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Abstract: This article discusses an alternative method for estimating marginal probability densities of
the solution to stochastic differential equations (SDEs). Two algorithms for calculating the numerical–
statistical projection estimate for distributions of solutions to SDEs using Legendre polynomials
are proposed. The root-mean-square error of this estimate is studied as a function of the projection
expansion length, while the step of a numerical method for solving SDE and the sample size for
expansion coefficients are fixed. The proposed technique is successfully verified on three one-
dimensional SDEs that have stationary solutions with given one-dimensional distributions and
exponential correlation functions. A comparative analysis of the proposed method for calculating the
numerical–statistical projection estimate and the method for constructing the histogram is carried out.
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1. Introduction

Many mathematical models of dynamical systems in various fields of science (ra-
dio engineering, statistical mechanics, automatic control, chemistry, medicine, reliability
theory, etc.) can be described by stochastic differential equations (SDEs). Moreover, some
boundary value problems in mathematical physics can be reduced to Cauchy problems for
SDEs. This approach is based on both a probabilistic representation of the solution to the
boundary value problem in the form of a functional of the solution to the corresponding
SDE [1] and a numerical method for statistical modeling of this solution [2–7].

For analyzing, filtering, predicting, or smoothing random processes in various dynam-
ical systems described by SDEs, the probability density is often estimated [8,9] because it
provides maximum information about the random process.

Mathematical models related to phase transitions, e.g., processes of particle association
into clusters, can be described by SDEs [10]. There are many examples of such processes:
formation of aerosols in the atmosphere, condensation in high-speed gas flows, polymer-
ization, crystallization, deposition of metal vapors, etc. Such problems require estimating
distributions of solutions to SDEs.

Numerical methods for solving SDEs [2–7] make it possible to find approximate
solutions and also to estimate their probability densities. As such an estimate, the histogram
is usually considered [11–15], which is a statistical analogue for the probability density
of the SDE solution. Note that histograms are used not only when solving SDEs but also
when analyzing various data [16–18]. However, this article studies estimating distributions
in the context of SDEs.

Consider the following SDE:

dX(t) = G(t, X(t))dt + σ(t, X(t))dW(t), t ∈ [0, T]; X(0) = X0, (1)

Mathematics 2024, 12, 586. https://doi.org/10.3390/math12040586 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12040586
https://doi.org/10.3390/math12040586
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12040586
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12040586?type=check_update&version=2


Mathematics 2024, 12, 586 2 of 16

where X(t) is an nX-dimensional vector random process; G is a given vector-valued function,
σ is a given matrix-valued function

G(t, X) =

 G1(t, X)
...

GnX (t, X)

, σ(t, X) =

 σ11(t, X) · · · σ1nw(t, X)
...

. . .
...

σnX1(t, X) · · · σnXnw(t, X)

,

and W(t) is an nw-dimensional standard Wiener process with independent components.
The distribution of an initial vector X0 is given. The initial vector X0 and the Wiener process
W(t) are mutually independent.

Since SDE (1) can be understood as the Itô SDE or the Stratonovich SDE, we will use
different notations for them. The Formula (1) is accepted for the Itô SDE. The Stratonovich
SDE has the following formula:

dX(t) = g(t, X(t))dt + σ(t, X(t)) ◦ dW(t), t ∈ [0, T]; X(0) = X0, (2)

where g is a vector-valued function

g(t, X) =

 g1(t, X)
...

gnX (t, X)


with components

gi(t, X) = Gi(t, X)− 1
2

nw

∑
j=1

nX

∑
l=1

∂σij

∂xl
(t, X)σl j(t, X), i = 1, . . . , nX .

A transition from the Itô SDE to the Stratonovich SDE and vice versa is always possible.
Note that if σ is a constant matrix, then the Itô SDE and the corresponding Stratonovich
SDE coincide.

This article presents an alternative method for estimating marginal probability densi-
ties of solutions to SDEs. The statistical projection estimates in the Monte Carlo method
were first proposed by N.N. Chentsov [19]. He developed a general technique for op-
timizing such estimates, which requires improvement in specific problems [20,21]. The
randomized projection estimates based on Legendre polynomials [22] for marginal probabil-
ity densities of solutions to SDEs are constructed in this article. The problem of optimizing
the root-mean-square error is considered. The problem of the optimal, or consistent, choice
is studied for the following parameters of statistical algorithms: the sample size; the step
size in a numerical method for solving SDEs; and the projection expansion length. The
proposed method has been successfully tested on several examples. A comparative analysis
of the proposed method for calculating the numerical–statistical projection estimate and
the method for constructing the histogram are carried out.

2. Numerical Methods for Solving the Cauchy Problem for SDEs and Their Conditional
Optimization

To solve problems whose mathematical models are specified by SDEs, various numeri-
cal methods can be used. Let us give the necessary definitions [2].

For simplicity, we assume that h = tn+1 − tn = T/K; n = 0, . . . , K − 1; t0 = 0, tK = T,
where t0 < t1 < . . . < tK is a uniform time grid.

