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Abstract: This paper presents two novel formulations for scheduling problems, namely order-
position hybrid formulation (OPH) and order-disjunctive hybrid formulation (ODH), which extend
and combine parts of existing formulation strategies. The first strategy (OPH) is based on sequence
position and linear ordering formulations, adding relationships between constraints that allow
relaxing some decision variables. The second approach (ODH) is based on linear ordering and
disjunctive formulations. In this work, we prove ODH to be the most efficient formulation known
so far. The experiments have been carried out with a large set of problems, which consider single
machines and identical parallel machines. Computational results show that OPH is better than the
rest of the existing formulations for the case of weighted completion objectives, while ODH turns out
to be the best approach for most scenarios studied.
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1. Introduction

In this paper, two new approaches to formulate machine scheduling problems are
proposed. These new formulations extend and mix parts of previous models. We focus
on two scenarios, namely a single machine and identical parallel machines, in order to be
able to study a wide range of problems. The set of problems to be considered is 1||LMAX,
1||ΣUi, 1||ΣwiCi, 1||ΣTi, 1||ΣwiTi, Pm||ΣwiCi, and Pm||ΣwiTi.

From a general point of view, the main formulations for single-machine scheduling
have been the following:

• DC: disjunctive constraints formulation [1];
• LO: linear ordering formulation [2,3];
• TI: time-indexed formulation [4];
• SP: sequence position formulation [5,6].

An experimental study of the previous formulations on a single machine was carried
out [7] by considering objectives such as 1||ΣwjCj, 1||LMAX, 1||ΣwjTj, and 1||ΣUj,
as well as the same problems with release dates. Another experimental study of these
formulations on the single-machine total tardiness problem was performed in [8], includ-
ing a hybrid formulation between the LO formulation and the SP formulation, with an
adaptation of the traveling salesman problem formulation with Desrochers and Laporte
anti-loop constraints [9]. Although these last two approaches are more recent, neither of
them achieves any relevant improvements over the other formulations. The DC and SP
formulations were also compared empirically in other single-machine scenarios [10].

However, as far as we are concerned, there has not been a relevant contribution to the
formulation of scheduling problems for years. Therefore, the main novelty of this paper is
to develop new strategies for modeling scheduling problems, aimed at both single-machine
and parallel-machine scenarios.
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Considering the results from previous studies and the results presented in this work,
it can be concluded that the TI formulation is the best formulation for short job sizes, such
as the uniform distribution from the interval [1, 10]. However, with the increase in job size,
it becomes a very inefficient formulation. For instance, the time to build the model in a
single-machine problem with no more than 100 jobs can take several hours if the job size is
in the uniform distribution from the interval [1, 100].

When the problem objective does not imply making the job completion time explicit, SP
is the best formulation for any job size [8], but the objective of the problem can be modeled
using the completion time of each position, which happens in problems like 1||ΣCj,
1||ΣTj, 1||LMAX, or 1||ΣUj. However, weighted objectives in linear programming
cannot be modeled without obtaining the completion time for each job. For these cases,
the SP formulation loses efficiency, although its behavior depends on the specific weighted
objective. Regarding weighted completion times, its behavior becomes very inefficient,
whereas its results improve for weighted tardiness purposes.

LO is a good formulation for problems with few jobs [7]. The set of θ(n3) transitivity
constraints, where n refers to the number of jobs, significantly worsens its performance
when the number of jobs increases. Finally, DC is the formulation with the worst behavior,
even for problems with the computational complexity of class P [8].

The next section shows the modeling of these formulations for single-machine prob-
lems. In Section 3, we present the new approaches to formulate single-machine problems. In
Section 4, we adapt these formulations for a parallel-machine scenario. Finally, in Section 5,
an empirical analysis of the formulations is developed.

2. Overview of Previous Formulations

In this section, a summary is presented for each of the four to-date best approaches for
weighted objectives, namely the DC, LO, TI, and SP formulations.

Let N = {1..n} be the set of jobs to be sequenced.
∀j ∈ N; let pj be the processing time, wj be the weight of the job, and dj be the due

date of the job. Also, R = Σn
j=1 pj.

2.1. Disjunctive Constraints Formulation (DC)

The variables of the formulation are defined as follows:
∀j, k ∈ N/j ̸= k : αjk = 1 if job j precedes job k; 0 otherwise;
∀j ∈ N : Cj = completion time of job j; LMAX = maximum lateness;
∀j ∈ N : Tj = tardiness time of job j; ∀j ∈ N : Uj = 1 if job j is late; 0 otherwise.
Common constraints in all DC single-machine models are (1)–(3), i.e., constraints

(1)–(3) are included for all objectives:

∀j, k ∈ N/j ̸= k : αjk + αkj = 1, (1)

∀j ∈ N : Cj ≥ pj, (2)

∀j, k ∈ N/j ̸= k : Cj + pk ≤ Ck + R
(

1 − αjk

)
, (3)

For 1
∣∣∣∣LMAX : ∀j ∈ N : LMAX ≥ Cj − dj, (4)

Min LMAX , (5)

