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Abstract: A mathematical justification of some basic structural properties of stochastically perturbed
gene regulatory networks, including those with autoregulation and delay, is offered in this paper.
By using the theory of stochastic differential equations, it is, in particular, shown how to control the
asymptotic behavior of the diffusion terms in order to not destroy certain qualitative features of the
networks, for instance, their sliding modes. The results also confirm that the level of randomness is
gradually reduced if the gene activation times become much smaller than the time of interaction of
genes. Finally, the suggested analysis explains why the deterministic numerical schemes based on
replacing smooth, steep response functions by the simpler yet discontinuous Heaviside function, the
well-known simplification algorithm, are robust with respect to uncertainties in data. The main techni-
cal difficulties of the analysis are handled by applying the uniform version of the stochastic Tikhonov
theorem in singular perturbation analysis suggested by Yu. Kabanov and S. Pergamentshchikov.
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1. Introduction

Simplification frameworks in systems biology are widely used in theoretical and nu-
merical analysis, as realistic biological models may be very complicated. Typical examples
are calculations in the Heaviside limit, when one replaces steeply sloped functions by
the Heaviside (step) functions. This results in hybrid models that combine the so-called
‘Boolean networks’ with a continuous-time description. Mathematically, it leads to a system
of piecewise-linear differential equations, which, however, has all the properties of highly
nonlinear dynamics. This idea has been successfully utilized in the neural field modeling,
where the steep firing rate functions are known to be very close to the Heaviside functions,
this approach is known as the Amari simplification of the Wilson–Cowan model [1,2].
Another prominent example, which is studied in this paper, is motivated by analysis of
gene regulatory networks (GRNs), where the expression of genes is also close to a jump-like
process in a vicinity of the thresholds.

In most cases, calculations with simplified models are a priori assumed to be reliable,
even if no proper mathematical justification is used. This may lead to ignoring many
important features of the real-world models.

In this paper, we consider one popular model of GRNs, which is described by a system
of ordinary differential equations of the form

ẋi(t) = Fi(Z)− Gi(Z)xi(t), i = 1, . . . , n, (1)

or by delay differential equations, see (3) below. Here, the production and relative degrada-
tion rate functions Fi and Gi, respectively, depend on the vector Z = (Z1, . . . , Zn), where
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Zi = Zi(xi) are steep response (or regulation) functions, called sigmoids in the literature.
System (1) reflects the effect of the different transcription factors regulating the expression
of genes occurring when gene concentrations xi exceed certain threshold values θi [3–5].

To analyze this model, one conveniently replaces the sigmoids by their limits, the
Heaviside functions with the jump at the threshold. This converts System (1) into a system
with Boolean-like switchings. Moreover, in the limit Zi = Zm

i for any m > 0, so that the
functions Fi, Gi may be assumed to be linear with respect to each Zi, which considerably
simplifies the models. This simplification is, indeed, necessary, as the amount of interacting
genes appears to be quite large (up to ten thousand). This approach was originally proposed
by L. Glass and S.A. Kauffman [6] and has since become very popular, see, e.g., the review
paper [5]. Numerical similarity between the dynamics of the sigmoid-based model and its
Heaviside limit, observed in many cases, may or may not be an indication that the simplified
analysis is reliable, and indeed, it was noticed in the paper [3] that the Glass–Kaufmann
model is too coarse to describe the so-called ‘sliding motions’ when the trajectories slide
along the thresholds for some time without crossing them. Biologically, it reflects the
situations where one or several gene concentrations can stay close to their respective
thresholds without being expressed. This effect can, in particular, be observed for GRNs
with autoregulation [4]. Analysis offered in [3] shows how to calculate sliding trajectories
using the simplified model and to justify the preservation of sliding modes under small
perturbations, which ensures efficiency of a network in regulation of gene expression and,
therefore, contributes to the overall functionality of the network. Such calculations are
important to uncover and analyze singular stationary points of GRNs, which belong to the
discontinuity sets of the Boolean model and which represent states where some variables
are actively regulated by sigmoid interactions.

Traditionally, one assumes the response functions Zi to be the Hill function [3–5]

Zi = Σ(xi, θi, qi) :=


0 if xi < 0,

x1/qi
i

x1/qi
i + θ

1/qi
i

if xi ⩾ 0,
(2)

where qi > 0 are the steepness parameters and θi > 0 are the threshold values for the
respective gene concentrations (by technical reasons we assume Zi to be defined for negative
xi, even if this is not biologically significant). It is straightforward to see that if qi → 0, then
the functions Zi approach the shifted Heaviside functions Σ(xi, θi, 0), see Figure 1.

Figure 1. The Hill function Zi = Σ(xi, θi, qi) (qi > 0) becomes the shifted Heaviside function
Σ(xi, θi, 0) as qi → 0.

As Zi = 0 or 1 in the limit, i.e., it becomes the Boolean function, the complex nonlinear
system (1) splits locally into 2n decoupled linear equations, the solutions of which can be
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calculated explicitly, and the global solutions can be then obtained by simply merging these
local solutions.

However, this technique is only applicable if the solution trajectories travel through
the discontinuity hyperplanes xi = θi, while possible sliding trajectories, even if they are of
generic nature and can be observed for qi > 0, are simply invisible in the Heaviside limit,
because System (1) and its solutions are not defined along the discontinuities. In [3] it was,
therefore, proposed to extend the Glass–Kauffman framework by adding a complementary
system of equations, which is used to calculate all trajectories of the sigmoid-based system
in the Heaviside limit, also including possible sliding trajectories. This construction was
based on Tikhonov’s singular perturbation theory.

Another method to treat sliding trajectories, which is, e.g., described in [5], goes
back to Filippov’s theory of piecewise continuous dynamical systems and the theory of
differential inclusions [7]. This method is not considered in the present paper.