Definition 1. A numerical method has the mean-square order of convergence q (on the Cauchy
problem solution) if

max
0≤n≤K−1

E
(
|X(tn+1)− Xn+1|2/X0 = X(0)

)
= O(hq), h → 0,
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where Xn is the numerical solution at the time tn = nh; h is a given constant step size, and E
denotes the mean or mathematical expectation. We will also say that the method has the qth order of
mean-square convergence.

Note that the order of mean-square convergence is often considered to be the square
root of q defined above [4,6].

Definition 2. A numerical method weakly converges with order q (on the Cauchy problem
solution) if

max
0≤n≤K−1

|E(s(X(tn+1))− s(Xn+1)/X0 = X(0))| = O(hq), h → 0,

for any function s(X) that belongs to a class F with its partial derivatives up to order 2q + 2, where F
is the class of functions ν(X), for which there are constants C > 0 and κ ≥ 0 such that the inequality
|ν(X)| ≤ C(1+|X|κ) holds for all X ∈ RnX . We will also say that the method has the qth order of
weak convergence.

Let us give some examples of numerical methods for solving the Cauchy problem for
SDEs. To solve the Itô SDE (1) numerically, we can use the Euler–Maruyama method [3],
which has the first order of mean-square convergence:

Xn+1 = Xn + hG(tn, Xn) +
√

hσ(tn, Xn)ξn, (3)

where {ξn} is a sequence of mutually Gaussian random vectors with independent compo-
nents having standard normal distribution, and ξn and Xn are independent.

To solve the Stratonovich SDE (2) numerically, we can use the generalized Rosenbrock-
type method [2]:

Xn+1 = Xn +
(

I − h
2

∂g
∂X (tn, Xn)

)−1

×
(

hg(tn, Xn) +
√

hσ(tn, Xn)ξn +
h
2

∂σ
∂X (tn, Xn)σ(tn, Xn)ξ2

n

)
,

(4)

where I is the identity matrix of size nX × nX ,

∂σ

∂X
(tn, Xn)σ(tn, Xn)ξ

2
n =

nw

∑
j1=1

nw

∑
j2=1

nX

∑
l=1

∂σ·j1
∂xl

(tn, Xn)σl j2(tn, Xn)ξ j1nξ j2n,

and σ·j is the jth column of the matrix σ.
The numerical method (4) is asymptotically unbiased with any step size h > 0. This

means that if one applies it with the given step size h to the one-dimensional linear SDE

dx(t) = −λx(t)dt + σdw(t), x(0) = x0,

where λ and σ are the constants, and λ > 0; then the distribution of the numerical solution
xn converges as n → ∞ to the normal distribution with zero mean and the variance σ2/2λ.
And if the numerical method (4) is applied with the given step size h to the multidimen-
sional linear SDE

dX(t) = AX(t)dt + σdW(t), X(0) = X0,

where A and σ are constant matrices, and all eigenvalues of the matrix A have negative real
parts; then the distribution of the numerical solution Xn converges as n → ∞ to the normal
distribution with zero mean and the covariance matrix D satisfying the Lyapunov equation

AD + DAT = −σσT .
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The asymptotic unbiasedness property is a generalization of the A-stability property
of numerical methods for solving ordinary differential equations. The asymptotically
unbiased method (4) is recommended for solving stiff SDEs. Note that the Euler–Maruyama
method (3) does not have the asymptotic unbiasedness property with any step size h > 0.

In the general case, the numerical method (4) has the first order of mean-square and
weak convergence. However, for SDEs driven by the one-dimensional Wiener process
and for SDEs with a constant matrix σ, the numerical method (4) has the second-order
mean-square and weak convergence.

Numerical methods for solving SDEs mentioned above can be used to estimate the
required functionals, e.g., moments or cumulants of the SDE solution. Let us introduce
notations for the following functionals:

f (h) := f (X), J(h) := E f (h), J := E f (X),

where X(t) is the piecewise linear random process obtained from Xn. To estimate the
functional of the SDE solution, we should simulate N paths of the random process X(t)
using some numerical method. Further, J(h) is estimated by the arithmetical mean of the
obtained sample values for f (h); i.e.,

JN(h) =
1
N

N

∑
j=1

f (j)(h), EJN(h) = J(h).

Then, the estimation error JN(h) is determined by the relation

|E(J − JN(h))| ≤ |J − J(h)|+ E|J(h)− JN(h)| ≤ C1hq +

√
D f (h)√

N
≤ C1hq +

C2√
N

,

where C1, C2 are positive constant independent of N and h, and D denotes the variance.
To reduce the computational cost of the statistical algorithm for calculating the mean

of some functional, the problem of the optimal, or consistent, choice of algorithm param-
eters, e.g., the sample size N and the step size h, arises. The following theorem has been
proved in [2]:

Theorem 1. Let JN(h) be an estimate of some functional of the SDE solution at time tn ∈ [0, T]
obtained by the numerical method for solving SDEs with the step size h. Then, the minimum
computational cost for calculating the functional is achieved for parameters

Nopt ≍ γ−2, hopt ≍ γ1/q,

where γ is the required calculation accuracy.