For 1||Uj : ∀j ∈ N : Cj − dj ≤
(

Σn
j=1 pj − dj

)
Uj, (6)

Min Σn
j=1Uj, (7)

For 1||ΣwjC : Min Σn
j=1wjCj, (8)

For 1||ΣTj : ∀j ∈ N : Tj ≥ Cj − dj, (9)

Min Σn
j=1Tj, (10)
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For 1||ΣwjTj : constraints (9),

Min Σn
j=1wjTj, (11)

2.2. Linear Ordering Formulation (LO)

It uses the same variables that were defined for the DC formulation. Common con-
straints in all LO single-machine models are the following:

Precedence constraints : constraints (1),

Calculation of lower bound for the time completion:

∀j ∈ N : Cj ≥ Σ k ∈ N
k ̸= j

pkαkj + pj, (12)

Transitivity constraints:

∀j, k, i ∈ N/j ̸= k ̸= i : αjk + αki + αij ≤ 2, (13)

All objectives for scheduling problems are modeled in the same way as that for the
DC formulation (Section 2). The only difference is the replacement of common constraints
(2) and (3) by constraints (12) and (13).

2.3. Time-Indexed Formulation (TI)

For job processing, let t = 1, 2, . . .T be the set of time periods, where T = Σn
j=1 pj.

The variables of the formulation are defined as follows:
∀j ∈ N, t ∈

{
1..T − pj + 1

}
: xjt = 1 if job j starts processing at time t; 0 otherwise;

∀j ∈ N : Cj = completion time of job j.
Common constraints in all TI single machine models are:

Process each job once : ∀j ∈ N : Σ
T−pj+1
t=1 xjt = 1, (14)

No more than one job is processed at each time:

t = 1 . . . T : Σn
j=1Σt

s=max(1,t−pj+1)xjs ≤ 1, (15)

Objective functions for each type of problem are:

For 1||LMAX : ∀j ∈ N : Cj = Σ
T−pj+1
t=1

(
t + pj − 1

)
xjt, (16)

expressions (4) and (5),

For 1||Uj : Min Σn
j=1Σ

T−pj+1
t=dj−pj+1xjt, (17)

For 1||ΣwjC : Min Σn
j=1Σ

T−pj+1
t=1 wj

(
t + pj − 1

)
xjt, (18)

For 1||ΣTj : Min Σn
j=1Σ

T−pj+1
t=1 max

(
0, t + pj − 1 − dj

)
xjt, (19)

For 1||ΣWjTj : Min Σn
j=1Σ

T−pj+1
t=1 wjmax

(
0, t + pj − 1 − dj

)
xjt, (20)

2.4. Sequence Position Formulation (SP)

Let S = {1. . .n} be the set of positions in the sequence. Since n is the number of jobs, n
is also the number of positions in the sequence.

The variables of the SP formulation are defined as follows:
∀j ∈ N, s ∈ S : β js = 1 if job j is processed at position s; 0 otherwise;
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∀s ∈ S : CP
s = completion time of position s;

∀s ∈ S : Us = 1 if job in position s is late, 0 otherwise;
∀j ∈ N : Cj = completion time of job j;
∀s ∈ S : TP

s = tardiness time of position s;
∀j ∈ N : Tj = tardiness time of job j.
Common constraints in all SP single-machine models are:

Each job at a position : ∀j ∈ N : Σn
s=1β js = 1, (21)

In each position a job : ∀s ∈ S : Σn
j=1β js = 1. (22)

Calculation of the lower bound for the completion time of each position:

∀s ∈ S : CP
s ≥ Σn

j=1 pjΣs
k=1β jk, (23)

For 1||LMAX : ∀s ∈ S : LMAX ≥ CP
s − Σn

j=1djβ js, (24)

and expression (5).

For 1||Uj : ∀s ∈ S : CP
s ≤ Σn

j=1djβ js + RUs, (25)

Min Σn
s=1Us. (26)

In the previous cases, where no weighted objectives were imposed, there was no need
to work with variables considering the job. In other words, the model could include only
variables relative to the position. However, in this case, we need to calculate the lower
bound for the completion time of each job from the completion time of each position:

For 1||ΣwjCjj : ∀j ∈ N, s ∈ S : Cj ≥ CP
s − R

(
1 − β js

)
, (27)

and expression (8).

For 1||ΣTj : ∀s ∈ S : TP
s ≥ CP

s − Σn
j=1djβ js, (28)

Min Σn
s=1TP

s . (29)

For 1||ΣwjTj : expressions (9), (11), and (26).

3. Novel Formulations—Single-Machine Scenario

In this section, the formulations of the novel approaches are presented for the case of
single-machine problems. The parallel-machine scenario will be developed in Section 4.

