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Abstract: Topological indices are often used to predict the physicochemical properties of molecules.
The multiplicative sum Zagreb index is one of the multiplicative versions of the Zagreb indices,
which belong to the class of most-examined topological indices. For a graph G with edge set
E = {e1, e2, · · · , em}, its multiplicative sum Zagreb index is defined as the product of the numbers
D(e1), D(e2), · · · , D(em), where D(ei) is the sum of the degrees of the end vertices of ei. A chemical
tree is a tree of maximum degree at most 4. In this research work, graphs possessing the maximum
multiplicative sum Zagreb index are determined from the class of chemical trees with a given order
and fixed number of segments. The values of the multiplicative sum Zagreb index of the obtained
extremal trees are also obtained.

Keywords: topological index; multiplicative sum Zagreb indices; chemical trees; segments;
extremal problem
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1. Introduction

A characteristic of a graph that is preserved under graph isomorphism is commonly
referred to as a graph invariant [1]. In chemical graph theory, graphical invariants that
take numerical quantities are usually named topological invariants, or simply, topological
indices. Zagreb indices, particularly the first and second Zagreb indices denoted by M1 and
M2, respectively, belong to well-examined categories of topological indices. Initially, they
appeared in connection with the study molecules [2,3]. These indices can be defined as

M1(G) = ∑
uv∈E(G)

(du + dv) = ∑
x∈V(G)

d2
x and M2(G) = ∑

uv∈E(G)

dudv,

where uv is an edge between the vertices u and v, while dx is the degree of the vertex x. Some
information about the chemical applications of M1 and M2 can be found in [4,5]. These
indices have also been the subject of extensive research into their relationship, comparison,
and other mathematical properties [6–14]. Many existing facts of the Zagreb indices can be
found in survey papers [15–19].

In 2010, Todeschini et al. [20] proposed to consider the multiplicative versions of
topological indices. The multiplicative versions of M1 and M2 are defined [21] as follows:

Π1 = Π1(G) = Πu∈V(G)d
2
u and Π2 = Π2(G) = Πuv∈E(G)dudv.

Bozovic et al. [22] discussed extreme values of multiplicative Zagreb indices for
chemical trees. Wang et al. [23] examined the extremum multiplicative Zagreb indices
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of trees with a specific number of vertices and maximum degree. Further mathematical
features of these two multiplicative indices can be found in [21,24–31].

In 2012, Eliasi et al. [25] introduced a modification of the multiplicative first Zagreb
index known as the multiplicative sum Zagreb index [32]. The mathematical formulation
of the multiplicative sum Zagreb index is as follows:

Π∗
1 = Π∗

1(G) = Πuv∈E(G)(du + dv).

In [25], it was shown that the path has the least Π∗
1-value across all connected graphs

with the specified order. The trees achieving the second least Π∗
1-value were also de-

termined in [25]. Xu and Das [31] described the extremal trees, unicyclic graphs and
bicyclic graphs of a specified order with respect to Π∗

1 . Azari and Iranmanesh [33] estab-
lished bounds on Π∗

1 for graph operations. Further mathematical features of Π∗
1 can be

found in [27,34].
The focus of this work is strictly on the mathematical structure of chemical graphs.

(Such graphs have found applications in chemistry; see, for example, the recent article [35]).
More precisely, in this study, graphs possessing the greatest Π∗

1-values are determined from
the class of chemical trees with a given order and fixed number of segments. The Π∗

1-values
of the obtained extremal trees are also obtained.

2. Preliminaries

In this section, some definitions as well as notations used in this paper are given.
Undefined terminology from graph theory can be found in some standard books. The
graphs under discussion here are simple, undirected, and finite. The degree of a vertex v
is represented by dv. The distance between two vertices u and v is denoted by d(u, v). A
tree of maximum degree at most four is called a chemical tree. The notion |A| represents
the cardinality of the set A. Consider a non-trivial path Pi,j = v1v2 · · · vk in a tree such that
dv1 = i and dvk = j. If k ≥ 3, then every vertex of Pi,j different from vertex v1 and vk is
called an internal vertex of Pi,j. The path Pi,j is referred to as an internal path if i, j ≥ 3
provided that all internal vertices have degree 2 (if exist). Furthermore, the path Pi,j is an
external path if one of the two numbers i, j, is equal to 1 and the other has a value greater
than 2 provided that all internal vertices have degree 2 (if exist). A branching vertex in a
tree is a vertex with a degree greater than 2. If S is an external path or an internal path in a
tree G, then S is called a segment of the graph G. We call the path graph Pn of order n also a
segment of Pn. Thus, a path graph has only one segment and there is no graph with exactly
two segments. Let G(n, s) denote the class of all chemical trees with exactly n vertices and
s segments, where 3 ≤ s ≤ n − 1. Let D(G) be the degree sequence of a graph G. Define
xi = |{x ∈ V(G) : dx = i}|. For a chemical tree G, we write (for the sake of simplicity) the
degree sequence of G as

D(G) = ((x4)4, (x3)3, (x2)2, (x1)1).

For example, if a chemical tree has the degree sequence (4, 4, 1, 1, 1, 1, 1, 1) then we write
it as ((2)4, (0)3, (0)2, (6)1). Let NG(u) be the set of neighbors of the vertex u ∈ G. In a
graph G, let Ei,j(G) (or simply Ei,j, when there is no confusion about G) be the set of edges
of G with end vertices of degrees i and j. Certainly, Ei,j(G) = Ej,i(G). For e ∈ Ei,j, define
w(e) = i + j.

3. Main Results

Before proceeding to our main results, we give some crucial lemmas that provide
some useful information on obtaining the greatest possible value of the multiplicative sum
Zagreb index for trees belonging to the class G(n, s).

Lemma 1. For a chemical tree Gm ∈ G(n, s) with maximum multiplicative sum Zagreb index, the
following statements are true:
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(a) If s ≥ 5 then | E1,2 |= 0,
(b) If 3 ≤ s ≤ 4 then | E1,2 |≤ 1,
(c) If there is an internal path of the form Pi,j in Gm of length 1, then there is no internal path of

the form Pp,q in Gm, with p + q < i + j, having length larger than 1.
(d) If a path Pi,j, with 6 ≤ i + j ≤ 8, contains an internal vertex of degree four then | E1,3 |= 0.
(e) The graph Gm does not possess an internal path having a length of 1 and an internal path

having a length larger than 2 simultaneously.
(f) If Gm has exactly two vertices of degree 3 then Gm does not possess simultaneously the internal

paths P3,3 and P4,4 both of length 1.