The effect of stochasticity is indisputably important for any reasonable model of GRNs.
This effect may be caused by uncertainty in data, random fluctuations in the system, or
simply may be due to a large number of interacting genes [5,8–10]. Analysis of stability
under small random perturbations of the system provide, therefore, valuable information
about the system’s robustness. Most publications on the subject concentrate on stochastic
Boolean networks, see e.g., the monograph [11], or the more recent overview offered in [12].
This approach, being highly computation-oriented, is based on the classical theory of
Markov chains, but ignores, however, the time-continuous component, which is essential
for qualitative and quantitative analysis.

One may try to grasp the stochastic time-continuous dynamics using time-dependent
distribution functions satisfying certain partial differential equations. This approach,
despite of its advantages described in the review paper [5] and in the more recent publica-
tion [13], has also several disadvantages. For instance, numerical analysis, based on partial
differential equations, is more expensive and time-consuming. Also some qualitative fea-
tures of GRNs may be hardly recognizable within this approach. One of them is explicitly
mentioned in [5]: if the gene activation times are small compared to the time of interaction
of genes (i.e., if the response functions are sufficiently steep), then stochastic effects become
less visible and even may level out, which means that a purely deterministic model should
actually dominate in the limit. This feature can hardly be traced up in the model based on
the distribution functions.

In our scheme, we incorporate stochastic noises not as distributions, but in a dynam-
ical way, i.e., by taking advantages of the theory of stochastic differential equations, a
powerful modeling tool which efficiently captures stochastic effects of various nature. By
implementing this, we achieve several gains. In particular, we can prove that deterministic
GRNs do dominate stochastic models when stochastic noises are small and the response
functions are steep. Furthermore, our approach is completely based on ordinary differen-
tial equations (even in the case of delays), so that the numerical analysis of such GRNs
becomes easier. Moreover, the uniform convergence of solutions justified in the paper
ensures the robustness property of the deterministic numerical schemes with respect to
small random perturbations.

In addition, we demonstrate how our analysis can be extended to GRNs with delay
effects. It is well-known that time delay is a quite important characteristic of real GRNs
(see e.g., [14,15]). Deterministic GRNs with delay were rigorously treated in [16,17] by
introducing the hereditary system

ẋi(t) = Fi(Z)− Gi(Z)xi(t),

Zi = Σ(yi, θi, qi),

yi(t) = (ℜixi)(t), t ⩾ 0, i = 1, . . . , n,

(3)

where the linear operators ℜi represent delay effects in the model (see Section 5 for more
details). A generic simplification procedure can be applied to (3), which is based on the
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so-called ‘linear chain trick‘ (in a slightly modified form) and which converts the hereditary
system (3) into a (larger) system of ordinary differential equations (see [16,17]). This
framework ensures, in particular, an analytical assessment of when the dynamics of GRNs
are sensitive to time delays and when it is not. It also explains how one can calculate the
trajectories of GRNs with delay in the Heaviside limit.

GRNs as stochastically perturbed systems with fast and slow dynamics simultane-
ously pose extra technical challenges because traditional perturbation methods may not
adequately capture the resulting dynamics. To study such GRNs, one needs a specially
designed theoretical framework. The technique, which we apply to control the stochastic
perturbations around discontinuities, goes back to the monograph [18], where a stochastic
version of the classical Tikhonov theorem in singular perturbation analysis is offered, see
also Appendix B. To incorporate stochasticity into System (3), this version of stochastic
singular perturbation analysis, together with the modified linear chain trick from [16,17] in
the delay case, is utilized in the paper.

Although System (1) is a particular case of System (3), we will treat them separately.
Detailed calculations are offered in the non-delay case, as this explains the main ideas and
techniques in a more refined way and without additional, and sometimes cumbersome, no-
tation, which is necessary to formalize the delay model. On the other hand, the techniques
in the delay and non-delay settings are very similar. Therefore, we only briefly outline the
proofs in the former case.

The main hypothesis of our analysis states that only one variable may approach its
threshold value at a time, i.e., different types of genes cannot be activated simultaneously.
In some sense, it may be regarded as a generic case, yet the framework elaborated for
deterministic GRNs covers more general situations [3,19]. The full stochastic analogue
of the deterministic results would require generalizations of the theory presented in the
monograph [18] and is beyond the scope of our report.

The paper is organized as follows: Section 2 contains an example explaining the
determistic model. In Section 3, we formulate the problem in the stochastic non-delay
case and list the main assumptions. Section 4 provides a detailed analysis of the non-
delayed stochastic model in the Heaviside limit. In Section 5, we introduce stochastically
perturbed GRNs with delay and give a short description of the modified linear chain trick
to be applied in Section 6. Notice that in this section, we use the techniques developed
in Section 4. In Appendix A, we formulate some known definitions and results from the
theory of stochastic differential equations [20], while a brief description of the stochastic
Tikhonov theorem from the monograph [18] is provided in Appendix B.

2. A Short Overview of the Deterministic Model

Let us start with an explanatory example (see [3] for the idea).

Example 1. Consider the system

ẋ1 = Z1 + Z2 − 3Z1Z2 − γ1x1,

ẋ2 = 1 − Z1Z2 − γ2x2,
(4)

where Z1, Z2 are given by (2), θ1 = θ2 = 1 and 0 < γi < 1. In the Heaviside limit ( q1, q2 = 0 ),
the response functions Zi are Boolean, i.e., only assume the values 0 and 1.

If Z1 = 0, Z2 = 0, then System (4) becomes ẋ1 = −γ1x1, ẋ2 = 1 − γ2x2, and we assume
that x1 → 0, x2 → 1

γ2
> 1.

If Z1 = 0, Z2 = 1 or z2 = 0, z1 = 0, then (4) converts to ẋ1 = 1 − γ1x1, ẋ2 = 1 − γ2x2,
while x1 → 1

γ1
> 1, x2 → 1

γ2
> 1.