3.1. Order-Position Hybrid Formulation (OPH)

This novel approach takes elements from both the LO formulation and SP formulation,
so that the transitive constraints can be replaced. It uses the following variables:

∀j, k ∈ N/j ̸= k : αjk = 1 if job j precedes job k; 0 otherwise;
∀j ∈ N, s ∈ S : β js = 1 if job j is processed at position s; 0 otherwise;
∀j ∈ N : Cj = completion time of job j;
∀j ∈ N : Tj = tardiness time of job j.
Common constraints in all DC single-machine models are expressions (1) and (12)

from the LO formulation and (22) from the SP formulation:

∀j, k ∈ N/j ̸= k : αjk + αkj = 1,
∀j ∈ N : Cj ≥ Σ k ∈ N

k ̸= j

pkαkj + pj,

∀s ∈ S : Σn
j=1β js = 1.
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To establish a connection between formulations and prevent precedents from forming
a loop, there is a need to incorporate the following relationship between both formulations
into the model:

∀j ∈ N : Σ
k ∈ N
k /∈ j

αkj + 1 =
n
Σ

s=1
sβ js (30)

Constraint (30) ensures that the position in the sequence occupied by job j is equal to
the number of jobs preceding job j, plus one. Constraint (30) also forces each job to have a
position, thus making it unnecessary to include constraint (21).

Proof. Because of constraint (22), there must be a job in each position. If a job were to be in
more than one position, some job j would not be able to be placed in any position; hence,
Σn

k=1β jk = 0. By constraint (30), for that job j: Σ k ∈ N
k /∈ j

αkj = −1, which is impossible.

Therefore, each job has a unique integer position in the sequence, which corresponds to the
integer Σn

k=1kβ jk, ∀j ∈ N. □

In addition, the set of constraint (30) allows us to relax variables αjk.

Proof. Let the established order be:
k = 1 Job o1; k = 2 Job o2; . . .; k = i Job oi; . . .; k = n Job on
There is a bijective mapping between {o1, o2, . . ., on} and the set of jobs {1. . .n}.
Position(o1) = 1:

o1 :⇒ by constraints (30) ⇒ Σ ok ∈ N
ok ̸= o1

αoko1 + 1 = 1 ⇒ Σ ok ∈ N
ok ̸= o1

αoko1 = 0

⇒ ∀k/k > 1 : αoko1 = 0 ⇒ by constraints (1) ⇒ ∀k/k > 1 : αo1ok = 1
(31.a)

Position(o2) = 2:

by constraints (30) ⇒ Σ ok ∈ N
ok ̸= o2

αoko2 = 1;

by expressions (31.a) ⇒ αo1o2 = 1 ⇒
∀k/ok ̸= o2&ok ̸= o1(≡ k > 2) : αoko2 = 0 ⇒
by constraints (1) ⇒ ∀k/k > 2 : αo2ok = 1

(31.b)

. . .
Position(oi) = i:

by constraints (30) ⇒ Σ ok ∈ N
ok ̸= oi

αokoi = i − 1;

by expressions (31.a) ⇒ αo1oi = 1
by expressions (31.b) ⇒ αo2oi = 1
. . .
by expressions (31.i − 1) ⇒ αoi−1oi = 1 ⇒
∀k/k > i : αokoi = 0 ⇒ by constraints (1) ⇒ ∀k/k > i : αoiok = 1

(31.i)

. . .



Mathematics 2024, 12, 1035 6 of 16

Position(on) = n:

by constraints (30) ⇒ Σ ok ∈ N
ok ̸= on

αokon = n − 1;

by expressions (31.a) ⇒ αo1on = 1
by expressions (31.b) ⇒ αo2on = 1
. . .
by expressions (31.i) ⇒ αoion = 1
. . .
by expressions (31.n − 1) ⇒ αon−1on = 1 ⇒

(31.n)

Therefore, all variables αjk are assigned a value of 1 or 0, even if they are defined as
continuous. □

For all objectives, the constraints and expressions to be included correspond to those
proposed for the DC or LO formulations.

3.2. Order-Disjunctive Hybrid Formulation (ODH)

The LO formulation problem shows a high number of O(n3) of transitive constraints
(constraint (13)), which prevents precedence loops amongst jobs. We propose to replace
transitive constraints with the following disjunctive constraint (32), which only employs n2

constraints while guaranteeing the proper sequence of the jobs:

∀j, k ∈ N/j ̸= k : Cj + pkαjk ≤ Ck + Rαkj, (32)

which are equivalent to constraint (3).
Therefore, common constraints of the ODH formulation will be expressions (1) and

(12). The other expressions correspond to those of the DC or LO formulation.

4. Formulations for Parallel-Machine Scenario

In this scenario, we need to incorporate set M={1. . .m} of parallel machines as data.
Precedence relationships for LO, OPH, and ODH formulations must only happen amongst
jobs processed on the same machine. The machine where each job is processed needs to be
considered a decision variable for the LO formulation, but not for the OPH formulation,
where it can be treated as an auxiliary calculation of the position in the sequence of each
machine, as in the SP formulation. The DC formulation is not going to be studied in this
section because of its poor behavior. Finally, we are going to focus on the problems with
objectives Pm||ΣwjCj and Pm||ΣwjTj. Other objectives for the study of identical parallel
machines were considered in [11–13].