Proof. Throughout this proof, whenever the degree notion dα is used, it represents the
degree of a vertex α in the graph Gm.

(a) If | E1,2 |̸= 0 then there must be a vertex, say v2, of degree two laying on an external
path v1v2 · · · vi of Gm where dv1 = 1, dvi ∈ {3, 4}, and i ≥ 3. Since s ≥ 5, Gm has
another branching vertex, say vj (i < j), which forms an internal path vi − vj in the
graph Gm. Let vi+1 be the neighbor of vi that lies on the path vi − vj (the vertex vi+1
may coincide with vj).
Now, we consider a tree Gm1 that can be found in the class G(n, s) and is obtained
from Gm by the following operation:

Gm1 = Gm − {v1v2, vivi+1}+ {v1vi, v2vi+1}.

There exists a positive real number Θ such that these two graphs satisfy the following:

Π∗
1(Gm1)− Π∗

1(Gm) = Θ
[
(dvi+1 + 2)(dvi + 1)− 3(dvi+1 + dvi )

]
. (1)

Since dvi+1 ≥ 2 and 3 ≤ dvi ≤ 4, Equation (1) yields Π∗
1(Gm1) − Π∗

1(Gm) > 0,
a contradiction.

(b) Assume that the hypothesis holds but the conclusion does not hold; that is, suppose
that the inequality |E1,2 |> 1 holds. Let v denotes the only branching vertex in Gm
(as 3 ≤ s ≤ 4) with two distinct external paths v1v2 · · · vrv and v́1v́2 · · · v́sv, each
one having length of at least 2. Now, a new tree Gm1 is constructed from Gm using the
following operation:

Gm1 = Gm − {v1v2, v́sv}+ {v1v, v2v́s}.

This operation emphasizes that Gm1 ∈ G(n, s). There is Θ > 0 such that

Π∗
1(Gm1)− Π∗

1(Gm) = Θ[4(dv + 1)− 3(dv + 2)]. (2)

Since dv ≥ 3, Equation (2) gives Π∗
1(Gm1)− Π∗

1(Gm) > 0, a contradiction.
(c) Assume contrarily that Gm possesses an internal path of the form Pp,q of length larger

than 1, such that p + q < i + j. Suppose that Pp,q : v1v2 · · · vk and Pi,j : uv, where
(du, dv, dv1 , dvk ) = (i, j, p, q) and k ≥ 3. Then, a tree Gm1 ∈ G(n, s) is considered that is
obtained using the following operation:

Gm1 = Gm − {uv, v1v2, v2v3}+ {uv2, v2v, v1v3}.

There is a number Θ > 0, such that

Π∗
1(Gm1)− Π∗

1(Gm) = Θ[(i + 2)(j + 2)(p + dv3)− (i + j)(p + 2)(dv3 + 2)]. (3)

The following possible cases are discussed next:
Case (1): i = j = 4.
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In this case, p + q ≤ 7. Thus, 5 ≤ p + dv3 ≤ 7 and consequently, Equation (3) gives

Π∗
1(Gm1)− Π∗

1(Gm) = 4Θ[9(p + dv3)− 2(p + 2)(dv3 + 2)] > 0,

a contradiction.

Case (2): Either i = 3 and j = 4 or i = 4 and j = 3.

In this case, p + q ≤ 6. Thus, 5 ≤ p + dv3 ≤ 6 and consequently, Equation (3) gives

Π∗
1(Gm1)− Π∗

1(Gm) = Θ[30(p + dv3)− 7(p + 2)(dv3 + 2)] > 0,

a contradiction again.
In both possible cases, we arrive at

Π∗
1(Gm1)− Π∗

1(Gm) > 0,

a contradiction because of our contrary assumption that Gm possess an internal path
of the form Pp,q of length larger than 1, such that p + q < i + j.

(d) Contrarily, assume that | E1,3 |̸= 0. Then, there exists yz ∈ E1,3, such that dy = 1 and
dz = 3. Let Pi,j : u0u1 · · · uk−1ukuk+1 · · · ug be a path with an internal vertex uk of
degree 4, such that 6 ≤ i + j ≤ 8. Without loss of generality, suppose that uk is the only
internal vertex on Pi,j; otherwise, we may consider a subpath P′

i′ ,j′ of Pi,j containing
exactly one internal vertex of degree 4, such that 6 ≤ i′ + j′ ≤ 8. The following cases
are to be discussed here:

Case (1): duk−1 = duk+1 = 2

If uk+1 = ug, then we assume that uk+2 is a neighbor of uk+1 not lying on the path
Pi,j; otherwise, we assume that uk+2 is a neighbor of uk+1 lying on the uk+1 − ug
path. Whether z lies on Pi,j or not, in either of the two cases, we define a new graph
as follows:

Gm1 = Gm − {yz, uk−1uk, uk+1uk+2}+ {yuk, uk+1z, uk−1uk+2}.

Note that the tree Gm1 belongs to the collection G(n, s). Whether z lies on Pi,j or not, in
either of the two cases, there exists a positive real number Θ, such that

Π∗
1(Gm1)− Π∗

1(Gm) = Θ
(
duk+2 + 2

)
> 0,

which is a contradiction.

Case (2): max{duk−1 , duk+1} = 3.

In this case, we consider a tree Gm1 ∈ G(n, s) obtained using the operation described
as follows:

Gm1 = Gm − {yz, uk−1uk, ukuk+1}+ {yuk, ukz, uk−1uk+1}.

Whether z lies on Pi,j or not, in either of the two cases, there exists a positive real
number Θ, such that

Π∗
1(Gm1)− Π∗

1(Gm) = Θ
[
35(duk−1 + duk+1)− 4(duk−1 + 4)(duk+1 + 4)

]
. (4)

Note that there are the following three possibilities concerning the degrees of the
vertices uk−1 and uk+1:

– duk−1 = 2 and duk+1 = 3,
– duk−1 = 3 and duk+1 = 2,
– duk−1 = 3 = duk+1 .
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In every case, Equation (4) gives

Π∗
1(Gm1)− Π∗

1(Gm) > 0,

a contradiction.
(e) Although the proof of this part is slightly different from that of part (c), we provide its

proof here for the sake of completeness. Assume contrarily that Gm simultaneously
possesses an internal path Pp,q : v1v2 · · · vk of length k − 1 ≥ 3 and an internal path
Pi,j : uv of length 1, where (du, dv, dv1 , dvk ) = (i, j, p, q). Then, a tree Gm1 ∈ G(n, s) is
considered that is obtained using the following operation:

Gm1 = Gm − {uv, v1v2, v2v3}+ {uv2, v2v, v1v3}.

