.97 99.98 99.80 99.98

The integration of machine learning models into network security systems could
significantly improve real-time DDoS attack detection and mitigation, thus strengthening
the protection of online resources. The adaptability of these models to new traffic pat-
terns allows them to cope with the increasing sophistication and variety of DDoS attacks,
providing a more robust defense in ever-changing cybersecurity environments. This adapt-
ability makes them an invaluable tool to complement and enhance existing cybersecurity
frameworks, which often require continuous updates to keep up with these threats.

4. Conclusions

This study demonstrated the effectiveness of applying different machine learning
algorithms, such as RF, DT, ADA, XGB, MLP, and DNN, in the detection and classification
of Distributed Denial of Service (DDoS) attacks. The results highlighted the superiority
of certain algorithms, such as RF, in terms of accuracy and F1 score in classifying DDoS
attacks in a new simplified dataset obtained from CICDDoS2019.

Furthermore, the importance of data preprocessing and feature selection to improve
the effectiveness of machine learning models in detecting DDoS attacks was shown. The use
of techniques such as feature selection through the Tree of Parzen Estimators (TPE) al-
gorithm and data normalization within a specific range significantly contributed to the
accuracy of the models.

The research underscores the importance of applying machine learning techniques
in cybersecurity, especially in contexts where speed and accuracy are paramount. Al-
though deep learning-based studies show promising results, this study demonstrates
that not everything is about deep learning. Simple, easy-to-interpret, and implementable
models can be used to address DDoS attacks. This comparative analysis, coupled with
careful algorithm selection, empowers organizations to anticipate and effectively counter
DDoS threats, thus protecting the integrity of their systems and data in an ever-evolving
digital environment.

Given the increasingly sophisticated evolution of DDoS attacks, one of the limitations
of this work is the ability to adjust the model to new types of attacks. Therefore, additional
research should be conducted focused on the adaptability of the model to the evolution of
these attacks. This could involve exploring more advanced machine learning techniques or
incorporating dynamic model update mechanisms to ensure their effectiveness in detecting
emerging attacks
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In future research, the exploration of hybrid models emerges as a very promising
strategy to improve the accuracy and efficiency of DDoS attack detection. While the
results obtained with the CIC-DDoS2019 dataset are favorable, it is important to recognize
that their generalization could be limited. Therefore, it is recommended to broaden the
methodological diversity to evaluate a wider range of more recent datasets, algorithms,
and techniques. It is also necessary to consider the analysis of the response time in real-
time DDoS attack situations, which is a critical aspect for cybersecurity. Addressing these
limitations in future research will not only strengthen the validity and applicability of the
results but will also contribute to significantly improving defense strategies against DDoS
attacks in increasingly challenging environments.

Author Contributions: Conceptualization, M.G.F. and F.L.B.-S.; supervision, M.G.F.; methodology,
validation, and formal analysis, M.G.F. and F.L.B.-S.; software and data curation, all authors; writing,
review, editing, and visualization, M.G.F. and F.L.B.-S.; project administration and funding acquisi-
tion, M.G.F. and F.L.B.-S. All authors have read and approved the final version of the manuscript
for publication.

Funding: This research received no external funding, and the APC was funded by Universidad Señor
de Sipán (Peru).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Najar, A.A.; Manohar, S. Cyber-Secure SDN: A CNN-Based Approach for Efficient Detection and Mitigation of DDoS attacks.

Comput. Secur. 2024, 139, 103716. [CrossRef]
2. Bravo, S.; Mauricio, D. Systematic review of aspects of DDoS attacks detection. Indones. J. Electr. Eng. Comput. Sci. 2019,

14, 155–168. [CrossRef]
3. Li, Q.; Huang, H.; Li, R.; Lv, J.; Yuan, Z.; Ma, L.; Han, Y.; Jiang, Y. A comprehensive survey on DDoS defense systems: New trends

and challenges. Comput. Netw. 2023, 233, 109895. [CrossRef]
4. Behal, S.; Kumar, K.; Sachdeva, M. Characterizing DDoS attacks and flash events: Review, research gaps and future directions.