Finally, if Z1 = 1, Z2 = 1, then we obtain ẋ1 = −1 − γ1x1, ẋ2 = −γ2x2, while x1 →
− 1

γ1
< 0, x2 → 0.
The trajectories of (4) in the Heaviside limit are depicted in Figure 2. They travel through the

‘transparent’ (see [3]) line x2 = θ2 = 1, x1 < θ1 = 1, but stop at the ‘black’ [3] line x1 = θ1 = 1,
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x2 > θ2 = 1. The line x2 = θ2 = 1, x1 > θ1 = 1 is also ‘black’, while the line x1 = θ1 = 1,
x2 < θ2 = 1 is repellent (‘white’ according to [3]).

Summarizing, we obtain the following in the Heaviside limit:

• The system becomes piecewise linear;
• The dynamics of the system can be easily described between the thresholds lines (hyperplanes

in higher dimensions);
• Some trajectories may ‘stop’ at the threshold lines (hyperplanes), as it is shown in Figure 2;
• However, the trajectories in the true model never stop, as the corresponding system is smooth.

Rather, the trajectories slide along the respective threshold lines (hyperplanes), see Figure 3.

Figure 2. Some phase trajectories of System (4) with γ1 = 0.7, γ2 = 0.6, q1 = q2 = 0. The trajectories
seem to ‘stop’ at the threshold line x1 = θ1 = 1, x2 > θ2 = 1.

 

Figure 3. Some phase trajectories of System (4) with γ1 = 0.7, γ2 = 0.6, q1 = q2 = 0.01. The ‘true’
trajectories do not stop, but slide along the threshold line x1 = θ1 = 1, x2 > θ2 = 1 (Pplane8 [21],
MATLAB R2018b).

To understand how the model in the Heaviside limit should be adjusted to cover the
case of sliding trajectories, let us assume that only one of the variables, say x1, approaches
its threshold value at a specific time t0, i.e., x1(t) → θ1 as t → t0, while the other variables
stay separated from their respective thresholds |xi(t0)− θi| ⩾ ε > 0, i = 2, . . . , n. This
implies that Zi → Bi, where Bi is either 0 or 1, as qi → 0 for all 1 ⩽ i ⩽ n. On the other hand,
the behavior of the corresponding response function Z1 may be quite irregular around t0,
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so that a special technique is required to perform the analysis for this quantity. As in [3],
we rewrite (1) as follows:

ẋ1 = F1(Z1, ZR)− G1(Z1, ZR)x1,

ẋR = FR(Z1, ZR)− GR(Z1, ZR)xR,

where R = {2, . . . , n}, xR = (xr)r∈R, ZR = (Zr)r∈R, FR = (Fr)r∈R, GR = diag(Gr)r∈R, and
Zi are given by (2).

The change of the variable Z1 = Σ(x1, θ1, q1) yields

q1Ż1 =
Z1(1 − Z1)

x1
(F1(Z1, ZR)− G1(Z1, ZR)x1),

ẋR = FR(Z1, ZR)− GR(Z1, ZR)xR,

where

x1 = Σ−1(Z1, θ1, q1) = θ

(
Z1

1 − Z1

)q1

.

The stretching transformation τ = t/q1 in the first equation and q1 → 0 results in the
boundary layer equation

dZ1

dτ
=

Z1(1 − Z1)

θ1
(F1(Z1, BR)− G1(Z1, BR)θ1). (5)

It was shown in [3], by virtue of the singular perturbation analysis, that if Ẑ1 ∈ (0, 1)
is an asymptotically stable point of (5), then the trajectories of System (1) slide along the
hyperplane x1 = θ1, and the changing part xR of the limit solution obeys the reduced system

ẋR = FR(Ẑ1, BR)− GR(Ẑ1, BR)xR. (6)

If the stable stationary point Ẑ1 of the boundary layer Equation (5) is outside the
interval (0, 1), then no sliding motion can occur. In particular, if Ẑ1 = 0 or 1, then the
trajectories in the Heaviside limit will travel through the threshold hyperplane x1 = θ1.

In Example 1, we obtain no sliding motion along the line x2 = θ2 = 1, x1 < θ1 = 1,
as the boundary layer Equation (5) is equal to dZ2

dτ = Z2(1 − Z2)(1 − γ2), where Ẑ2 = 1
is asymptotically stable. On the other hand, we do obtain sliding trajectories along the
line x2 > θ2 = 1, x1 = θ1 = 1, as the boundary layer Equation (5) becomes in this case
dZ1
dτ = Z1(1 − Z1)(1 − γ1 − 2Z1), where Ẑ1 = 1−γ1

2 ∈ (0, 1) is asymptotically stable. The
sliding trajectory in the Heaviside limit will be governed by ẋ2 = 1+γ1

2 − γ2x2.

3. Formulation of the Stochastic Problem in the Non-Delay Case

Consider the system

ẋi = Fi(Z)− Gi(Z)xi + σi(qi)Ḃi,

Zi = Σ(xi, θi, qi), qi ⩾ 0, i = 1, . . . , n,
(7)

with the initial conditions
x(0) = x0. (8)

Here, B = (B1, . . . ,Bn) is the standard n-dimensional Brownian motion, and σ =
(σ1, . . . , σn) is a vector of diffusion parameters. The functions Fi and Gi stand for the
production rate and the relative degradation rate of the product of gene i, respectively,
and xi denotes the gene product concentration. Both functions are assumed to be linear
in each Zi (see Section 1 for the explanation) and satisfy the natural positivity conditions
Fi(Z1, . . . , Zn) ⩾ 0, Gi(Z1, . . . , Zn) > 0 for 0 ⩽ Zi ⩽ 1, i = 1, . . . , n. Each response function
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Zi = Σ(xi, θi, qi) is the Hill function (2) if the steepness parameter qi > 0 and converts into
the shifted Heaviside function with the unit jump at xi = θi if qi = 0.