4.1. Linear Ordering Formulation (LO)

The variables of the formulation are defined as follows:
∀j, k ∈ N/j ̸= k : αjk = 1 if job j precedes job k; 0 otherwise;
∀j ∈ N, i ∈ M : ωji = 1 if job j is processed in machine i; 0 otherwise;
∀j, k ∈ N/j < k : δjk = 1 if jobs j and k are processed in the same machine; 0 otherwise;
∀j ∈ N : Cj = completion time of job j;
∀j ∈ N : Tj = Tardiness time of job j.
Common constraints in all LO parallel-machine models are:

Precedence constraints : ∀j, k ∈ N/j ̸= k : αjk + αkj = δjk, (33)

Activation of δjk: ∀i ∈ M, ∀j, k ∈ N/j < k : ωji + ωki ≤ 1 + δjk, (34)

A machine of each job : ∀j ∈ N : Σm
i=1ωji = 1. (35)
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In addition, constraints (12) and (13) need to be incorporated. The objective functions
for every problem are the same as those of the single-machine scenario.

4.2. Time-Indexed Formulation (TI)

For job processing, let t = 1, 2, . . .T be the set of time periods, where T = Σn
j=1 pj.

The variables of the formulation are defined as follows:
∀i ∈ M, ∀j ∈ N, t ∈

{
1..T − pj + 1

}
: xjti = 1;

If job j starts processing at time t in machine i; 0 otherwise;
∀j ∈ N : Cj = completion time of job j.
Common constraints in all TI parallel-machine models are:

Process each job once : ∀j ∈ N : Σm
i=1Σ

T−pj+1
t=1 xjti = 1. (36)

No more than one job is processed at each time:

∀i ∈ M, t = 1 . . . T : Σn
j=1Σt

s=max(1,t−pj+1)xjsi ≤ 1. (37)

Objective functions for each type of problem are:

For 1||ΣwjC : Min Σm
i=1Σn

j=1Σ
T−pj+1
t=1 wj

(
t + pj − 1

)
xjti, (38)

For 1||ΣwjTj : Min Σm
i=1Σn

j=1Σ
T−pj+1
t=1 wjmax

(
0, t + pj − 1 − dj

)
xjti. (39)

4.3. Sequence Position Formulation (SP)

The variables of the SP formulation are defined as follows:
∀j ∈ N, s ∈ S, i ∈ M : β jsi = 1 if job j is processed at position s in machine i; 0

otherwise;
∀s ∈ S : CP

s = completion time of position s;
∀j ∈ N : Cj = completion time of job j;
∀j ∈ N : Tj = tardiness time of job j.
Common constraints in all SP parallel-machine models are:

Each job at a position : ∀j ∈ N : Σn
s=1Σm

i=1β jsi = 1. (40)

No more than one job in each position:

∀s ∈ S, ∀i ∈ M, : Σn
j=1β jsi ≤ 1. (41)

Calculation of lower bound for the time completion of each position:

∀s ∈ S, ∀i ∈ M : CP
si ≥ Σn

j=1 pjΣs
k=1β jki. (42)

Calculation of lower bound for the time completion of each job:

∀s ∈ S, ∀i ∈ M : CP
si ≥ Σn

j=1 pjΣs
k=1β jki. (43)

The objective functions for each type of problem are the same as those defined in the
LO formulation.

4.4. Order-Position Hybrid Formulation (OPH)

All variables from the LO formulation and variables β jsi from the SP formulation are
used in the OPH formulation.
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Expressions (33) and (34) from the LO formulation and (40) and (41) from the SP
formulation need to be incorporated. The relationship between the LO and SP formulations
is defined as:

∀s ∈ S, ∀i ∈ M, : Σn
j=1β jsi ≤ 1. (44)

As in expression (30), variables αjk can be considered continuous. Regarding variables
δjk, their value is set to 0 whenever any variable ωji or ωjk is equal to 0. Therefore, the next
constraints must be added:

∀i ∈ M, ∀j, k ∈ N/j < k : ωji − ωki ≥ δjk − 1 , (45)

∀i ∈ M, ∀j, k ∈ N/j < k : ωki − ωji ≥ δjk − 1. (46)

However, variables ωji are not decision variables in this model but are calculated from
variables β jsi by using the following expression:

∀j ∈ N, ∀i ∈ M : ωji = Σn
j=1β jsi (47)

The objective functions for each type of problem are the same as those defined in the
LO formulation.

4.5. Order-Disjunctive Hybrid Formulation (ODH)

The ODH formulation with parallel machines uses variables from the LO formulation,
along with its constraints, (33)–(35) and (12). In addition, constraint (3) must be added to
guarantee proper sequences on each machine. Constraint (32), which was defined for the
ODH formulation in a single machine, cannot be applied in the case of parallel machines,
since two jobs on different machines do not have precedence relationships.

The objective functions for each type of problem are the same as those defined in the
LO formulation.

5. Computational Results

Experiments have been performed by following the experimental analysis proposed
by [14,15]. Therefore, the following parameters have been considered:

• Processing time pj: generated from two uniform distributions: [1, 100] and [1, 10];
• Weight wj: generated from the uniform distribution [1, 10];
• Due date dj: an integer generated from the uniform distribution [P(L − R/2),P(L +

R/2)], where P is the sum of the processing times of all jobs. Parameters L and R corre-
spond to relative measures of the location and range of the distribution, respectively,
and take three values each: {0.2, 0.4, 0.6} and {0.6, 1, 1.4};

• Number of jobs (n): six sizes have been considered {20, 40, 60, 80, 100, and 200},
although no problem includes the six sizes.