The corresponding computational cost of the statistical algorithm is

S(h, N) = CKN ≍ γ−2−1/q, K = T/h,

where C is a positive constant independent of N and h.

3. The Projection Expansion of Marginal Probability Densities of the SDE Solution

Due to the computational complexity of orthogonal expansions with adapted weights,
randomized projection estimates of solutions to integral equations using Legendre poly-
nomials have been constructed in [21]. Next, we apply a similar technique to construct
the numerical–statistical projection estimate of the probability density of the SDE solution
using Legendre polynomials.

Legendre polynomials have the following advantages compared to other complete
orthonormal systems of functions. Firstly, the expansion coefficients of the probability
density are conveniently expressed in terms of the moments of the SDE solution. Secondly,
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there is a simple estimate for the error of the probability density approximation by Legendre
polynomials if it is continuously differentiable r times (in this case, r defines the rate
of convergence).

Let p(z) be the probability density of the random variable z = x(tn), a ≤ z ≤ b, which
is a component of the exact solution to SDE at time tn; i.e., x is an arbitrary component
of the random vector X. Next, we find the projection estimate of the marginal probability
density p(z) of the SDE solution at time tn.

Consider the projection estimate (with expansion length m) of the function p ∈ L2[a, b]
by the following expansion using orthonormal Legendre polynomials ψi(z) [22] defined on
a given interval [a,b]:

p(z) =
∞

∑
i=0

aiψi(z) ≈ pm(z) =
m

∑
i=0

aiψi(z), (5)

where

ψi(z) =

√
2i + 1
b − a

φi

(
2z − (b + a)

b − a

)
, (6)

and the expantion coefficients ai are calculated as inner products, i.e.,

ai = (p, ψi) =

b∫
a

p(z)ψi(z)dz.

Non-normalized Legendre polynomials {φi(y)}∞
i=0 defined on the interval [−1,1] have

the form

φi(y) =
1

i!2i

[
(y2 − 1)

i](i)
, y ∈ [−1, 1],

and they satisfy the recurrence relation

(i + 1)φi+1(y)− (2i + 1)yφi(y) + iφi−1(y) = 0, i = 1, 2, . . . ,
φ0(y) = 1, φ1(y) = y.

(7)

For orthonormal Legendre polynomials on the interval [a,b], the following formula
can be used:

ψi(z) =

√
2i + 1
b − a

i

∑
k=0

(−1)i−kCi
i+kCi−k

i
(z − a)k

(b − a)k , Ci
k =

k!
i!(k − i)!

, i = 0, 1, 2, . . . , (8)

and the recurrence relation is satisfied for them as follows:

2i+1√
2i+1

2z−(b+a)
b−a ψi(z) = i+1√

2i+3
ψi+1(z) + i√

2i−1
ψi−1(z), i = 1, 2, . . . ,

ψ0(z) ≡ 1√
b−a

, ψ1(z) =
√

3√
b−a

2z−(b+a)
b−a .

(9)

This relation is obtained by substituting y = (2z − (b + a))/(b − a) into (7):

(i + 1)φi+1

(
2z − (b + a)

b − a

)
− (2i + 1) 2z−(b+a)

b−a φi

(
2z − (b + a)

b − a

)
+iφi−1

(
2z − (b + a)

b − a

)
= 0,

or

i + 1√
2i + 3

√
2i + 3
b − a

φi+1

(
2z − (b + a)

b − a

)
− 2i + 1√

2i + 1
2z − (b + a)

b − a

√
2i+1
b−a φi

(
2z − (b + a)

b − a

)
+

i√
2i − 1

√
2i − 1
b − a

φi−1

(
2z − (b + a)

b − a

)
= 0.
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The last equation together with (7) leads to (9).
The randomization of the projection estimate (5) is obtained by calculating the linear

functional

(p, ψi) =

b∫
a

p(z)ψi(z)dz

by the Monte Carlo method using the numerical solution to SDE.
The randomized estimate of the marginal probability density of the SDE solution at

time tn is constructed as follows:

pm(z) =
m

∑
i=0

aiψi(z), ai =
1
N

N

∑
j=1

ψi(x(j)
n ),

where x(j)
n is the numerical solution to SDE at time tn for the jth sample path, and N is the

sample size.
For kth order unconditional moments of the SDE solution at time tn

Mk(tn) = E(xk(tn)− a), k = 1, 2, . . . ,

we have their statistical estimates:

Mkn =
1
N

N

∑
j=1

(x(j)
n − a)

k
.

The limitation of the proposed method is only in the condition p ∈ L2[a, b], since in
the general case p ∈ L1[a, b]. However, as a rule, the marginal probability density of the
SDE solution is a continuous function, i.e., p ∈ L2[a, b].