For qi > 0, i = 1, . . . , n, the right-hand sides Fi(Z1, . . . , Zn) − Gi(Z1, . . . , Zn)xi of
System (7) are smooth, therefore locally Lipschitz. Since all response functions Zi are
bounded (0 ⩽ Zi ⩽ 1), then |Fi| ⩽ Mi and 0 < δ ⩽ Gi ⩽ Mi. Therefore, the right-
hand sides of (7) grow linearly. By the existence and uniqueness theorem for stochastic
differential equations (see Appendix A) there exists a unique solution of the initial value
problem (7)–(8), which is defined for all t ⩾ 0. This fact is important for justifying the
calculations below.

Recall that our main hypothesis says that at most one of the variables xi in (7) is singular
at any time t0, i.e., approaches its threshold value θi if qi → 0, i = 1, . . . , n and t → t0,
while the others are regular, i.e., they must stay away from their respective thresholds in
the limit, i.e., |xj(t0)− θj| ⩾ ε > 0 if j ̸= i. Renumbering the variables, we can always
assume, without loss of generality, that the singular variable is x1. In the Heaviside limit,
i.e., as qi → 0, i = 1, . . . , n, we obtain that x1 = θ1, while and Zi(xi) = Bi, where Bi = 0 or 1
for i = 2, . . . , n. Adopting the notation from [3,16] we can equivalently say that if qi → 0,
i = 1, . . . , n, and t → t0, t ̸= t0, then the trajectory evolves towards the singular domain

SD(θ1, BR) = {(x1, . . . , xn) : x1 = θ1, Zi(xi) = Bi, i ⩾ 2}. (9)

As in the deterministic case, the challenge is to calculate the limit behavior of the
solutions of the stochastic system (7) in its sliding modes, i.e., when the trajectory hits the
singular domain (9). To be able to do it, we proceed, as in Section 2, with replacing the
singular variable x1 by the corresponding response function Z1. In the stochastic setting, the
resulting calculations, which are offered in the next section, will be based on the celebrated
Itô formula (see e.g., [20]) instead of the standard differentiation rules. To this end, we will
use the standard Itô representation of stochastic differential equations, which are based on
the differentials rather than the derivatives (which do not exist in the stochastic case). In
addition, we will take advantage of the notation introduced in Section 2 and rewrite (7) in a
more suitable form. More precisely, we will deal with the following system of Itô equations:

dx1 = (F1(Z1, ZR)− G1(Z1, ZR)x1)dt + σ1(q1)dB1,

dxR = (FR(Z1, ZR)− GR(Z1, ZR)xR)dt + σR(qR)dBR
(10)

with the initial conditions

(x1(0), xR(0)) ∈ SD(θ1, BR), i.e., x1(0) = θ1, xR(0) = x0
R, (11)

where Zi(x0
R) = BR.

Here, xR = (x2, . . . , xn), FR = (F2, . . . , Fn), GR is the diagonal (n − 1) × (n − 1)
matrix with the diagonal elements G2, . . . , Gn, ZR = (Z2, . . . , Zn), θR = (θ2, . . . , θn),
qR = (q2, . . . , qn), BR = (B2, . . . ,Bn), σR(qR) = (σ2(q2), . . . , σn(qn)).

4. Analysis in the Non-Delay Case

The substitution Z1 = Σ(x1, θ1, q1), or equivalently,

x1 = Σ−1(Z1, θ1, q1) = θ1

(
Z1

1 − Z1

)q1

requires the calculation of the differential dZ1, which will be completed with the help of
Itô’s formula

d f (x1) = f ′(x1)dx1 +
f ′′(x1)

2!
σ2

1 (q1)dt, (12)
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where f (x1) = Σ(x1, θ1, q1) and q1 > 0. Thus,

dZ1 = dΣ(x1, θ1, q1) =
∂Σ(x1, θ1, q1)

∂x1
dx1 +

1
2

∂2Σ(x1, θ1, q1)

∂x2
1

σ2
1 (q1)dt.

It is readily seen that

∂Σ(x1, θ1, q1)

∂x1
=

Z1(1 − Z1)

q1Σ−1(Z1, θ1, q1)
and

∂2Σ(x1, θ1, q1)

∂x2
1

=
Z1(1 − Z1)(1 − 2Z1 − q1)

q2
1(Σ

−1(Z1, θ1, q1))2
.

Therefore, System (10) becomes

q1dZ1 =
Z1(1 − Z1)

Σ−1(Z1, θ1, q1)

[
F1(Z1, ZR)− G1(Z1, ZR)Σ−1(Z1, θ1, q1) +

1 − 2Z1 − q1

2q1Σ−1(Z1, θ1, q1)
σ2

1 (q1)

]
dt

+
Z1(1 − Z1)

Σ−1(Z1, θ1, q1)
σ1(q1)dB1,

dxR = [FR(Z1, ZR)− GR(Z1, ZR)xR]dt + σR(qR)dBR, qi > 0, i = 1, . . . , n,

(13)

where the initial conditions are given by

xR(0) = x0
R,

Z1(0) = Σ(θ1, θ1, q1) = 0.5.
(14)

The following hypotheses are used in the analysis below:

Hypothesis 1. The functions F1 and G1 have the property.

{
F1(1, BR)− G1(1, BR)θ1 < 0,
F1(0, BR)− G1(0, BR)θ1 > 0.

(15)

Hypothesis 2. The diffusion coefficient σ1(q1) satisfies.

σ1(q1) = o

(√∣∣∣∣ q1

ln q1

∣∣∣∣
)

as q1 → 0

and all other diffusion coefficients satisfy

σi(qi) → 0 as qi → 0, i ∈ R.