Comput. Sci. Rev. 2017, 25, 101–114. [CrossRef]
5. The Cloudflare Blog. Available online: http://blog.cloudflare.com/cloudflare-mitigates-record-breaking-71-million-request-per-

second-ddos-attack/ (accessed on 20 January 2024).
6. OpenAI Status. Available online: https://status.openai.com/history (accessed on 4 February 2024).
7. Bahashwan, A.A.; Anbar, M.; Manickam, S.; Al-Amiedy, T.A.; Aladaileh, M.A.; Hasbullah, I.H. A Systematic Literature Review on

Machine Learning and Deep Learning Approaches for Detecting DDoS Attacks in Software-Defined Networking. Sensors 2023,
23, 4441. [CrossRef] [PubMed]

8. Digital Attack Map. Available online: https://www.digitalattackmap.com/ (accessed on 20 August 2023).
9. Fortinet Threat Map. Available online: https://threatmap.fortiguard.com/ (accessed on 20 August 2023).
10. Darktrace. Available online: https://es.darktrace.com/ (accessed on 8 February 2024).
11. Mustapha, A.; Khatoun, R.; Zeadally, S.; Chbib, F.; Fadlallah, A.; Fahs, W.; Attar, A.E. Detecting DDoS attacks using adversarial

neural network. Comput. Secur. 2023, 127, 103117. [CrossRef]
12. Dayal, N.; Srivastava, S. Analyzing effective mitigation of DDoS attack with software defined networking. Comput. Secur. 2023,

130, 103269. [CrossRef]
13. Hnamte, V.; Najar, A.A.; Nhung-Nguyen, H.; Hussain, J.; Sugali, M.N. DDoS attack detection and mitigation using deep neural

network in SDN environment. Comput. Secur. 2024, 138, 103661. [CrossRef]
14. Sadhwani, S.; Manibalan, B.; Muthalagu, R.; Pawar, P. A Lightweight Model for DDoS Attack Detection Using Machine Learning

Techniques. Appl. Sci. 2023, 13, 9937. [CrossRef]
15. Liu, Z.; Wang, Y.; Feng, F.; Liu, Y.; Li, Z.; Shan, Y. A DDoS Detection Method Based on Feature Engineering and Machine Learning

in Software-Defined Networks. Sensors 2023, 23, 6176. [CrossRef] [PubMed]
16. Ma, R.; Wang, Q.; Bu, X.; Chen, X. Real-Time Detection of DDoS Attacks Based on Random Forest in SDN. Appl. Sci. 2023, 13, 7872.

[CrossRef]
17. Lv, H.; Du, Y.; Zhou, X.; Ni, W.; Ma, X. A Data Enhancement Algorithm for DDoS Attacks Using IoT. Sensors 2023, 23, 7496.

[CrossRef] [PubMed]
18. Ahmad, I.; Imran, M.; Qayyum, Q.; Ramzan, M.S.; Alassafi, M.O. An Optimized Hybrid Deep Intrusion Detection Model

(HD-IDM) for Enhancing Network Security. Mathematics 2023, 11, 4501. [CrossRef]

http://doi.org/10.1016/j.cose.2024.103716
http://dx.doi.org/10.11591/ijeecs.v14.i1.pp155-168
http://dx.doi.org/10.1016/j.comnet.2023.109895
http://dx.doi.org/10.1016/j.cosrev.2017.07.003
http://blog.cloudflare.com/cloudflare-mitigates-record-breaking-71-million-request-per-second-ddos-attack/
http://blog.cloudflare.com/cloudflare-mitigates-record-breaking-71-million-request-per-second-ddos-attack/
https://status.openai.com/history
http://dx.doi.org/10.3390/s23094441
http://www.ncbi.nlm.nih.gov/pubmed/37177643
https://www.digitalattackmap.com/
https://threatmap.fortiguard.com/
https://es.darktrace.com/
http://dx.doi.org/10.1016/j.cose.2023.103117
http://dx.doi.org/10.1016/j.cose.2023.103269
http://dx.doi.org/10.1016/j.cose.2023.103661
http://dx.doi.org/10.3390/app13179937
http://dx.doi.org/10.3390/s23136176
http://www.ncbi.nlm.nih.gov/pubmed/37448025
http://dx.doi.org/10.3390/app13137872
http://dx.doi.org/10.3390/s23177496
http://www.ncbi.nlm.nih.gov/pubmed/37687952
http://dx.doi.org/10.3390/math11214501