Further, we propose two algorithms based on the above description for the randomized
estimate of the marginal probability density of the SDE solution. The first algorithm is
based on the Formula (8), which gives the explicit representation for Legendre polynomials.
Therefore, this algorithm uses statistical estimates of moments of the numerical solution to
calculate the coefficients in the Expansion (5).

Algorithm 1 for the numerical–statistical projection estimation of the probability density
of the SDE solution on the interval [a,b] at time tn is based on m + 1 Legendre polynomials:

(1) Simulate N paths of the SDE solution using a numerical method on the interval [0, tn]
and find the numerical solution at time tn:

x(j)
n , j = 1, . . . , N;

(2) Calculate statistical estimates of moments of the numerical solution:

M0n = 1, Mkn =
1
N

N

∑
j=1

(x(j)
n − a)

k
, k = 1, . . . , m;

(3) Calculate randomized estimates of coefficients ai in the Expansion (5):

ai =

√
2i + 1
b − a

i

∑
k=0

lik
Mkn

(b − a)k , lik = (−1)i−k (i + k)!

(k!)2(i − k)!
, i = 0, 1, . . . , m;

(4) Calculate the randomized projection estimate of the probability density:

pm(zs) =
m

∑
i=0

aiψi(zs) =
m

∑
i=0

ai

√
2i + 1
b − a

i

∑
k=0

lik
(zs − a)k

(b − a)k , zs = a + s
b − a

nz
,
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at nodes zs, where s = 0, 1, . . . , nz and nz is the number of nodes of the interval [a,b].
The recurrence Relation (9) for Legendre polynomials avoids computer arithmetic er-

rors for coefficients in the explicit Formula (8) for large m. Using the recurrence Relation (9)
is recommended under condition m > 20 since in this case, computer arithmetic errors arise
for the explicit Formula (8). However, in this case, it is more convenient to estimate the
mean of Legendre polynomials to calculate the coefficients in the Expansion (5). Therefore,
the second algorithm is proposed.

Algorithm 2 for the numerical–statistical projection estimation of the probability density
of the SDE solution on the interval [a,b] at time tn is based on m + 1 Legendre polynomials:

(1) Simulate N paths of the SDE solution using a numerical method on the interval [0, tn]
and find the numerical solution at time tn:

x(j)
n , j = 1, . . . , N;

(2) Calculate randomized estimates of coefficients ai in the Expansion (5) using the mean
of Legendre polynomials and the recurrence Relation (9) for them:

Ψ0n = 1√
b−a

, Ψkn = 1
N

N
∑

j=1
ψk(x(j)

n ), k = 1, . . . , m;

ai = Ψin, i = 0, 1, . . . , m;

(3) Calculate the randomized projection estimate of the probability density:

pm(zs) =
m

∑
i=0

aiψi(zs), zs = a + s
b − a

nz
,

at nodes zs, where s = 0, 1, . . . , nz, and nz is the number of nodes of the interval [a,b].
The computational costs of both algorithms are approximately the same, but Algorithm

2 is more computationally reliable for large m.

Remark 1 . If the SDE solution is defined on the interval larger than the interval [a,b], on which
Legendre polynomials are defined, then for Step 2 in Algorithms 1 and 2, the estimates of moments
of the numerical solution and the estimates of the mean of Legendre polynomials should be calculated
only for solutions that belong to the interval [a,b].

Otherwise, the additional estimation error arises, which increases with increasing the projection
expansion length m. In particular, Step 2 in Algorithm 1 can be rewritten as follows:

M0n = 1, Mkn =
1
N ∑

j∈J∗n

(x(j)
n − a)

k
, J∗n =

{
j = 1, . . . , N : x(j)

n ∈ [a, b]
}

, k = 1, . . . , m.

Step 2 in Algorithm 2 is modified in a similar way:

Ψ0n = 1√
b−a

, Ψkn = 1
N ∑

j∈J∗n
ψk(x(j)

n ), k = 1, . . . , m;

ai = Ψin, i = 0, 1, . . . , m.

In fact, the interval [a,b] should be chosen so that the probability of violating the condition
x(j)

n ∈ [a, b] is sufficiently small.

4. The Error Analysis

Let us estimate the deviation of the numerical–statistical projection estimate pm(z)
from the marginal probability density p(z) of a random variable x(tn) in the norm of space
L2[a, b].

First, we use Jensen’s inequality:
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B2(p, pm) =
(

E∥p − pm∥L2[a,b]

)2
≤ E

b∫
a

(p(z)− pm(z))
2dz.