There is a number Θ > 0, such that

Π∗
1(Gm1)− Π∗

1(Gm) = Θ(p + 2)[(i + 2)(j + 2)− 4(i + j)]. (5)

Since 3 ≤ i ≤ 4 and 3 ≤ j ≤ 4, Equation (5) provides

Π∗
1(Gm1)− Π∗

1(Gm) > 0,

a contradiction.
(f) Assume contrarily that Gm possesses simultaneously the internal paths P3,3 and P4,4

both of length 1. Let xy, uv ∈ V(Gm), such that dy = 3 = dx, the distance d(y, u) is
minimum, and dv = 4 = du. Note that y and u lie on the unique x − v path. Let y1 be
the neighbor of y lying on the y − u path. By part (c), the degree of y1 is 4.
First, we discuss the case when y1 = u. Consider a tree Gm1 ∈ G(n, s) that is obtained
using the following operation:

Gm1 = Gm − {uv, xy}+ {ux, yv}.

Then, we obtain Π∗
1(Gm1) > Π∗

1(Gm), a contradiction.
Next, consider the case when y1 ̸= u. Then, y1 has a neighbor, say y2, of degree 2 lying
on the y1 − u path. Let y3 be the neighbor of y2 lying on the y2 − u path. The vertices
y3 and u may be the same. By part (e), dy3 = 4. Now, consider a tree Gm2 ∈ G(n, s)
that is obtained using the following operation:

Gm2 = Gm − {uv, y1y2, y2y3}+ {uy2, y2v, y1y3}.

Certainly, Π∗
1(Gm2) = Π∗

1(Gm). Now, define

Gm3 = Gm2 − {y1y3, xy}+ {y1x, y3y}.

Then, Gm3 ∈ G(n, s) and Π∗
1(Gm3) > Π∗

1(Gm2) = Π∗
1(Gm), which yields a contradic-

tion again.

If we consider the class G(n, s) for s ∈ {3, 4}, then we note that G(n, s) consists of
exactly one element for every (n, s) ∈ {(4, 3), (5, 3), (5, 4), (6, 4)}. For n ≥ s + 3 with
s ∈ {3, 4}, we have the next result, which follows from Lemma 1(b).

Corollary 1. The graph constructed by attaching s − 1 pendent vertices to a single pendent vertex
of the path Pn−(s−1) possesses uniquely the greatest multiplicative sum Zagreb index in G(n, s) for
every n ≥ s + 3 with s ∈ {3, 4}. The mentioned greatest value is 3(s + 2)(s + 1)s−14n−s−2.
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Because of Corollary 1, in the rest of the current section, we focus on the case when
5 ≤ s ≤ n − 1 for the class G(n, s). To prove our next lemma, we need the following
existing result:

Lemma 2 ([36]). For every graph G ∈ G(n, s), the following statements holds:

(a) The equation x3 = 0 holds if and only if x2 = n − s − 1, x1 = 2s+4
3 , x4 = s−1

3 , s = 3t + 1
for some positive integer t.

(b) The equation x3 = 1 holds if and only if x2 = n − s − 1, x1 = 2s+3
3 , x4 = s−3

3 , s = 3t for
some positive integer t.

(c) The equation x3 = 2 holds if and only if x2 = n − s − 1, x1 = 2s+2
3 x4 = s−5

3 , s = 3t + 2
for some positive integer t.

Lemma 3. Let Gm ∈ G(n, s) be a chemical tree with maximum multiplicative sum Zagreb index
and t be a positive integer. Then,

D(Gm) =



((
s − 1

3

)
4

, (0)3 , (n − s − 1)2 ,
(

2s + 4
3

)
1

)
if s = 3t + 1

((
s − 3

3

)
4

, (1)3 , (n − s − 1)2 ,
(

2s + 3
3

)
1

)
if s = 3t

((
s − 5

3

)
4

, (2)3 , (n − s − 1)2 ,
(

2s + 2
3

)
1

)
if s = 3t + 2.

Proof. Throughout this proof, whenever the degree notion dα is used, it represents the
degree of a vertex α in the graph Gm. First, we show that x3 ≤ 2. We suppose on the contrary
that the inequality x3 ≥ 3 holds. Take p, q, r ∈ V(Gm), such that dp = dq = dr = 3. If all
these three vertices are on one path, then (without loss of generality) suppose that q lies on
the unique p − r path in Gm. In either of the two cases, suppose that NGm(r) = {r1, r2, r3}
is the set of neighbors of r with the condition that r1 is located on p − r path (r1 may
coincide with q). Now, a chemical tree Gm1 is obtained in the collection G(n, s) using the
following operation:

Gm1 = Gm − {rr2, rr3}+ {pr2, qr3}.

For the case when all the three vertices p, q, r, are on one path, see Figure 1.

p q r

r1

r2

r3

Gm

p q r

r1

r2 r3
Gm1

Figure 1. The transformation applied on the graph Gm to obtain a new graph Gm1 in Lemma 3.

Note that there is a real number Θ > 0, such that

Π∗
1(Gm1)− Π∗

1(Gm) =Θ

(
(dr1 + 1) ∏

q′∈NGm (q)
(dq′ + 4) ∏

p′∈NGm (p)
(dp′ + 4)

3

∏
i=2

(dri + 4)

−
3

∏
i=1

(dri + 3) ∏
q′∈NGm (q)

(dq′ + 3) ∏
p′∈NGm (p)

(dp′ + 3)

)

>Θ

(
(dr1 + 1) ∏

p′∈NGm (p)
(dp′ + 4)

3

∏
i=2

(dri + 4)

−
3

∏
i=1

(dri + 3) ∏
p′∈NGm (p)

(dp′ + 3)

)
.

(6)
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Since 2 ≤ dr1 ≤ 4, inequality (6) yields

Π∗
1(Gm1)− Π∗

1(Gm) > 0,

a contradiction. Hence, the inequality x3 ≤ 2 holds, which together with Lemma 2 gives
the required result.