From each combination of parameters, four instances are generated. Experiments were
run on an Intel(R) Core(TM) i7-10700K CPU @ 3.80 GH with 16 Gb RAM. The optimization
library GUROBI Optimizer 10.0.1 was used.

All instances for all problems will be executed during a number of seconds equal to
the number of jobs times the number of machines in the corresponding problem, which is a
significant difference compared to the analysis of previous scheduling models, where the
execution time is usually one hour.

5.1. Linear Programming Relaxation

The linear programming relaxation has been analyzed for 1||ΣwjCj and 1||ΣwjTj.
This relaxation of the integer models produces optimal solutions for the formulations TI,
LO, OPH, and ODH in the case of problem 1||ΣwjCj. However, the SP formulation obtains
solutions with an integrality gap of 97.5%.
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Regarding problem 1||ΣwjTj, Table 1 shows the lower bound gap. In this case, the TI
formulation presents the best bounds. ODH also shows a better gap than the rest of the
formulations. LO and OPH have the same lower bounds.

Table 1. Lower Bound GAP (%).

LO TI SP OPH ODH

GAP (%) 55.9 1.5 65.4 55.9 18.5

5.2. Results for 1||ΣwjCj

Regarding the computational results of the integer resolution of the problem, Table 2
shows the average resolution times for the four instances of each size and pi interval. The
behaviors of the LO, TI, OPH, and ODH models can be observed. However, results from
the sequencing-position model (SP) were not included because, with just 20 jobs and after
an hour, no instance had finished, and the best solution found so far was not optimal.

Table 2. Summary of computational results on problem 1||ΣwjCj.

N LO TI OPH ODH

pj ∈ [1, 100]

20 0.02 3.21 0.02 0.02

40 0.18 17.62 0.04 0.11

60 0.78 39.62 0.09 0.21

100 4.31 115.64 0.26 0.49

200 40.66 1 1.04 0.51

pj ∈ [1, 10]

20 0.02 0.10 0.03 0.02

40 0.21 0.41 0.05 0.12

60 0.77 1.20 0.10 0.31

100 3.65 4.23 0.23 0.63

200 40.33 18.27 1.01 3.55
1 To generate the TI models, in the case of pj ∈ [1, 100], it took 8 s for 20 jobs, 33 s for 40 jobs, 937 s for 60 jobs, and
11.185 s for 100 jobs. Therefore, the creation of the TI model for 200 jobs was ruled out.

Since the building time of a model is equivalent in all scheduling problems that are to
be analyzed, the analysis of the TI formulation for the interval pj ∈ [1, 100] is discarded.
For any scheduling problem, preliminary tests for the interval pj ∈ [1, 100] conclude that
the TI models do not yield good feasible solutions for most of the cases.

As can be seen in Table 2, OPH and ODH are clearly the fastest formulations, equiv-
alent to the resolution time of the LP relaxation. Although TI is slightly better than LO
for pj ∈ [1, 10], the growth of the TI model may make its resolution unfeasible for the
pj ∈ [1, 100] distribution interval.

To evaluate the growth of the models, Table 3 shows how to calculate the size of the
integer formulations for all four alternatives. In the TI formulation, T corresponds to the
number of time periods. Table 4 displays the size for N = {20, 40, 60, 100} and shows that TI
contains the smallest number of constraints for pj∈ [1, 10], whereas the OPH formulation
contains the smallest number of constraints for pj∈ [1, 100]. LO and ODH contain the
smallest number of variables, but ODH considerably reduces the number of constraints.
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Table 3. Formulation size expressions for 1||ΣwjCj.

Jobs LO SP OPH ODH TI

n

Constraints n3 − 5n2/2 + 3n/2 n2+ 3n n2/2 + 7n/2 n2 T + n

Variables n2 n2+ 2n 2n2 n2 T(n − 1) + n

Integer variables n2 − n n2 n2 n2 − n T(n − 1) + n

Table 4. Formulation size for 1||ΣwjCj.

TI

Jobs LO SP OPH ODH pj ∈ [1, 10] pj ∈ [1, 100]

20

Constraints 7030 460 270 400 136 922

Variables 400 440 800 400 2320 18,580

Integer variables 380 400 400 380 2320 18,580

40

Constraints 60,060 1720 940 1600 260 1874

Variables 1600 1680 3200 1600 8800 73,360

Integer variables 1560 1600 1600 1560 8800 73,360

60

Constraints 207,090 3780 2010 3600 391 2820

Variables 3600 3720 7200 3600 19,860 165,580

Integer variables 3540 3600 3600 3540 19,860 165,580

80

Constraints 975,150 10,300 5350 10,000 661 5087

Variables 10,000 10,200 20,000 10,000 56,133 498,733

Integer variables 9900 10,000 10,000 9900 56,133 498,733

5.3. Results for 1||LMAX

It was proved that the best formulation to solve the 1||LMAX problem was the SP
formulation [9], where the maximum execution time was one hour. In our study, the
maximum time is set to n seconds. Table 5 shows the number of instances where the branch
and bound execution finished (A), the number of instances where the optimal solution
was reached (B), and the number of instances where each model obtained optimal or best
feasible solutions compared to other formulations (C). Please note that we have considered
the values of n = {40, 60, 80, 100}.