Second, we apply Parseval’s equality:

E
b∫

a

(p(z)− pm(z))
2dz = E

b∫
a

(
∞

∑
i=0

(ai − ai)ψi(z)

)2

dz = E
∞

∑
i=0

(ai − ai)
2,

where ai = 0 for i = m, m + 1, . . . Then,

E
∞
∑

i=0
(ai − ai)

2 = E
(

m
∑

i=0
ai

2 − 2
m
∑

i=0
aiai+

∞
∑

i=0
ai

2
)
+

m
∑

i=0
(Eai)

2 −
m
∑

i=0
(Eai)

2

=
m
∑

i=0
Eai

2 −
m
∑

i=0
(Eai)

2 +

(
m
∑

i=0
(Eai)

2 − 2
m
∑

i=0
(Eai) ai +

m
∑

i=0
ai

2
)
+

∞
∑

i=m+1
ai

2.

Finally, we use the variance definition

m

∑
i=0

Dai =
m

∑
i=0

Eai
2 −

m

∑
i=0

(Eai)
2,

and the following identity:

m

∑
i=0

(Eai)
2 − 2

m

∑
i=0

(Eai) ai +
m

∑
i=0

ai
2 =

m

∑
i=0

(ai − Eai)
2,

consequently,

B2(p, pm) ≤
m

∑
i=0

Dai +
m

∑
i=0

(ai − Eai)
2 +

∞

∑
i=m+1

ai
2 ≤ C1

m
N

+ C2h2qm +
C3

m2r−1 , (10)

where C1, C2, C3 are positive constants independent of N, h, and m; r is the order of
continuously differentiability of the marginal probability density p(z). In the Formula (10),
we take into account both the variance of coefficient estimates ai [23] and the error of the
estimates for functionals of the SDE solution obtained by numerical method that has the
qth order of weak convergence. We also use the corollary of Theorem 4.10 from [22] about
the error of the function approximation by Legendre polynomials: if a function p(z) is
continuously differentiable r times on the interval [a,b], then

∥p − pm∥2
L2[a,b] ≤

C3

m2r−1 . (11)

Further, we consider the problem of the optimal, or consistent, choice of the following
parameters of the statistical algorithm for calculating the projection estimate: the sample
size N, the step size h in a numerical method, and the projection expansion length m.

Theorem 2. Let pm(z) be the numerical–statistical projection estimate of the marginal density of the
SDE solution at time tn ∈ [0, T] obtained by Algorithms 1 or 2. Then, the minimum computational
cost of calculating the projection estimate is achieved for parameters

Nopt ≍ γ− 4r
2r−1 , hopt ≍ γ

2r
q(2r−1) , mopt ≍ γ− 2

2r−1 ,

where γ is the required calculation accuracy in the norm of space L2[a, b], i.e.,

B(p, pm) = E∥p − pm∥L2[a,b] = γ.
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Proof. Since the estimation requires functionals of the SDE solution, we should take into
account Theorem 1. Setting h ≃ N−1/2q in the Formula (10), we have

B2(p, pm) ≤ C4
m
N

+
C3

m2r−1 ,

where C4 is a positive constant independent of N, h, and m. To choose optimal parameters
Nopt and mopt, it is sufficient to write the equality for the resulting errors and to obtain the
required orders from the relation

C4
m
N

+
C3

m2r−1 = γ2.

We find that the following relations are conditionally optimal:

m = O(N
1
2r ), h = O(N− 1

2q ),

Then, we have optimal orders for N, h, and m:

Nopt ≍ γ− 4r
2r−1 , hopt ≍ γ

2r
q(2r−1) , mopt ≍ γ− 2

2r−1 .

If we choose parameters in this way, then

B(p, pm) ≤ CN− 2r−1
4r ,

where C is a positive constant independent of N, h, and m.
Theorem 2 has been proved. □

Note that the one-dimensional probability density p(t,X) of the solution to the Itô
SDE (1) satisfies the forward Kolmogorov equation, which is also called the Fokker–Planck–
Kolmogorov equation:

∂p(t, X)

∂t
= −

nX
∑

i=1

∂

∂xi
[Gi(t, X)p(t, X)]+

1
2

nX
∑

j=1

nX
∑

l=1

∂

∂xj∂xl

[
bjl(t, X)p(t, X)

]
,

p(0, X0) = p0(X),

where bjl(t, X) are elements of the diffusion matrix B(t, X) = σ(t, X) σT(t, X).
For the existence of a classical solution to the forward Kolmogorov equation, at least

the condition p(t, · ) ∈ C2[a, b] should be satisfied for every t. Therefore, for a consistent
choice of parameters in the Equation (10), the condition r = 2 is required. Then,

Nopt ≍ γ− 8
3 , hopt ≍ γ

− 4
3q , mopt ≍ γ− 2

3 .

Choosing parameters in this way, we have B(p, pm) ≤ CN−3/8, where C is a positive
constant independent of N, h, and m.

The first two terms in the Formula (10) are quite small. The main term of the estimation
error is given by the Formula (11). It decreases with increasing the order of continuous
differentiability r of the marginal probability density p(z); consequently, fewer Legendre
polynomials are required to achieve a given estimation error. In fact, the third term in
Equation (10) is virtually zero for infinitely continuously differentiable functions, and the
remaining terms linearly depend on m. Therefore, the projection estimate error can increase
with increasing the projection expansion length m.