Remark 1. Hypothesis H1 simply means that the boundary layer Equation (5) has an asymptotically
stable stationary point Ẑ1 ∈ (0, 1), which indicates that the system should possess a sliding
trajectory along the singular domain (9). Hypothesis H2 reflects the experimental fact [5] that
stochastic noise diminishes if the gene activation times become small compared to the time of
interaction of genes. The asymptotic formula for the diffusion coefficient σ1 of the singular variable
is, however, more subtle, as convergence at a coarser scale may result in an erratic behavior of the
solution x in the limit [18].

Let us now verify that Conditions B1–B5 of the stochastic Tikhonov theorem listed in
Appendix B are fulfilled for the initial value problem (13)–(14).

Verification of B1.

First, let us prove the continuity of the right-hand side of (13) in (q1, Z1, xR), q1 ∈ [0, q′],
q′ < 1, Z1 ∈ [0, 1], xr ∈ [0, ∞), r ∈ R.
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Evidently, the terms 1− q1 − 2Z1, F1(Z1, ZR)−G1(Z1, ZR)Σ−1(Z1, θ1, q1) and the right-
hand sides of the equations corresponding to xR are continuous in all variables (q1, Z1, xR).
Therefore, it remains to check this property for two problematic terms

P1 =
Z1(1 − Z1)

Σ−1(Z1, θ1, q1)
and P2 =

Z1(1 − Z1)(1 − 2Z1 − q1)

q1[Σ−1(Z1, θ1, q1)]2
σ2

1 (q1).

We start with P1. If Z1 ∈ (0, 1), then only letting q1 → 0 may cause problems in
the limit. However, in this case Σ−1(Z1, θ1, q1) → θ1 > 0, so that continuity at this point
is verified.

If Z1 = 0 or Z1 = 1, then

Σ−1(Z1, θ1, q1) → ±∞ (by definition) and
Z1(1 − Z1)

Σ−1(Z1, θ1, q1)
→ 0

as q1 → 0. Therefore, P1 is continuous on [0, 1]× [0, q′], q′ < 1.
For the term P2, let us notice that since

σ2
1 (q1)| ln(q1)|

q1
→ 0 (by H2) and | ln(q1)| → ∞ as q1 → 0,

then

σ2
1 (q1) = o

(
q1

| ln(q1)|

)
and

σ2
1 (q1)

q1
→ 0 as q1 → 0.

On the other hand,

[Σ−1(Z1, θ1, q1)]
2 =

[
θ1

(
Z1

1 − Z1

)q1
]2

= θ2
1

(
Z1

1 − Z1

)2q1

= Σ−1(Z1, θ2
1 , 2q1).

Therefore,
Z1(1 − Z1)

[Σ−1(Z1, θ1, q1)]2
=

Z1(1 − Z1)

Σ−1(Z1, θ2
1 , 2q1)

,

and hence P2, are continuous on [0, 1]× [0, q′/2], q′ < 1.
By this, the property of continuity of the right-hand side of System (13) is checked.
It was already mentioned in Section 3 that the right-hand side of System (7) is locally

Lipschitz and has a linear growth. Evidently, this also holds true for (13).

Verification of B2.

By Hypothesis H2, the diffusion coefficients σ1(q1) and σR(qR) go to 0 as q1 → 0 and
qR → 0̄. By Hypothesis H1, the equation

Z1(1 − Z1)

θ1
(F1(Z1, BR)− G1(Z1, BR)θ1) = 0

has a solution Z1 = Ẑ1 ∈ (0, 1) satisfying Condition B2.

Verification of B3.

The boundary layer equation is the same as in the deterministic case, i.e., (5). In the
notation of Appendix B, we have

A(0, Z1) :=
Z1(1 − Z1)

θ1
(MZ1 + N)
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for some constants M and N. From Hypothesis H1, we deduce that N > 0, M + N < 0 and
M < 0. Minding that Ẑ1 = − N

M , we obtain

∂A(0, Z1)

∂Z1
=

1 − 2Z1

θ1
(MZ1 + N) +

Z1(1 − Z1)

θ1
M ⇒ ∂A(0, Ẑ1)

∂Z1
=

Ẑ1(1 − Ẑ1)

θ1
M < 0.

By this, the estimate in Condition B3 is satisfied with kN = − Ẑ1(1−Ẑ1)
θ1

M. In particular,
the isolated stationary point Z̃1 ∈ (0, 1) of (5) is asymptotically stable.

Verification of B4.

Evidently, the attraction domain of the isolated stationary point Ẑ1 of the boundary
layer Equation (5) is the interval (0, 1), while the initial value Z1(0) = 0.5 always belongs
to this interval.

Verification of B5.

This readily follows from Hypothesis H2.
Thus, we have proven

Theorem 1. Under Hypotheses H1 and H2

P−lim
q̄→0̄

sup
0⩽t⩽T

|x1(t, q̄)− θ1| = 0,

P−lim
q̄→0̄

sup
0⩽t⩽T

|xR(t, q̄)− xR(t, 0̄)| = 0,

P−lim
q̄→0̄

sup
δ⩽t⩽T

|Z1(x1, θ1, q1)− Ẑ1| = 0

for each δ, 0 < δ < T. Here (x1(t, q̄), xR(t, q̄)) (q̄ = (q1, . . . , qn)) is the solution of (10) and
xR(t, 0̄) (0̄ is the n-dimensional zero vector) is its solution in the Heaviside limit satisfying the
reduced system (6) equipped with the initial condition xR(0) = x0

R.

Remark 2. The interval of convergence [0, T] in Theorem 1 can be calculated explicitly, as the con-
vergence holds true as long as the solution (θ1, xR(t, 0̄)) belongs to the singular domain SD(θ, BR).
Let us illustrate this fact by using the system from Example 1. Assume that x0

1 = 1, x0
2 > 1. As

Ẑ1 = 1−γ1
2 , Equation (6) becomes

ẋ2 =
1 + γ1

2
− γ2x2.