Table 5. Computational results for 1||LMAX problem.

LO SP TI OPH ODH

n A B C A B C A B C A B C A B C

pj ∈ [1, 100]

40 21 21 21 36 36 36 - - - 22 36 36 23 36 36

60 36 36 36 29 36 36 - - - 23 31 31 25 36 36

80 24 24 24 27 34 34 - - - 12 19 19 21 36 36

100 17 17 17 26 29 29 - - - 1 3 3 20 36 36

pj ∈ [1, 10]

40 36 36 36 36 36 36 36 36 36 20 36 36 24 36 36

60 35 35 35 36 36 36 36 36 36 20 28 28 21 36 36

80 26 26 28 30 36 34 35 35 35 10 16 15 22 36 34

100 20 20 20 27 30 30 25 25 25 1 6 6 22 34 34

Total 217 217 217 247 273 273 132 132 132 109 175 175 178 286 286

Greatest number of optimal solutions in each scenario (A, B and C) has been highlighted in bold.
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Each row of Table 5 comprises 36 instances, i.e., 4 instances for each combination
of [R, L]. Therefore, 288 problems have been solved. The ODH formulation achieves the
best solutions, and pj ∈ [1, 100] reaches optimal values for all instances. It can also be
seen that the SP formulation is the one that most often completes the resolution, thus
guaranteeing the optimal solution. Although the TI formulation shows very good behavior,
it significantly decreases convergence with 100 jobs. LO never provides optimal solutions
when it does not finish. Finally, OPH presents the worst performance here.

5.4. Results for 1||ΣUj

Although ODH yields very good results for problem 1||ΣUj, the SP model provides
the best overall performance (Table 6). However, if the results are analyzed based on
parameter R (Table 7), ODH turns out to be the best model with R equal to 1 and 1.4,
whereas its performance decreases with R equal to 0.6. At that value, SP works very
well. In other words, SP is the best formulation for problems where delivery dates are
very similar, but if we increase the range of delivery date values, ODH becomes the best
formulation.

Table 6. Computational results for 1||ΣUj problem.

LO SP TI OPH ODH

n A B C A B C A B C A B C A B C

pj ∈ [1, 100]

40 12 24 24 31 36 36 - - - 17 28 28 23 36 36

60 16 18 18 28 35 35 - - - 13 18 18 23 33 33

80 11 11 11 26 36 36 - - - 5 7 7 21 31 31

100 8 8 8 20 29 30 - - - 2 3 3 18 25 25

pj ∈ [1, 10]

40 15 25 25 31 36 36 36 36 36 20 31 31 24 36 36

60 12 13 13 30 36 36 28 29 29 11 15 15 20 34 34

80 9 9 9 30 32 32 12 15 15 7 7 7 19 28 28

100 8 8 8 24 32 33 7 8 8 3 3 3 20 28 29

Total 91 116 116 220 272 274 83 88 88 78 112 112 168 251 252

Greatest number of optimal solutions in each scenario (A, B and C) has been highlighted in bold.

Table 7. Computational results for 1||ΣUj problem with respect to parameter R.

LO SP TI OPH ODH

R A B C A B C A B C A B C A B C

0.6 0 13 13 89 94 96 21 24 24 11 23 23 4 59 60

1 38 48 48 54 84 84 27 29 29 15 29 29 68 96 96

1.4 53 55 55 77 94 94 35 35 35 52 60 60 96 96 96

Total 91 116 116 220 272 274 83 88 88 78 112 112 168 251 252

Greatest number of optimal solutions in each scenario (A, B and C), as well as for each value of parameter R, has
been highlighted in bold.

Table 6 also shows that TI loses convergence as the number of jobs increases, while the
ODH formulation presents an overall better behavior for a greater interval of pj.

5.5. Results for 1||ΣTj

Henceforth, formulations are studied for the NP problems. Results are analyzed for
n = {40, 60, 80} and are shown in Table 8. Since 4 instances for each combination [L, R] are
considered, there is a total of 216 instances. The TI formulation presents the best overall
results, provided that the formulation is feasible. If all ranges are considered, ODH presents
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the best results by a considerable margin. Although the LO formulation comes in second
place, it loses efficiency when the number of jobs increases, due to its constraints to avoid
loops in the precedents of order O(n3).

Table 8. Computational results for 1||ΣTj problem.

LO SP TI OPH ODH

n A B C A B C A B C A B C A B C

pj ∈ [1, 100]

40 10 27 27 10 25 25 - - - 5 26 26 22 33 33

60 7 21 22 7 14 17 - - - 4 23 25 17 26 28

80 6 17 17 5 7 15 - - - 0 15 17 9 23 24

pj ∈ [1, 10]

40 7 27 27 7 36 36 36 36 36 5 24 24 21 31 31

60 8 20 21 10 19 19 32 34 36 6 19 20 15 27 28

80 6 19 19 6 15 15 30 36 36 0 10 10 11 27 27

Total 44 131 133 45 116 127 98 106 108 20 117 122 95 167 171

Greatest number of optimal solutions in each scenario (A, B and C) has been highlighted in bold.