We now define three subclasses of G(n, s) as follows when n ≥ 8 and s = 3t + 1 for
some integer t ≥ 2:

• G1 = {T ∈ G(n, s) : x2 = 0 = x3}.
• G2 consists of those members of G(n, s) that obey 1 ≤ x2 ≤ x4 − 1 and | E2,4 | = 2x2

and | E1,2 | = | E2,2 | = 0 = x3.
• G3 consists of those members of G(n, s) that obey | E1,2 | = | E4,4 | = 0 = x3 and

x2 > x4 − 1.

Three examples G1, G2, and G3, one from each of the classes G1, G2, and G3, respec-
tively, are depicted in Figure 2.

G2 G3G1

Figure 2. Three examples G1, G2, and G3, one from each of the classes G1, G2, and G3, respectively.

Theorem 1. Let Gm ∈ G(n, s) be a chemical tree with maximum multiplicative sum Zagreb index
such that n ≥ 8 and s = 3t + 1 for some integer t ≥ 2. Then Gm ∈ G1 ∪G2 ∪G3.

Proof. By Lemma 3, it holds that x3 = 0. If x2 = 0 then Gm ∈ G1 and we are done. If
x2 ̸= 0 then Lemma 1(a) confirms that | E1,2 | = 0. Now, the conclusion is obtained from
Lemma 1(e).

Next, we define five subclasses of G(n, s) as follows when n ≥ 8 and s = 3t for some
integer t ≥ 2:

• H1 = {H5 ∈ G(n, 6) : x2 ≥ 1}, where H5 is given Figure 3.
• H2 = {H6 ∈ G(n, 9) : x2 ≥ 0; if x2 ≥ 2 then | E3,4 | = 0}, where H6 is shown Figure 3.
• H3 = {T ∈ G(n, s) : x3 = 1, 0 ≤ x2 ≤ x4 − 3, | E3,4 | = 3, | E2,2 | = | E1,2 | = 0, | E2,4 |

= 2x2, | E1,4 | = x1, s ≥ 12}. For example, the graphs H2 and H4 given in Figure 3
belong to H3.

• H4 = {T ∈ G(n, s) : x3 = 1, 0 ≤ x4 − 3 < x2 ≤ x4, | E2,3 | = x2 − (x4 − 3), | E3,4 |
= x4 − x2, | E1,4 | = x1, | E2,2 | = | E1,2 | = | E1,3 | = | E4,4 | = 0, s ≥ 12}. For example,
the graph H7 given in Figure 3 belongs to H4.

• H5 = {T ∈ G(n, s) : x3 = 1, x2 > x4 ≥ 3, | E2,3 | = 3, | E2,4 | = 2x4 − 3, | E1,4 | = x1,
| E3,4 | = | E1,2 | = | E1,3 | = | E4,4 | = 0, s ≥ 12}. For example, the graph H8 given in
Figure 3 belongs to H5.

Theorem 2. Let Gm ∈ G(n, s) be a chemical tree with maximum multiplicative sum Zagreb index
such that n ≥ 8 and s = 3t for some integer t ≥ 2. Then Gm ∈ ∪5

i=1Hi.

Proof. By Lemma 3, it holds that x3 = 1. If s = 6 then Lemma 1(a) implies that Gm ∈ H1.
If s = 9, then by the parts (a), (d), and (e) of Lemma 1, we have Gm ∈ H2. If (i) s ≥ 12 and
0 ≤ x2 ≤ x4 − 3, or (ii) s ≥ 12 and 0 ≤ x4 − 3 < x2 ≤ x4, or (iii) s ≥ 12 and x2 > x4 ≥ 3,
then by the parts (a), (c), (d), and (e) of Lemma 1, we conclude that Gm ∈ H3, or Gm ∈ H4,
or Gm ∈ H5, respectively.
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H1 H2

H3 H4

H5 H6

H7 H8

Figure 3. Some chemical trees with x3 = 1.

We next define six subclasses of G(n, s) as follows when n ≥ 7 and s = 3t + 2 for some
integer t ≥ 1:

• I1 = {T ∈ G(n, 5) : x3 = 2, x2 ≥ 1, x4 = 0, x1 = | E1,3 | = 4, | E2,3 | = 2, | E2,2 | = n − 7}.
• I2 = {T ∈ G(n, s) : 8 ≤ s ≤ 17, n ≤ 4s−2

3 , x3 = 2, | E1,2 | = | E2,2 | = | E4,4 | = 0,
| E1,3 | = 17−s

3 , | E1,4 | = s − 5, | E2,3 | = | E2,4 | = x2, | E3,3 | = 1}. For example, the
graphs I0, I1, I2, I3, I4, and I7 given in Figure 4 belong to I2.

• I3 = {T ∈ G(n, s) : 8 ≤ s ≤ 17, n > 4s−2
3 , x3 = 2, | E1,2 | = | E3,3 | = | E3,4 | = | E4,4 |

= 0, | E1,3 | = 17−s
3 , | E1,4 | = s − 5, | E2,3 | = s+1

3 , | E2,4 | = x4}. For example, the
graph I5 depicted in Figure 4 belongs to I3.

• I4 = {T ∈ G(n, s) : s > 17, n ≤ 4s−17
3 , x3 = 2, | E1,4 | = x1, | E2,4 | = 2x2, | E3,4 | = 6,

| E1,2 | = | E3,3 | = | E1,3 | = | E2,2 | = | E2,3 | = 0}. For example, the graph I6 given in
Figure 4 belongs to I4.

• I5 = {T ∈ G(n, s) : s > 17, 4s−17
3 < n ≤ 4s+1

3 , x3 = 2, | E1,4 | = x1, | E2,3 | = 3n−4s+17
3 ,

| E2,4 | = 3n−2s−23
3 , | E1,2 | = | E3,3 | = | E1,3 | = | E2,2 | = | E4,4 | = 0}. For example,

the graph I8 shown in Figure 4 belongs to I5.
• I6 = {T ∈ G(n, s) : s > 17, n > 4s+1

3 , x3 = 2, | E1,4 | = x1, | E2,3 | = 6, | E2,4 | = 2s−22
3 ,

| E1,2 | = | E3,3 | = | E1,3 | = | E3,4 | = | E4,4 | = 0}.

Theorem 3. Let Gm ∈ G(n, s) be a chemical tree with the greatest multiplicative sum Zagreb
index such that n ≥ 7 and s = 3t + 2 for some integer t ≥ 1. Then Gm ∈ ∪6

i=1Ii.