Now we can compare the numerical–statistical projection estimate of the marginal
probability density of the SDE solution constructed above with the histogram that is usually
considered for estimating the probability densities.
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The deviation of the histogram π∗(z) from the marginal probability density p(z) of a
random variable x(tn) in the norm of space L2[a, b] is estimated in [2]. The monograph [2]
also considers the problem of optimizing the computational cost of constructing the his-
togram, i.e., the optimal, or consistent, choice of the following parameters: the sample size
N; the step size h; and the histogram step hg, where hg = (b − a)/ng, and ng is the number
of histogram nodes. The following theorem has been proved in [2]:

Theorem 3. Let π∗(z) be the histogram (constructed from a sample of size N), which is a statistical
analogue for the marginal probability density p(z) of the SDE solution at timetn ∈ [0, T] obtained
by the numerical method for solving SDE with the step size h. Then, the minimum computational
cost of constructing the histogram is achieved for the parameters

Nopt ≍ γ−3, hopt ≍ γ
1
q , ng,opt ≍ γ−1,

where γ is the required calculation accuracy in the norm of spaceL2[a, b], i.e.,

B(p, π∗) = E∥p − π∗∥L2[a,b] = γ.

Choosing parameters in this way, we have B(p, π∗) ≤ CN−1/3, where C is a positive
constant independent of the sample size N, the step size h, and the histogram step hg. This
is greater than the error of the numerical–statistical projection estimate proposed above.

Remark 2. In addition to the histogram, the kernel density estimate is also used as an estimate of
the probability density of the SDE solution. In this context, the problem of the optimal, or consistent,
choice is considered in [8] for the following parameters of the statistical algorithm: the sample size;
the step size in a numerical method for solving SDEs; and the smoothing parameter.

5. Numerical Experiments

Real random impacts on dynamical systems are often differentiable processes, and
there is a need to constructively define them. The problem of constructing the station-
ary Gaussian or non-Gaussian random processes when solving stochastic problems by
statistical modeling is also of independent interest [24]. Constructing a class of such
processes—Markov diffusion processes—is possible by applying SDEs.

The monograph [2] describes a method for representing the random process with both
a given one-dimensional probability density p(x) and an exponential correlation function
as the solution to SDE

dx(t) = −λ(x(t)− m1)dt + σ(x(t))dw(t), t ∈ [0, T]; x(0) = x0, (12)

where λ is a positive constant, and m1 is arbitrary.
If x(t) is the stationary solution to SDE (12), where

m1 = Ex(t) = const, λ > 0,

σ2(x) = − 2λΦ(x)
p(x) , Φ(x) =

x∫
a
(y − m1)p(y)dy, x ∈ [a, b],

then x(t) has the one-dimensional probability density p(x) and the correlation function
R(τ) = R(0) exp(−λ|τ|) .

If the probability density of the initial value x0 is equal to p(x) in SDE (12), then its
solution is stationary over the entire interval [0,T]. If x0 is given arbitrarily, then x(t) will
be stationary after a certain transition time. By varying the parameter λ, we can change
the correlation time for the process x(t): τc ≈ 1/λ. Note that the stationary random process
constructed in this way is a Markov diffusion process with continuous paths.
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A numerical study of the proposed method for estimating marginal probability densi-
ties was carried out using SDE (12). This choice is due to the fact that the probability density
is known over the entire interval [0,T]. This allows one to estimate the approximation error
for it and to confirm the theoretical result given by Theorem 2.

In the following examples, the probability densities of stationary random processes
are infinitely continuously differentiable functions. As a numerical method for solving
Stratonovich SDEs, the asymptotically unbiased method (4) is used.

For the numerical implementation of the proposed method, independent pairs of stan-
dard normally distributed random variables ξ1, ξ2 were drawn by the Box–Muller approach:

ξ1 =
√
−2 ln α1 cos 2πα2, ξ2 =

√
−2 ln α1 sin 2πα2,

where α1, α2 are independent uniformly distributed random variables on the interval
(0,1). For modeling uniformly distributed random variables the pseudo-random number
generator RND128 (with modulus 2128 and multiplier 5100109) [25] is used.

For all the examples, we have analytical expressions for both the stationary probability
density and the moments of the solution. Therefore, the error of the numerical–statistical
projection estimate can be calculated in the norm of space L2[a, b] as follows:

∥p − pm∥L2[a,b] =

√
∥p∥2

L2[a,b] − 2
m

∑
i=0

aiai+
m

∑
i=0

a2
i .

All the tables for different sample sizes N show the projection estimate errors εm,
depending on the projection expansion length m and the histogram errors εg for a consistent
choice of the sample size N and the number of histogram nodes ng (see Theorem 3).