As in the previous models, SP continues to have a direct formulation of the objective
function with the use of positions. It is not necessary to calculate the delay of the job, but
the delay of the position. However, SP formulation does not show good results, and there
are no important differences regarding the length of the process times.

5.6. Results for 1||ΣwjTj

The problem of minimizing the total weighted tardiness in single-machine scheduling
is a well-known, strongly NP-hard problem [16]. Therefore, the resolution of instances until
reaching an optimal solution becomes harder with size. We have decided to maintain the
same instances as in the previous problem 1||ΣTj.

In this problem, SP needs to calculate the delay of each job from the position delay, so
this formulation will lose efficiency. Results are displayed in Table 9 and follow a similar
trend as problem 1||ΣTj.

Table 9. Computational results for 1||ΣwjTj problem.

LO SP TI OPH ODH

n A B C A B C A B C A B C A B C

pj ∈ [1, 100]

40 19 29 30 9 13 13 - - - 5 26 27 23 34 35

60 9 21 23 7 10 13 - - - 5 16 17 18 30 29

80 4 13 19 5 7 10 - - - 0 6 6 15 24 25

pj ∈ [1, 10]

40 15 26 26 6 14 14 36 36 36 7 26 26 22 32 32

60 9 21 21 10 12 12 35 36 36 7 15 15 18 26 26

80 5 13 13 5 6 6 33 33 36 0 9 9 15 25 27

Total 61 123 132 42 62 68 104 105 108 24 98 100 111 171 174

Greatest number of optimal solutions in each scenario (A, B and C) has been highlighted in bold.

The TI formulation yields the best results. Regarding the rest of the formulations,
ODH is the one presenting the best convergence. LO and OPH improve the results of the
SP formulation, with LO being slightly better. There are no notable differences with respect
to the length of the process times.
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5.7. Results for Pm||ΣwjCj

To minimize completion times with parallel machines, we have considered the number
of jobs to be n = {20, 40, 60} and the number of machines m = {2, 3, 5}. Four instances for
each combination of the processing time interval, {pj ∈ [1, 100], pj ∈ [1, 10]}, n, and m, have
been generated, leading to a total of 72 instances.

The TI formulation reaches the optimum in all 36 problems with pj ∈ [1, 10]. If any
range of pj is considered, ODH outperforms the rest of the formulations, displaying the
best performance in 45 problems. The OPH and LO formulations show similar results,
with OPH being slightly better. Like the single-machine problem, SP exhibits very poor
convergence. Since there were no differences regarding the length of the process times,
results of both intervals have been integrated in Table 10. Therefore, each row contains
eight problems, except for the TI formulation, which has only executed four problems.

Table 10. Computational results for Pm||ΣwjCj problem.

LO SP TI OPH ODH

m n A B C A B C A B C A B C A B C

2

20 8 8 8 0 0 0 4 4 4 8 8 8 8 8 8

40 0 0 0 0 0 0 4 4 4 0 0 0 0 0 4

60 0 0 3 0 0 0 4 4 4 0 0 1 0 0 2

3

20 0 5 5 0 0 0 4 4 4 0 5 5 0 8 8

40 0 0 0 0 0 0 4 4 4 0 0 4 0 0 4

60 0 0 0 0 0 0 4 4 4 0 0 5 0 0 3

5

20 0 2 4 0 0 0 4 4 4 0 0 1 0 4 6

40 0 0 2 0 0 0 4 4 4 0 0 2 0 0 4

60 0 0 0 0 0 0 4 4 4 0 0 2 0 0 6

Total 8 15 22 0 0 0 36 36 36 8 13 28 8 20 45

Greatest number of optimal solutions in each scenario (A, B and C) has been highlighted in bold.

5.8. Results for Pm||ΣwjTj

In the case of problem Pm||ΣwjTj, 648 problems are tested. As in the Pm||ΣwjCj
problem, there were no differences regarding the interval of the process times, so the results
of both intervals have been integrated in Table 11. Therefore, each row contains 72 problems,
except for the TI formulation, which has only executed 36 problems in each row.

Like the previous problem, TI achieves optimal solutions for all problems. Although
the results of the SP and ODH formulations are roughly similar, ODH provides a greater
number of optimal solutions. Finally, OPH improves the LO formulation.

Table 11. Computational results for Pm||ΣwjTj problem.

LO SP TI OPH ODH

m n A B C A B C A B C A B C A B C

2

20 38 45 47 8 22 22 36 36 36 25 38 40 46 58 60

40 2 2 9 1 6 18 36 36 36 2 2 9 2 4 13

60 2 2 2 11 11 22 36 36 36 4 4 5 0 0 20

3

20 15 21 25 6 13 19 36 36 36 10 19 22 23 32 45

40 1 0 3 2 1 20 36 36 36 2 0 14 2 0 6

60 0 0 10 9 9 25 36 36 36 3 2 7 0 0 3
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Table 11. Cont.