Proof. By Lemma 3, it holds that x3 = 2. If s = 5 then Lemma 1(a) implies that Gm ∈ I1. If
(i) 8 ≤ s ≤ 17 and n ≤ 4s−2

3 , or (ii) 8 ≤ s ≤ 17 and n > 4s−2
3 , or (iii) s > 17 and n ≤ 4s−17

3 ,
or (iv) s > 17 and 4s−17

3 < n ≤ 4s+1
3 , or (v) s > 17 and n > 4s+1

3 , then by Lemma 3, we
conclude that Gm ∈ I2, or Gm ∈ I3, or Gm ∈ I4, or Gm ∈ I5, or Gm ∈ I6, respectively.
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I1 I2

I3 I4

I5 I6

I7

I0

S3,3

I9

I8

Figure 4. Some chemical trees with x3 = 2.

Theorem 4. Let Gm ∈ G(n, s) be a chemical tree with maximum multiplicative sum Zagreb index
such that s = 3t + 1 for some integer t ≥ 2. Then,

Π∗
1(Gm) =


2s−4 × 5

2s+4
3 if n = s + 1,

24s−3n−1 × 5
2s+4

3 × 62(n−s−1) if s + 1 < n ≤ 4s−1
3 ,

2
2(3n−4s+1)

3 × 5
2s+4

3 × 6
2(s−4)

3 if n > 4s−1
3 .

Proof. By Lemma 3, we have

D(Gm) =

((
s − 1

3

)
4

, (0)3 , (n − s − 1)2 ,
(

2s + 4
3

)
1

)
.

The following cases arise:

Case (1): n = s + 1.

By using the above degree sequence of Gm, we have x2 = 0. Thus, in this case, Gm consists of
vertices of degree 4 and 1 only. Consequently, we have | E1,4 |= x1 and | E4,4 |= x4 − 1. Hence,

| Ei,j | =


x1 =

2s + 4
3

if i = 1 and j = 4,

x4 − 1 =
s − 4

3
if i = j = 4.
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Therefore,
Π∗

1(Gm) = 2s−4 × 5
2s+4

3 .

Case (2): s + 1 < n ≤ 4s−1
3 .

Note, in this case, that 1 ≤ x2 ≤ x4 − 1. By keeping in mind Lemma 1, we obtain

| Ei,j | =



0 if either (i, j) = (1, 2) or i = j = 2,

x1 = 2s+4
3 if i = 1 and j = 4,

2x2 = 2(n − s − 1) if i = 2 and j = 4,

(x4 − 1)− x2 = 4s−3n−1
3 if i = j = 4.

Therefore,
Π∗

1(Gm) = 24s−3n−1 × 5
2s+4

3 × 62(n−s−1).

Case (3): n > 4s−1
3 .

Note, in the present case, that x2 > x4 − 1. Bearing in mind Lemma 1, we obtain

| Ei,j | =



0 if either i = j = 4 or (i, j) = (1, 2),

x1 = 2s+4
3 if i = 1 and j = 4,

(n − 1)− x1 − 2(x4 − 1) = 3n−4s+1
3 if i = j = 2,

2(x4 − 1) = 2(s−4)
3 if i = 2 and j = 4.

Therefore,

Π∗
1(Gm) = 2

2(3n−4s+1)
3 × 5

2s+4
3 × 6

2(s−4)
3 .

Theorem 5. Let Gm ∈ G(n, s) be the chemical tree with maximum multiplicative sum Zagreb
index such that s = 3 t for some integer t ≥ 2. Then,

Π∗
1(Gm) =



2
2(12−s)

3 × 5s−3 × 7
s−3

3 if n = s + 1 and s ≤ 9,

73 × 2s−12 × 5
2s+3

3 if n = s + 1 and s > 9,

2
2(12−s)

3 × 5n−4 × 6n−s−1 × 7
4s−3n

3 if s + 1 < n ≤ 4s
3 and s ≤ 9,

73×24s−3n−9×5
2s+3

3 ×62(n−s−1) if s + 1 < n ≤ 4s−9
3 and s > 9,

5
3n−2s+12

3 × 6
3n−2s−15

3 × 7
4s−3n

3 if 4s−9
3 < n ≤ 4s

3 and s > 9,

4
3n−5s+12

3 × 5
4s−12

3 × 6
s−3

3 if n > 4s
3 and s ≤ 9,

4
3n−4s

3 × 5
2s+12

3 × 6
2s−15

3 if n > 4s
3 and s > 9.

Proof. By Lemma 3, we have

D(Gm) =

((
s − 3

3

)
4

, (1)3 , (n − s − 1)2 ,
(

2s + 3
3

)
1

)
. (7)

Case (1): n = s + 1.
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In the present case, it holds that x2 = 0. We discuss two possible subcases of the present
case as follows:

Subcase (1.1): s ≤ 9.

Note, in the present subcase, that s ∈ {6, 9}. Since x2 = 0 in the consider case, if s = 6 then
Equation (7) yields

D(Gm) = ((1)4 , (1)3 , (0)2 , (5 )1 ),

and hence n = 7. Thus, Gm is the graph constructed by attaching two new pendent vertices
to a pendent vertex of the star S5. Similarly, if s = 9, then Equation (7) gives

D(Gm) = ((2)4 , (1)3 , (0)2 , (7 )1 ),

and hence n = 10. Thus, by Lemma 1(e), Gm is the graph H1 depicted in Figure 3. Hence, if
s ∈ {6, 9}, then

| Ei,j | =



0 if i = j = 4,

12−s
3 if i = 1 and j = 3,

s − 3 if i = 1 and j = 4,

s−3
3 if i = 3 and j = 4.

Therefore,

Π∗
1(Gm) = 2

2(12−s)
3 × 5s−3 × 7

s−3
3 .

Subcase (1.2): s > 9.

Note, in the present subcase, that s ≥ 12. Recall also that x2 = 0 in the present case. By
Lemma 1(d), every neighbor of the unique vertex of degree 3 in Gm is of degree 4; for
example, see H2 in Figure 3. Hence,

| Ei,j | =



0 if i = 1 and j = 3,

s − x4 = 2s+3
3 if i = 1 and j = 4,

3 if i = 3 and j = 4,

x4 − 3 = s−12
3 if i = j = 4.

Therefore,
Π∗

1(Gm) = 73 × 2s−12 × 5
2s+3

3 .