Example 1. The stationary solution to the Stratonovich SDE

dx(t) = −α

2

(
x(t)− a + b

2

)
dt +

√
α(x(t)− a)(b − x(t)) ◦ dw(t)

or the equivalent Itô SDE

dx(t) = −α

(
x(t)− a + b

2

)
dt +

√
α(x(t)− a)(b − x(t)) dw(t)

is the stationary random process with uniform distribution:

p(x) =
1

b − a
, a < x < b; mν = Exν(t) =

bν+1 − aν+1

(b − a)(ν + 1)
, ν = 1, 2, . . . ;

µ2 = E(x(t)− m1)
2 =

(b − a)2

12
.

The following parameters are used: α = 1; a = 0; b = 1. The initial realizations of the initial
value x(0) were drawn by the pseudo-random number generator RND128 mentioned above.

Table 1 gives the numerical results for t = 0 for different sample sizes N and projection
expansion lengths m to compare root-mean-square errors of both the projection estimate
and the histogram when the sample is exactly simulated. These results show that the
projection estimate error decreases with increasing the sample size as N–1/2, and it increases
with increasing the projection expansion length m. The histogram error decreases with
increasing sample size as N–1/3 in the case of a consistent choice of parameters, i.e., for
ng,opt = N1/3. For all given projection expansion lengths, the projection estimate error is
less than the histogram error.
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Table 1. Errors of estimating the probability density at time t = 0 (Example 1).

εm N = 104 N = 105 N = 106

ε4 0.01929 0.00441 0.00231
ε5 0.02050 0.00502 0.00285
ε6 0.02160 0.00781 0.00287
ε7 0.02377 0.00797 0.00315
ε8 0.02386 0.00863 0.00382
ε9 0.02387 0.00874 0.00384
ε10 0.02954 0.00876 0.00421
ε15 0.04088 0.01181 0.00351

εg 0.04839 (ng = 20) 0.02279 (ng = 40) 0.00945 (ng = 100)

Table 2 shows the numerical results for t = T = 1 in order to compare the errors of
both the projection estimate and the histogram, when the distribution is simulated by the
numerical method (4) with step sizes h = 0.01 and h = 0.001. In this case, the projection
estimate error also increases with increasing the projection expansion length m. This is
similar to the case t = 0; therefore, Table 2 contains the projection estimation error only for
m = 4 and m = 15.

Table 2. Errors of estimating the probability density at time t = T = 1 (Example 1).

εm N = 104 N = 105 N = 106

h = 0.01
ε4 0.01001 0.00484 0.00545
ε15 0.04518 0.02508 0.02534

εg 0.06122 (ng = 20) 0.01778 (ng = 40) 0.01712 (ng = 100)

h = 0.001
ε4 0.01289 0.00389 0.00067
ε15 0.02994 0.01894 0.00328

εg 0.03900 (ng = 20) 0.02268 (ng = 40) 0.00938 (ng = 100)

Theorem 2 implies that the statistical error dominates for the projection estimate
with parameters N = 106 and h = 0.01; hence, reducing the step size h is justified, and the
consistent parameters N = 106 and h = 0.001 lead to decreasing the error.

According to Theorem 3, parameters N = 106 and h = 0.01 for the histogram are
consistent; consequently, reducing the step size h with the same sample size N does not
lead to significant changes in the histogram error.

Table 2 certainly illustrates that the projection estimate error is smaller than the
histogram error.

The graphs of the uniform probability density of the stationary solution to SDE, the
projection estimate of the probability density, and the histogram corresponding to the
numerical solution to SDE are shown in Figure 1 (N = 104; h = 0.01; m = 4; ng = 20).

Example 2. The stationary solution to the Stratonovich SDE

dx(t) = − α

γ + δ

(
x(t)(γ + δ − 1)−

(
γ − 1

2

))
dt +

√
2α(1 − x(t))x(t)

γ + δ
◦ dw(t)

or the equivalent Itô SDE

dx(t) = −α

(
x(t)− γ

γ + δ

)
dt +

√
2α(1 − x(t))x(t)

γ + δ
dw(t)
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is the stationary random process with beta distribution:

p(x) =
Γ(γ + δ)

Γ(γ)Γ(δ)
xγ−1(1 − x)δ−1, 0 < x < 1, γ, δ > 0;

mν = Exν(t) =
γ(γ + 1) . . . (γ + ν − 1)

(γ + δ)(γ + δ + 1) . . . (γ + δ + ν − 1)
=

Γ(γ + ν)Γ(γ + δ)

Γ(γ)Γ(γ + δ + ν)
, ν = 1, 2, . . . ;

µ2 = E(x(t)− m1)
2 =

γδ

(γ + δ)2(γ + δ + 1)
,

where Γ denotes the gamma function.
The following parameters are used: α = 1; γ = δ = 2.
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histogram (green) (Example 1).

It is well known that the probability density of beta distribution for integer parameters
γ and δ is the probability density of a γth order statistic for γ + δ – 1 independent random
values with uniform distribution on the interval (0,1) [26]. Therefore, the simulation of the
initial value x(0) in this example for γ = δ = 2 was carried out as the second order statistics
for three independent random values with uniform distribution.