The solution x2(t, 0̄) satisfies the initial condition x2(0, 0̄) = x0
2 > 1. Therefore the time T

must satisfy x2(T, 0̄) = 1. It is straightforward to check that T = 1
γ2

ln 2γ2x0
2−1−γ1

2γ2−1−γ1
. Of course, the

interval of convergence depends on the initial value x0
2.

5. Formulation of the Stochastic Problem in the Delay Case

The delay system, which is studied in this section,

ẋi = Fi(Z)− Gi(Z)xi + σi(qi)Ḃi,

Zi = Σ(yi, θi, qi),

yi = ℜixi, t ⩾ 0, i = 1, . . . , n,

(16)

describes GRNs when changes in one or more genes happen slower than in the others. This
property causes time lags in the system, which are incorporated through the auxiliary variables
yi and the nonlinear Volterra (i.e., depending on the prehistory) operators ℜi [16,17]. If ℜi is
the identity operator, then xi = yi and xi becomes a non-delay variable.
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As in [16,17], we assume ℜi to be integral operators of the form

(ℜixi)(t) =0cixi(t) +
∫ t

−∞
Ki(t − s)xi(s)ds, t ⩾ 0, i = 1, . . . , n,

where

Ki(u) =
p

∑
ν=1

νci
νKi(u), νKi(u) =

αν
i uν−1

(ν − 1)!
e−αiu, i = 1, . . . , n, p = 1, . . . , n.

The coefficients νci are real non-negative numbers satisfying the normalization condition

p

∑
ν=0

νci = 1.

It is also assumed that αi > 0.
In order to study System (16), we remove the delays by applying the modified linear

chain trick method, which was suggested in [16]. The main idea is to introduce the
auxiliary variables

1vi =
0cixi +

p

∑
ν=1

νci
νwi and νvi =

p−ν+1

∑
j=1

j+ν−1ci
jwi,

where
νwi(t) =

∫ t

−∞

νKi(t − s)xi(s)ds, ν = 1, . . . , p, i = 1, . . . , n.

It is shown in [16] that System (16) is equivalent to the following non-delay system:

ẋi = Fi(Z1, . . . , Zn)− Gi(Z1, . . . , Zn)xi + σi(qi)Ḃi,
1v̇i = −αi

1vi + αi
2vi + αixi(

0ci +
1ci)

+ 0ci
(

Fi(Z1, . . . , Zn)− Gi(Z1, . . . , Zn)xi + σi(qi)Ḃi
)
,

2v̇i = −αi
2vi + αi

3vi + αixi
2ci

. . .
pv̇i = −αi

pvi + αixi
pci,

Zi = Σ(yi, θi, qi), yi =
1vi, i = 1, . . . , n.

(17)

As in the non-delay case, the right-hand sides of (17) satisfy the linear growth and local
Lipschitz conditions if qi > 0, i = 1, . . . , n. By Theorem A1 from Appendix A, System (17)
has a unique solution for an arbitrary initial condition, and this solution is defined for all
t ⩾ 0.

If qi → 0, i = 1, . . . , n, then the smooth response functions Σ(yi, θi, qi) will be replaced
by the Heaviside functions, and the system will split into a collection of linear nonhomoge-
neous systems defined in the disjoint continuity domains. This framework works perfectly
if a particular trajectory travels through a discontinuity hyperplane, but fails in the case of
sliding trajectories. The paper [17] offers a method, which is similar to the one used in the
non-delay case and which explains how to calculate the sliding trajectories in the Heaviside
limit. The stochastically perturbed genetic models with delay are studied in detail in the
next section.

6. Analysis in the Delay Case

This analysis is very similar to that offered in Section 4. Therefore, we omit technical
details concentrating on the overall description of the algorithm. Let us just recall that, as
before, at most one variable may reach its threshold value at any time.
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Letting qi → 0, i = 1, . . . , n and renumbering the variables we may always assume that
the singular variable is 1v1 = y1. In the limit, we thus obtain that 1v1 = θ1 and Zi(yi) = 1 or
0 for i = 2, . . . , n. The corresponding singular domain becomes in this case

SD(θ1, BR) = {(x, v) : 1v1 = θ1, Zi(yi) = Bi, i = 2, . . . , n},

where x = (x1, . . . , xn), v = (v1, . . . , vn) with vi = (1vi, . . . ,pvi), and Bi is either 0 or 1 for
all i = 2, . . . , n.

In addition, System (17) is assumed to be equipped with the initial conditions

x(0) = x0, v(0) = v0, (x0, v0) ∈ SD(θ1, BR), (18)

where x = (x1, . . . , xn), v = (v1, . . . , vn), vi = (1vi, . . . ,pvi), i = 1, . . . , n.
Suppose that:

Hypothesis 3. 0c1 ̸= 0 and the functions F1 and G1 satisfy.

{
−α1 θ1 + α1

2v1 + α1x1(
0c1 +

1c1) +
0c1(F1(1, BR)− G1(1, BR)x1) < 0

−α1 θ1 + α1
2v1 + α1x1(

0c1 +
1c1) +

0c1(F1(0, BR)− G1(0, BR)x1) > 0.
(19)

As in Section 4, the variable 1v1 = y1 will be replaced by the corresponding response
function Z1. Applying Itô’s formula to the representation (2) yields

q1dZ1 =
Z1(1 − Z1)

Σ−1(Z1, θ1, q1)

[
−α1Σ−1(Z1, θ1, q1) + α1

2v1 + α1x1(
0c1 +

1c1) +
0c1(F1(Z1, ZR)− G1(Z1, ZR)x1)

]
dt

+
Z1(1 − Z1)(1 − 2Z1 − q1)

2q1(Σ−1(Z1, θ1, q1))2
0c2

1 σ2
1 (q1)dt +

Z1(1 − Z1)