Case (2): s + 1 < n ≤ 4s
3 .

Observe, in the current case, that x2 ≥ 1. In the following, we discuss two subcases
according to whether s ≤ 9 or s > 9.

Subcase (2.1): s ≤ 9.

Observe that s ∈ {6, 9}. If s = 6, then n = 8 and hence by Equation (7), we have

D(Gm) = ((1)4 , (1)3 , (1)2 , (5 )1 ).

Thus, by Lemma 1, Gm is a particular case of H5 shown in Figure 3. If s = 9 then 10 < n ≤ 12,
and by Equation (7), we have

D(Gm) = ((2)4 , (1)3 , (n − 10)2 , (7 )1 ).
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If n = 11 then, by Lemma 1, Gm is the graph H3 depicted in Figure 3. If n = 12 then, again
by Lemma 1, Gm is the graph constructed from H3 by inserting a vertex of degree 2 on its
unique internal path of length 1. Thus, all possible non-zero values of | Ei,j | are given
as follows:

| Ei,j | =



12−s
3 if i = 1 and j = 3,

s − 3 if i = 1 and j = 4,

n − s − 1 if either (i, j) = (2, 3) or (i, j) = (2, 4),

4s−3n
3 if i = 3 and j = 4.

Therefore,

Π∗
1(Gm) = 2

2(12−s)
3 × 5n−4 × 6n−s−1 × 7

4s−3n
3 .

Subcase (2.2): s > 9.

Observe, in the current subcase, that s ≥ 12 and x2 ≥ 1.

Subcase (2.2.1): s ≥ 12 and 4s−9
3 < n ≤ 4s

3

Note that
x4 − 3 =

4s − 9
3

− s − 1 < n − s − 1 = x2 ≤ s − 3
3

= x4,

that is, x4 − 3 < x2 ≤ x4. Hence, by Lemma 1, every internal path of the form P4,4
(in Gm) has length 2, and its unique vertex of degree 3 is adjacent to 3 − [x2 − (x4 − 3)]
vertex/vertices of degree 4; for example, consider a graph constructed from the graph H4
(shown in Figure 3) by inserting a vertex of degree 2 on each of the x2 − (x4 − 3) internal
path(s) of the form P3,4. Hence, the possible non-zero values of | Ei,j | of Gm are given
as follows:

| Ei,j | =



x1 = 2s+3
3 if i = 1 and j = 4,

x2 − (x4 − 3) = 3n−4s+9
3 if i = 2 and j = 3,

3 − [x2 − (x4 − 3)] = 4s−3n
3 if i = 3 and j = 4,

(n − 1)− | E1,4 | − | E2,3 | − | E3,4 |= 3n−2s−15
3 if i = 2 and j = 4.

Therefore,
Π∗

1(Gm) = 5
3n−2s+12

3 × 6
3n−2s−15

3 × 7
4s−3n

3 .

Subcase (2.2.2): s ≥ 12 and s + 1 < n ≤ 4s−9
3 .

Observe, in the current subcase, that s ≥ 15. Note that

x4 − 3 =
4s − 9

3
− s − 1 ≥ n − s − 1 = x2,

that is, x2 ≤ x4 − 3. Hence, by Lemma 1, x2 internal path(s) of the form P4,4 in Gm has/have
length 2; for example, consider a graph constructed from the graph H2 (shown in Figure 3)
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by inserting a vertex of degree 2 on each of the x2 internal path(s) of the form P4,4. Hence,
the possible non-zero values of | Ei,j | are given as follows:

| Ei,j | =



x1 = 2s+3
3 if i = 1 and j = 4,

2x2 = 2(n − s − 1) if i = 2 and j = 4,

3 if i = 3 and j = 4,

n − x1 − 2x2 − 4 = 4s−3n−9
3 if i = j = 4.

Therefore,
Π∗

1(Gm) = 73 × 24s−3n−9 × 5
2s+3

3 × 62(n−s−1).

Case (3): n > 4s
3 .

In the following, we discuss subcases for the current case.

Subcase (3.1): s ≤ 9.

Observe, in the present subcase, that s ∈ {6, 9}. If s = 6 then n ≥ 9, and Equation (7) yields

D(Gm) = ((1)4 , (1)3 , (n − 7)2 , (5 )1 ).

Thus, by Lemma 1, Gm is of the form H5 given in Figure 3.
If s = 9 then n ≥ 13, and Equation (7) gives

D(Gm) = ((2)4 , (1)3 , (n − 10)2 , (7 )1 ).

Thus, by Lemma 1, Gm is a graph constructed from H1 (given in Figure 3) by inserting at
least one vertex of degree 2 on each of two internal paths of length 1.

Hence, for s ∈ {6, 9}, the possible non-zero values of | Ei,j | are given as

| Ei,j | =



12−s
3 if i = 1 and j = 3,

s − 3 if i = 1 and j = 4,

3n−4s
3 if i = j = 2,

s−3
3 if either (i, j) = (2, 3) or (i, j) = (2, 4).

Therefore,
Π∗

1(Gm) = 4
3n−5s+12

3 × 5
4s−12

3 × 6
s−3

3 .

Subcase (3.2): s > 9.

Since n > 4s
3 , we have

x2 = n − s − 1 >
s − 3

3
= x4.
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Thus, by Lemma 1, every internal path of Gm has a length of at least 2; for example, consider
a graph constructed from H7 (given in Figure 3) by inserting at least one vertex of degree 2
on some internal path(s). Hence, all possible non-zero values of | Ei,j | are as follows:

| Ei,j | =



x1 = 2s+3
3 if i = 1 and j = 4,

3 if i = 2 and j = 3,

2x4 − 3 = 2s−15
3 if i = 2 and j = 4,

n − 1− | E1,4 | − | E2,3 | − | E2,4 |= 3n−4s
3 if i = j = 2.

Therefore,
Π∗

1(Gm) = 4
3n−4s

3 × 5
2s+12

3 × 6
2s−15

3 .

Consequently, the proof is now completed.