Mathematics 2024, 12, 1294 14 of 14

19. Ragab, M.; Alshammari, S.M.; Maghrabi, L.A.; Alsalman, D.; Althaqafi, T.; AL-Ghamdi, A.A.-M. Robust DDoS Attack Detection
Using Piecewise Harris Hawks Optimizer with Deep Learning for a Secure Internet of Things Environment. Mathematics 2023,
11, 4448. [CrossRef]

20. Setitra, M.A.; Fan, M.; Agbley, B.L.Y.; Bensalem, Z.E.A. Optimized MLP-CNN Model to Enhance Detecting DDoS Attacks in SDN
Environment. Network 2023, 3, 538–562. [CrossRef]

21. Adeniyi, O.; Sadiq, A.S.; Pillai, P.; Aljaidi, M.; Kaiwartya, O. Securing Mobile Edge Computing Using Hybrid Deep Learning
Method. Computers 2024, 13, 25. [CrossRef]

22. Ramzan, M.; Shoaib, M.; Altaf, A.; Arshad, S.; Iqbal, F.; Castilla, A.K.; Ashraf, I. Distributed Denial of Service Attack Detection in
Network Traffic Using Deep Learning Algorithm. Sensors 2023, 23, 8642. [CrossRef]

23. Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing Realistic Distributed Denial of Service (DDoS) Attack
Dataset and Taxonomy. In Proceedings of the International Carnahan Conference on Security Technology (ICCST), Chennai,
India, 1–8 October 2019.

24. Talukder, M.A.; Uddin, M.A. CIC-DDoS2019 Dataset. 2023, Version 1. Available online: https://data.mendeley.com/datasets/
ssnc74xm6r/1 (accessed on 5 January 2023).

25. Frye, M.; Mohren, J.; Schmitt, R.H. Benchmarking of Data Preprocessing Methods for Machine Learning-Applications in
Production. Procedia CIRP 2021, 104, 50–55. [CrossRef]

26. Zhang, J.; Wang, Q.; Shen, W. Hyper-parameter optimization of multiple machine learning algorithms for molecular property
prediction using hyperopt library. Chin. J. Chem. Eng. 2022, 52, 115–125. [CrossRef]

27. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégel, B. Algorithms for Hyper-Parameter Optimization. In Advances in Neural Information
Processing Systems, Curran Associates. 2011. Available online: https://papers.nips.cc/paper_files/paper/2011/hash/86e8f7ab3
2cfd12577bc2619bc635690-Abstract.html (accessed on 11 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/math11214448
http://dx.doi.org/10.3390/network3040024
http://dx.doi.org/10.3390/computers13010025
http://dx.doi.org/10.3390/s23208642
https://data.mendeley.com/datasets/ssnc74xm6r/1
https://data.mendeley.com/datasets/ssnc74xm6r/1
http://dx.doi.org/10.1016/j.procir.2021.11.009
http://dx.doi.org/10.1016/j.cjche.2022.04.004
https://papers.nips.cc/paper_files/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://papers.nips.cc/paper_files/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html

	Introduction
	Materials and Methods 
	Materials
	Method
	Data Preprocessing
	Feature Selection
	Data Normalization
	Hyperparameter Tuning
	Machine Learning Algorithms and Performance Evaluation


	Results
	Conclusions
	References