Σ−1(Z1, θ1, q1)
0c1σ1(q1)dB1,

dxi = [Fi(Z1, ZR)− Gi(Z1, ZR)xi]dt + σi(qi)dBi,

d(1vj) =
[
−αj

1vj + αj
2vj + αjxj(

0cj +
1cj) +

0cj(Fj(Z1, ZR)− Gj(Z1, ZR)xj)
]
dt + 0cjσj(qj)dBj,

d(2vi) =
[
−αi

2vi + αi
3vi + αixi

2ci

]
dt,

d(3vi) = −
[
αi

3vi + αi
4vi + αixi

3ci

]
dt,

. . .

d(pvi) = −[αi
pvi + αixi

pci]dt, i = 1, . . . , n, j = 2, . . . , n,

(20)

and the initial conditions become

x(0) = x0, Z(0) = 0.5, V(0) = V0, (21)

where x = (x1, . . . , xn), V = (vR
1 , v2, . . . , vn), vR

1 = (2v1,3v1, . . . ,pv1), vj = (1vj, . . . ,pvj),
j = 2, . . . , n.

Below we sketch the proof of the statement that the initial value problem (20)–(21)
satisfy all the conditions of the stochastic Tikhonov theorem from Appendix B, provided
that Hypotheses H2 and H3 are fulfilled.

Verification of B1.

The proof of the fact that the right-hand side of (20) is continuous in (Z1, qi, xi, pvi)
and satisfies the linear growth and locally Lipschitz conditions in (xi, pvi) is similar to the
non-delay case.
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Verification of B2.

By the assumptions, the diffusion coefficient σ1(q1) goes to 0 as q1 → 0. In the limit,
the right-hand side of the first equation in (20) becomes

Z1(1 − Z1)

θ1
[−α1θ1 + α1

2v1 + α1x1(
0c1 +

1c1) +
0c1(F1(Z1, BR)− G1(Z1, BR)x1].

By H3, this equation has the isolated solution Ẑ1 = Ẑ1(x1,2v1) ∈ (0, 1) satisfying B2.

Verification of B3.

The boundary layer equation is given by

dZ1

dτ
=

Z1(1 − Z1)

θ1
[−α1θ1 + α1

2v1 + α1x1(
0c1 +

1c1) +
0c1(F1(Z1, BR)− G1(Z1, BR)x1].

The Lyapunov stability of the stationary solution Ẑ1 of this equation follows from the
linearity of the function in the square brackets and condition (19).

Verification of B4.

For t = 0 and qi = 0 (i = 1, . . . , n) we have (x0(0̄), v0(0̄)) ∈ SD(θ1, BR). Therefore,
(x0

1(0̄),
2v0

1(0̄)) ∈ M, where M ⊂ R2 is the set of all solutions (x1,2v1) of System (19). Solving
the equation −α1θ1 + α1

2v1 + α1x1(
0c1 +

1c1) +
0c1(F1(Z̃1, BR)− G1(Z̃1, BR)x1 = 0, it is easy

to see that Z1 belongs to the domain of attraction as soon as (x0(0̄), v0(0̄)) ∈ SD(θ1, BR).

Verification of B5.

Condition B5 coincides with Hypothesis H2.
Thus, we have proven

Theorem 2. Under Hypotheses H2 and H3

P−lim
q̄→0̄

sup
0⩽t⩽T

|x(t, q̄)− x(t, 0̄)| → 0,

P−lim
q̄→0̄

sup
0⩽t⩽T

|v(t, q̄)− v(t, 0̄)| → 0,

P−lim
q̄→0̄

sup
δ⩽t⩽T

|Z1(y1, θ1, q1)− Ẑ| → 0

for each δ, 0 < δ < T. Here q̄ = (q1, . . . , qn), (x(t, q̄) and v(t, q̄)) is the solution of the initial
value problem (17), (18), while (x(t, 0̄), v(t, 0̄)) is the solution of the system

x1 = θ1,

ẋi = Fi(Ẑ1, BR)− Gi(Ẑ1, BR)xi (i ⩾ 2),
1v̇j = −αj

1vj + αj
2vj + αjxj(

0cj +
1cj) +

0cj(Fj(Ẑ1, BR)− Gj(Ẑ1, BR)xj),
2v̇i = −αi

2vi + αi
3vi + αixi

2ci,
3v̇i = −αi

3vi + αi
4vi + αixi

3ci,

. . .
pv̇i = −αi

pvi + αixi
pci, i = 1, . . . , n, j = 2, . . . , n,

equipped with the initial conditions (18).

7. Discussion

Exploiting the theory of stochastic differential equations and the stochastic version of
the Tikhonov singular perturbation analysis we proved that sliding trajectories in a vicinity
of the threshold hyperplanes of a gene regulatory network, with or without delays, are
preserved under small random perturbations, provided that asymptotics of the diffusion
coefficients governing the stochastic perturbations of the actively regulated variables is
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carefully chosen. On the other hand, our findings confirm that stochastic effects become
less visible if the gene activation times are relatively small.

Potential practical implications of the study may include novel genetic engineering
strategies to be used in synthetic biology, gene therapy, or drug development.

8. Conclusions and Outlook

The main results of the paper can be summarized as follows:

(1) A novel stochastic version of the extended Glass–Kaufmann model is suggested
and justified.

(2) A framework to analyze and control rapidly changing dynamics in a vicinity of the
system’s thresholds is elaborated; mathematically, it is based on the uniform version
of the stochastic Tikhonov theorem in singular perturbation analysis.

(3) The model justifies simplified computational schemes, where stochastic perturba-
tions are completely removed and all steep nonlinearities are replaced by the shifted
Heaviside functions.

(4) This model also explains the experimental fact that stochastic effects level gradually
out if the gene activation times become much smaller than the time of interaction
of genes.