Theorem 6. Let Gm ∈ G(n, s) be a chemical tree with maximum multiplicative sum Zagreb index
such that s = 3t + 2 for some integer t ≥ 1. Then

Π∗
1(Gm) =



6 × 4
17−s

3 × 5s−5 × 7
s−5

3 if n = s + 1 and s ≤ 17,

76 × 2s−20 × 5
2s+2

3 if n = s + 1 and s > 17,

25 × 22(n−3) if n ̸= s + 1 and s = 5,

4
17−s

3 × 5n−6 × 6n−s × 7
4s−3n−2

3 if s + 1 < n ≤ 4s−2
3 and 5 < s ≤ 17,

4
3n−5s+16

3 × 5
4s−14

3 × 6
s−5

3 if n > 4s−2
3 and 5 < s ≤ 17,

76 × 5
2s+2

3 × 62(n−s−1) × 24s−3n−17 if s + 1 < n ≤ 4s−17
3 and s > 17,

5
3n−2s+19

3 × 6
3n−2s−23

3 × 7
4s−3n+1

3 if 4s−17
3 < n ≤ 4s+1

3 and s > 17,

4
3n−4s−1

3 × 5
2s+20

3 × 6
2s−22

3 if n > 4s+1
3 and s > 17.

Proof. By Lemma 3, it holds that

D(Gm) =

((
s − 5

3

)
4

, (2)3 , (n − s − 1)2 ,
(

2s + 2
3

)
1

)
. (8)

Case (1): n = s + 1.

Certainly, in the current case, x2 = 0. The following subcases are further discussed:

Subcase (1.1): s ≤ 17.

Here, s ∈ {5, 8, 11, 14, 17} and hence (n, s) ∈ {(6, 5), (9, 8), (12, 11), (15, 14), (18, 17)}. Now,
Equation (8) gives

D(Gm) =



((0)4 , (2)3 , (0)2 , (4)1 ) if (n, s) = (6, 5),

((1)4 , (2)3 , (0)2 , (6)1 ) if (n, s) = (9, 8),

((2)4 , (2)3 , (0)2 , (8)1 ) if (n, s) = (12, 11),

((3)4 , (2)3 , (0)2 , (10)1 ) if (n, s) = (15, 14),

((4)4 , (2)3 , (0)2 , (12)1 ) if (n, s) = (18, 17).
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Because of Lemma 1, Gm is isomorphic to S3,3, I0, I1, I3, or I2 when (n, s) is equal to (6, 5),
(9, 8), (12, 11), (15, 14), or (18, 17), respectively. Hence, all possible non-zero values of
| Ei,j | are as follows:

| Ei,j | =



17−s
3 if i = 1 and j = 3,

s − 5 if i = 1 and j = 4,

1 if i = j = 3,

s−5
3 if i = 3 and j = 4.

Therefore,
Π∗

1(Gm) = 6 × 4
17−s

3 × 5s−5 × 7
s−5

3 .

Subcase (1.2): s > 17.

Clearly, s ≥ 20. By Lemma 1, all possible non-zero values of | Ei,j | in Gm (for example, see
I9 shown in Figure 4) are as follows:

| Ei,j | =


x1 = 2s+2

3 if i = 1 and j = 4,

6 if i = 3 and j = 4,

s−20
3 if i = j = 4.

Therefore,
Π∗

1(Gm) = 76 × 2s−20 × 5
2s+2

3 .

Case (2): n > s + 1.

In this case, we have x2 ̸= 0. The following subcases are further considered:

Subcase (2.1): s = 5.

Note, in the current subcase, that n ≥ 7. By Lemma 1, the graph Gm is constructed by
inserting n − 6 vertices of degree 2 on the internal path of the graph S3,3 shown in Figure 4.
Hence, all possible non-zero values of | Ei,j | are mentioned below:

| Ei,j | =


4 if i = 1 and j = 3,

n − 7 if i = j = 2,

2 if i = 2 and j = 3.

Therefore,
Π∗

1(Gm) = 25 × 22(n−3).

Subcase (2.2): 5 < s ≤ 17 and s + 1 < n ≤ 4s−2
3 .

Note here that s ∈ {8, 11, 14, 17} and hence (n, s) belongs to the set

{(10, 8), (13, 11), (14, 11), (16, 14), (17, 14), (18, 14), (19, 17), (20, 17), (21, 17), (22, 17)}.
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Now, Equation (8) gives

D(Gm) =



((1)4 , (2)3 , (1)2 , (6)1 ) if (n, s) = (10, 8),

((2)4 , (2)3 , (1)2 , (8)1 ) if (n, s) = (13, 11),

((2)4 , (2)3 , (2)2 , (8)1 ) if (n, s) = (14, 11),

((3)4 , (2)3 , (1)2 , (10)1 ) if (n, s) = (16, 14),

((3)4 , (2)3 , (2)2 , (10)1 ) if (n, s) = (17, 14),

((3)4 , (2)3 , (3)2 , (10)1 ) if (n, s) = (18, 14),

((4)4 , (2)3 , (1)2 , (12)1 ) if (n, s) = (19, 17),

((4)4 , (2)3 , (2)2 , (12)1 ) if (n, s) = (20, 17),

((4)4 , (2)3 , (3)2 , (12)1 ) if (n, s) = (21, 17),

((4)4 , (2)3 , (4)2 , (12)1 ) if (n, s) = (22, 17).

Because of Lemma 1, Gm is isomorphic to a graph constructed from I0, I1, I2, or I3 by
inserting one vertex of degree 2 on each of the x2 internal path(s) of the form P3,4. Hence,
all possible non-zero values of | Ei,j | are as follows:

| Ei,j | =



17−s
3 if i = 1 and j = 3,

s − 5 if i = 1 and j = 4,

n − s − 1 if either (i, j) = (2, 3) or (i, j) = (2, 4),

1 if i = j = 3,

4s−3n−2
3 if i = 3 and j = 4.

Therefore,
Π∗

1(Gm) = 4
17−s

3 × 5n−6 × 6n−s × 7
4s−3n−2

3 .

Subcase (2.3): 5 < s ≤ 17 and n > 4s−2
3 .

By Lemma 1, Gm is isomorphic to a graph constructed from I0, I1, I2, or I3 by inserting at
least one vertex of degree 2 on each its internal path(s). Hence, all possible non-zero values
of | Ei,j | are as follows:

| Ei,j | =



17−s
3 if i = 1 and j = 3,

s − 5 if i = 1 and j = 4,

3n−4s−1
3 if i = j = 2,

s+1
3 if i = 2 and j = 3,

s−5
3 if i = 2 and j = 4.

Therefore,
Π∗

1(Gm) = 4
3n−5s+16

3 × 5
4s−14

3 × 6
s−5

3 .