Table 3 contains the numerical results for t = T = 1. It presents the root-mean-square
errors of both the numerical–statistical projection estimate that depends on the projection
expansion length m and the histogram that depends on the number of histogram nodes ng.
Table 3 is similar to Table 2 for uniform distribution.

Table 3. Errors of estimating the probability density at time t = T = 1 (Example 2).

εm N = 104 N = 105 N = 106

h = 0.01
ε4 0.00416 0.00692 0.00268
ε15 0.01638 0.00916 0.00501

εg 0.06044 (ng = 20) 0.03104 (ng = 40) 0.01432 (ng = 100)

h = 0.001
ε4 0.01234 0.00097 0.00143
ε15 0.02469 0.00520 0.00283

εg 0.06470 (ng = 20) 0.03276 (ng = 40) 0.01413 (ng = 100)



Mathematics 2024, 12, 586 14 of 16

The results given in Table 3 demonstrate that with a consistent choice of parameters,
the projection estimate error is smaller than the histogram error. For m = 4, the projection
estimate very accurately approximates the probability density.

Figure 2 shows graphs of the probability density (beta distribution) of the stationary
solution to SDE, the projection estimate of the probability density, and the histogram
corresponding to the numerical solution to SDE (N = 104; h = 0.01; m = 4; ng = 20). Similar to
Figure 1, Figure 2 demonstrates that the projection estimate more accurately approximates
the exact probability density for the same sample size N.
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Figure 2. Graphs of the exact probability density (red), the projection estimate (blue), and the
histogram (green) (Example 2).

Example 3. The stationary solution to the Stratonovich SDE

dx(t) = −α(x(t)− m1)dt +
√

2ασdw(t)

is the stationary random process with Gaussian distribution:

p(x) = 1
σ
√

2π
e−

(x−m1)
2

2σ2 , −∞ < z < ∞, σ > 0; m1 = Ex(t),

µ2ν+1 = E(x(t)− m1)
2ν+1 = 0, µ2ν = E(x(t)− m1)

2ν = σ2ν(2ν − 1)!!, ν = 1, 2, . . .

The following parameters are used: α = 1; m1 = 0; σ = 1.

The initial value x(0) was simulated exactly using the Box–Muller approach. The
probability density of the solution was estimated on the interval [–4,4]. Table 4 shows the
numerical results.

In this example, the exact solution is the Gaussian process, and it takes values from
(−∞,+∞). Therefore, we should use proposed algorithms, taking into account Remark
1, since Legendre polynomials are defined on the interval [−4,4]. So, statistical estimates
for both the moments of the solution and the mean of Legendre polynomials should be
calculated for solutions that belong to the interval [−4,4] only.

Table 4 shows the numerical results. In this example, the accuracy of the projection
estimate depends on whether m is even or odd. In fact, the transition from even m to odd
m + 1 does not increase the accuracy. This is apparently a specific property of Gaussian
distribution, since corresponding moments with odd orders are zero. Due to the above
property, the accuracy of the projection estimate increases with transition from m to m + 2.
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Table 4. Errors of estimating the probability density at time t = T = 1 (Example 3).

εm N = 104 N = 105 N = 106

ε4 0.112025 0.112032 0.111999
ε5 0.112104 0.112005 0.112001
ε6 0.045237 0.045224 0.045223
ε7 0.045700 0.045251 0.045223
ε8 0.017302 0.015597 0.015570
ε9 0.017273 0.015709 0.015572
ε10 0.009884 0.005220 0.004657
ε15 0.007727 0.002894 0.001206

εg 0.05731 (ng = 20) 0.02907 (ng = 40) 0.01475 (ng = 100)

Figure 3 gives graphs of the Gaussian probability density of the stationary solution to
SDE and the projection estimate of the probability density; it also contains the histogram of
the numerical solution to SDE (N = 104; h = 0.01; m = 9; ng = 20). Figure 3 demonstrates
that the projection estimate more accurately approximates the probability density of the
solution for the same sample size N.
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6. Conclusions

The main result of this article is two algorithms for calculating the numerical–statistical
projection estimate for distributions of solutions to SDEs using Legendre polynomials. The
root-mean-square error of this estimate is studied as a function of the projection expansion
length, while the step of the numerical method and the sample size for expansion coeffi-
cients are fixed. The proposed technique is successfully verified on three one-dimensional
SDEs that have stationary solutions with given one-dimensional probability densities and
exponential correlation functions. A comparison of proposed numerical–statistical projec-
tion estimates and histograms demonstrates that the projection estimate more accurately
approximates the probability density of the SDE solution. In addition, the projection
estimate is presented in analytical form, it is a polynomial, i.e., smooth function.

Higher approximation accuracy is important for analyzing, filtering, predicting, or
smoothing random processes in various dynamical systems described by SDEs. The smooth-
ness of the projection estimate is more preferable when finding the solution to the boundary
value problem in the form of a functional of the solution to the corresponding SDE.
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