The justification of these results assumes that only one gene concentration may ap-
proach its threshold value at a time. This assumption was purely technical, and in the
future we, therefore, intend to develop the suggested technique to cover the general sit-
uation when different types of genes are activated simultaneously, as it is already done
for deterministic GRNs [3,19]. This may require an extension of the stochastic singular
perturbation theory offered in [18].

The study findings can be important for other computational models in the system
biology in several ways, as they explain how one can reduce the level of complexity of a
model without losing essential information about the system.
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Appendix A. Some Basic Definitions and Results from the Theory of Stochastic
Differential Equations

This part is mostly borrowed from the monograph [20].
Let (Ω,F , P) be a probability space with the standard m-dimensional Brownian motion

B = B(t, ω) (t ⩾ 0) defined on it. Let Ft be the σ-algebra generated by the random variables
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B(s, ·), s ⩽ t. In other words, Ft is the smallest σ-subalgebra of F containing all sets of
the form

{ω : B(t1, ω) ∈ F1, . . . ,B(tk, ω) ∈ Fk},

where tj ⩽ t and Fj ⊂ Rm are arbitrary Borel sets, j ⩽ k, k ⩾ 1.
A measurable process g(t, ω) : [0, ∞)× Ω → Rn is called Ft-adapted if for each t ⩾ 0

the function ω → g(t, ω) is Ft-measurable.

Adapted stochastic processes that almost surely satisfy
T∫
S
| f (t, ω)|2dt < ∞ can be

integrated with respect to the Brownian motion. The corresponding Itô integral

I f (ω) =

T∫
S

f (t, ω)dB(t, ω)

possesses standard integration properties [20].
The n-dimensional stochastic differential equation of Itô-type

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t) (0 ⩽ t ⩽ T) (A1)

can then be interpreted as the following stochastic integral equation:

x(t) = x(0) +
t∫

0

f (x(s), s)ds +
t∫

0

g(x(s), s)dB(s) (0 ⩽ t ⩽ T). (A2)

A solution of Equation (A1) is an Rn-valued, (Ft)-adapted stochastic process {x(t)}0⩽t⩽T
that has continuous trajectories and satisfy (A2) with probability 1.

A measurable function h : E1 × [0, T] → E2 (E1 and E2 are finite dimensional spaces)
satisfies the linear growth and the local Lipschitz condition on [0, T], respectively, if

• There is a constant L, such that

|h(x, t)| ⩽ L(1 + |x|) ∀t ∈ [0, T], x ∈ E1,

• For any N > 0, there is a constant LN such that

|h(x1, t)− h(x2, t)| ⩽ LN |x1 − x2| ∀t ∈ [0, T], xi ∈ E1, |xi| ⩽ N.

Theorem A1 (see e.g., [22] (p. 135)). Assume that the functions f (x, t), g(x, t) satisfy the linear
growth and local Lipschitz condition on [0, T]. Then for any x0 ∈ Rn there exists a unique solution
x(t) of (A1) defined on [0, T] and satisfying the initial condition x(0) = x0.

We also need

Definition A1. Let X and Xk, k ⩾ 1, be Rn-valued random variables.
If for every ϵ > 0, P{ω : |Xk(ω)− X(ω)| > ϵ} → 0 as k → ∞, then Xk is said to converge to X
in probability:

P−lim
k→∞

Xk = X.

Appendix B. A Useful Result from the Stochastic Theory of Singular Perturbations

Consider the initial value problem

cdx(t, q) = a(q, x(t, q), y(t, q))dt + b(q, x(t, q), y(t, q))dBx(t), x(0) = x0,

qdy(t, q) = A(q, x(t, q), y(t, q))dt + B(q, x(t, q), y(t, q))dBy(t), y(0) = y0,
(A3)
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on Rk × Rn, where Bx(t), By(t) are independent Brownian motions,

B(q, x(t, q), y(t, q)) = σ(q)B0(q, x(t, q), y(t, q)) (t ∈ [0, T]),

q > 0 is a real parameter and x0 and y0 are constant vectors from Rk and Rn, respectively.
The theorem formulated below is based on the following conditions [18]:
B1. Condition ensuring existence and uniqueness of solutions.
The functions a, A, b and B0 in (B1) are continuous in the variables (q, x, y) and satisfy

the linear growth and local Lipschitz conditions in (x, y).
B2. Isolated root condition.
There is a function φ : Rk → Rn satisfying the linear growth and local Lipschitz

conditions in x such that
A(0, x, φ(x)) = 0 ∀x ∈ Rk.

B3. Lyapunov stability condition for the boundary layer equation.
The derivative Ay exists, it is a continuous function in the variables (q, x, y), and for

any N > 0 there exists a constant kN > 0 such that for every x ∈ Rk with |x| ⩽ N

uT Ay(0, x, φ(x))u ⩽ −kN |u|2 ∀u ∈ Rn.

B4. The domain of attraction condition.
The solution of the problem

dỹ
dτ

= A(0, x0, ỹ(τ)), ỹ(0) = y0,

tends to φ(x0) as τ → ∞: lim
τ→∞

ỹ(τ) = φ(x0), where τ is the scaled time variable.

Condition B4 says that the initial value y0 belongs to the domain of attraction of the
stationary solution φ(x0).

B5. Condition on asymptotics of the diffusion coefficient.
The coefficient σ(q) obeys

σ(q) = o

(√∣∣∣∣ q
ln q

∣∣∣∣
)

as q → 0.

Theorem A2 (see [18]). Under Conditions B1–B5, the solutions of System (B1) satisfy

P−lim
q→0

sup
t∈[0,T]

|x(t, q)− x(t, 0)| = 0,

P−lim
q→0

sup
t∈[δ,T]

|y(t, q)− y(t, 0)| = 0

for each δ, 0 < δ ⩽ T.
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