Subcase (2.4): s + 1 < n ≤ 4s−17
3 and s > 17.
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Note, in the current subcase, that s ≥ 23 and x2 ≥ 1. (If s = 20 then we obtain 21 < n ≤ 21,
a contradiction.) Also, note that

x2 = n − s − 1 ≤ 4s − 17
3

− s − 1 = x4 − 5.

Thus, by Lemma 1, all possible non-zero values of | Ei,j | are as follows (for example, Gm
may be a graph constructed from I9 (shown in Figure 4) by inserting a vertex of degree 2
on each of its x2 internal path(s) of the form P4,4):

| Ei,j | =



2s+2
3 if i = 1 and j = 4,

2(n − s − 1) if i = 2 and j = 4,

6 if i = 3 and j = 4,

4s−3n−17
3 if i = j = 4.

Therefore,
Π∗

1(Gm) = 76 × 5
2s+2

3 × 62(n−s−1) × 24s−3n−17.

Subcase (2.5): s > 17 and 4s−17
3 < n ≤ 4s+1

3 .

In the current case, observe that s ≥ 20. Also, note that

x4 − 5 =
4s − 17

3
− s − 1 < n − s − 1 = x2 ≤ 4s + 1

3
− s − 1 = x4 + 1,

that is, x4 − 5 < x2 ≤ x4 + 1. Thus, by Lemma 1, all possible non-zero values of | Ei,j | are
as follows (for example, Gm may be a graph constructed from I6 (shown in Figure 4) by
inserting one vertex of degree 2 on each of its x2 − (x4 − 5) internal path(s) of the form P3,4):

| Ei,j | =



2s+2
3 if i = 1 and j = 4,

3n−4s+17
3 if i = 2 and j = 3,

3n−2s−23
3 if i = 2 and j = 4,

4s−3n+1
3 if i = 3 and j = 4.

Therefore,
Π∗

1(Gm) = 5
3n−2s+19

3 × 6
3n−2s−23

3 × 7
4s−3n+1

3 .

Subcase (2.6): n > 4s+1
3 and s > 17.

Observe, in the current subcase, that

x2 = n − s − 1 >
4s + 1

3
− s − 1 = x4 + 1,



Mathematics 2024, 12, 1259 18 of 19

Thus, by Lemma 1, all possible non-zero values of | Ei,j | are as follows (for example, Gm
may be a graph constructed from I9 (shown in Figure 4) by inserting at least one vertex of
degree 2 on each of its internal paths:

| Ei,j | =



2s+2
3 if i = 1 and j = 4,

3n−4s−1
3 if i = j = 2,

6 if i = 2 and j = 3,

2s−22
3 if i = 2 and j = 4.

Therefore,
Π∗

1(Gm) = 4
3n−4s−1

3 × 5
2s+20

3 × 6
2s−22

3 .

4. Concluding Remarks

In this paper, we have determined graphs possessing the greatest possible values of
the multiplicative sum Zagreb (MSZ) index over the class of chemical trees with a given
number of segments and fixed order. We have also calculated the values of the MSZ index
of the obtained extremal trees. Possible future work toward the study of the maximum
MSZ index for chemical trees includes characterizing graphs with the greatest MSZ index
from the set of chemical trees with a given order and some additional graph invariants (for
example, the number of pendent vertices, matching number, etc.).
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2. Gutman, I.; Rušić, B.; Trinajstić, N.; Wilcox, C.F. Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys. 1975,

62, 3399–3405. [CrossRef]
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24. Alfuraidan, M.R.; Balachandran, S.; Vetrík, T. General multiplicative Zagreb indices of unicyclic graphs. Carpath. J. Math. 2021,

37, 1–11. [CrossRef]
25. Eliasi, M.; Iranmanesh, A.; Gutman, I. Multiplicative versions of first Zagreb index. MATCH Commun. Math. Comput. Chem. 2012,

68, 217–230.
26. Eliasi, M. A simple approach to order the multiplicative Zagreb indices of connected graphs. Trans. Comb. 2012, 1, 17–24.
27. Horoldagva, B.; Xu, C.; Buyantogtokh, L.; Dorjsembe, S. Extremal graphs with respect to the multiplicative sum Zagreb index.

MATCH Commun. Math. Comput. Chem. 2020, 84, 773–786.
28. Liu, J.; Zhang, Q. Sharp upper bounds on multiplicative Zagreb indices. MATCH Commun. Math. Comput. Chem. 2012,

68, 231–240.
29. Vetrík, T.; Balachandran, S. General multiplicative Zagreb indices of trees. Discret. Appl. Math. 2018, 247, 341–351. [CrossRef]
30. Xu, K.; Hua, H. A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs. MATCH

Commun. Math. Comput. Chem. 2012, 68, 241–256.
31. Xu, K.; Das, K.C. Trees, unicyclic, and bicyclic graphs extremal with respect to multiplicative sum Zagreb index. MATCH Commun.

Math. Comput. Chem. 2012, 68, 257–272.
32. Eliasi, M. A. Ghalavand, On trees and the multiplicative sum Zagreb index. Commun. Comb. Optim. 2016, 1, 137–148.
33. Azari, M.; Iranmanesh, A. Some inequalities for the multiplicative sum Zagreb index of graph operations. J. Math. Inequal 2015,

9, 727–738. [CrossRef]
34. Kazemi, R. Note on the multiplicative Zagreb indices. Discret. Appl. Math. 2016, 198, 147–154. [CrossRef]
35. Desmecht, D.; Dubois, V. Correlation of the molecular cross-sectional area of organic monofunctional compounds with topological

descriptors. J. Chem. Inf. Model. 2024. . [CrossRef] [PubMed]
36. Noureen, S.; Bhatti, A.A.; Ali, A. On the extremal Zagreb indices of n-vertex chemical trees with fixed number of segments or

branching. MATCH Commun. Math. Comput. Chem. 2020, 84, 513–514.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.akcej.2018.05.002
http://dx.doi.org/10.1016/j.dam.2017.04.024
http://dx.doi.org/10.37193/CJM.2021.01.01
http://dx.doi.org/10.1016/j.dam.2018.03.084
http://dx.doi.org/10.7153/jmi-09-60
http://dx.doi.org/10.1016/j.dam.2015.06.028
.
http://dx.doi.org/10.1021/acs.jcim.3c01787
http://www.ncbi.nlm.nih.gov/pubmed/38528706

	Introduction
	Preliminaries
	Main Results
	Concluding Remarks
	References 