LO SP TI OPH ODH

m n A B C A B C A B C A B C A B C

5

20 14 23 27 6 13 18 36 36 36 9 20 25 20 34 41

40 2 0 7 0 0 17 36 36 36 2 0 7 2 0 13

60 0 0 0 6 3 17 32 36 36 1 1 3 2 1 24

Total 74 93 130 49 78 178 320 324 324 58 86 132 97 129 225

Greatest number of optimal solutions in each scenario (A, B and C) has been highlighted in bold.

5.9. Summary and Applications

Scheduling models are used in almost all production systems and environments. Their
formulations are needed in many applications as a tool for the experimental study of
heuristic allocation techniques and even as a way to achieve exact optimal solutions in
environments with a restrained number of jobs.

As a summary of results, the total number of instances where each formulation
obtained the optimal or the best feasible solution in each problem is shown in Figure 1. In
other words, Figure 1 depicts the summation of the C column from Tables 5–11. It can be
seen that ODH outperforms the other formulations in most of the problems. Regarding
the Pm||ΣwjTj problem, the TI formulation achieves a great performance only in scenarios
with a small number of jobs.

Mathematics 2024, 12, 1035 13 of 15 
 

 

5.8. Results for Pm||wjTj 
In the case of problem Pm||wjTj, 648 problems are tested. As in the Pm||wjCj prob-

lem, there were no differences regarding the interval of the process times, so the results of 
both intervals have been integrated in Table 11. Therefore, each row contains 72 problems, 
except for the TI formulation, which has only executed 36 problems in each row.  

Like the previous problem, TI achieves optimal solutions for all problems. Although 
the results of the SP and ODH formulations are roughly similar, ODH provides a greater 
number of optimal solutions. Finally, OPH improves the LO formulation. 

Table 11. Computational results for Pm||wjTj problem. 

  LO SP TI OPH ODH 
m n A B C A B C A B C A B C A B C 

2 
20 38 45 47 8 22 22 36 36 36 25 38 40 46 58 60 
40 2 2 9 1 6 18 36 36 36 2 2 9 2 4 13 
60 2 2 2 11 11 22 36 36 36 4 4 5 0 0 20 

3 
20 15 21 25 6 13 19 36 36 36 10 19 22 23 32 45 
40 1 0 3 2 1 20 36 36 36 2 0 14 2 0 6 
60 0 0 10 9 9 25 36 36 36 3 2 7 0 0 3 

5 
20 14 23 27 6 13 18 36 36 36 9 20 25 20 34 41 
40 2 0 7 0 0 17 36 36 36 2 0 7 2 0 13 
60 0 0 0 6 3 17 32 36 36 1 1 3 2 1 24 

Total  74 93 130 49 78 178 320 324 324 58 86 132 97 129 225 
Greatest number of optimal solutions in each scenario (A, B and C) has been highlighted in bold. 

5.9. Summary and Applications 
Scheduling models are used in almost all production systems and environments. 

Their formulations are needed in many applications as a tool for the experimental study 
of heuristic allocation techniques and even as a way to achieve exact optimal solutions in 
environments with a restrained number of jobs. 

As a summary of results, the total number of instances where each formulation ob-
tained the optimal or the best feasible solution in each problem is shown in Figure 1. In 
other words, Figure 1 depicts the summation of the C column from Tables 5–11. It can be 
seen that ODH outperforms the other formulations in most of the problems. Regarding 
the Pm||wjTj problem, the TI formulation achieves a great performance only in scenarios 
with a small number of jobs. 

 

0

50

100

150

200

250

300

350

1||Lmax 1||ƩUj 1||ƩTj 1||ƩwjTj  Pm||ƩwjCj Pm||ƩwjTj

LO SP TI OPH ODH

Figure 1. Total results for each formulation.

6. Conclusions

In this paper, two novel modeling approaches for scheduling problems have been
presented by extending already existing modeling strategies. The strategy for the analysis
has been to use short execution times: a number of seconds equal to the number of jobs
times the number of machines. Afterward, we collected the number of completions reached
and the number of optimal solutions, and instead of the average error, we have computed
the number of times that each formulation achieved the best result amongst the five
approaches.

The first formulation, OPH, based on the combination of the linear order and sequence
position formulations, shows very good results in weighted completion time objectives. The
second formulation, ODH, based on the combination of the linear order formulation and the
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disjunctive formulation, yields the best results in our experimental study. Therefore, ODH
should be considered the main formulation for further work and other study scenarios.

If only processing times belonging to the interval [1, 10] are assessed, the time index
formulation produces the best results. However, when the processing time is extended to
interval [1, 100], the model drastically increases its size. For instance, it takes more than
15 min to generate a problem with 40 jobs and one machine. In addition, its results are very
poor compared to the processing time.

Future lines of research involve extending the two novel formulations to flowshop
environments. Concerning limitations of the research methodology, mathematical models
can be inefficient in complex scenarios with a large number of jobs. However, as a tool
for studying heuristic techniques, ODH achieves optimal solutions while showing a better
behavior than previous formulations.
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