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Abstract: Knowledge graphs (KGs) serve as structured representations of knowledge, comprising
entities and relations. KGs are inherently incomplete, sparse, and have a strong need for completion.
Although many knowledge graph embedding models have been designed for knowledge graph
completion, they predominantly focus on capturing observable correlations between entities. Due
to the sparsity of KGs, potential semantic correlations are challenging to capture. To tackle this
problem, we propose a model entitled semantic-enhanced knowledge graph completion (SE-KGC).
SE-KGC effectively addresses the issue by incorporating predefined semantic patterns, enabling the
capture of semantic correlations between entities and enhancing features for representation learning.
To implement this approach, we employ a multi-relational graph convolution network encoder,
which effectively encodes the KG. Subsequently, we utilize a scoring decoder to evaluate triplets.
Experimental results demonstrate that our SE-KGC model outperforms other state-of-the-art methods
in link-prediction tasks across three datasets. Specifically, compared to the baselines, SE-KGC achieved
improvements of 11.7%, 1.05%, and 2.30% in terms of MRR on these three datasets. Furthermore,
we present a comprehensive analysis of the contributions of different semantic patterns, and find
that entities with higher connectivity play a pivotal role in effectively capturing and characterizing
semantic information.

Keywords: knowledge graph completion; relational graph convolutional network; higher-order
semantic pattern

MSC: 05C85

1. Introduction

Knowledge graphs (KGs) are instrumental in various intelligence applications, includ-
ing recommendation systems [1,2], information retrieval [3,4], and question answering [5,6].
To facilitate these knowledge-driven applications, numerous types of KGs have been devel-
oped in the past decades. KGs comprise structured human-understandable knowledge,
typically represented as triplets [7]. Each triplet, denoted as (eh, r, et), comprises a head
entity eh, a tail entity et, and a relation r. By leveraging this structured representation, KGs
can be represented as multi-relation graphs, with entities acting as nodes and relations
serving as edges [8]. This graphical representation facilitates the exploration and analysis
of interconnections and semantic relationships within the knowledge domain, enabling
sophisticated knowledge-driven applications to leverage the rich information network
within KGs [9].

KGs are usually constructed from various data sources (e.g., structured databases or
text corpora), through methods such as relation extraction [10], or by manually checking
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facts by domain experts [11,12]. Considering the quality of existing facts and the need for
newly added knowledge, KGs are always incomplete and sparse, which limits their utility
in various applications [13–15]. To address this challenge, knowledge graph embedding
(KGE) models have emerged as a powerful solution [16–19]. These models aim to learn
low-dimensional vector representations or embeddings of relations and entities within KGs.
By utilizing these embeddings, KGE models can effectively predict missing links in KGs,
thereby enabling the completion of the graph [20].

KGs consist of human-understanding knowledge organized by incomplete graphs,
hence containing undiscovered relations between entities [21]. Due to the incompleteness
and sparsity of KGs, most KGE models learn representation with insufficient informa-
tion [22–24]. Precisely, these methods complete KGs mainly based on observable correla-
tions between entities and overlook potential semantic correlations. Figure 1 illustrates
that even unconnected entities may have probable relationships. Furthermore, interactions
within networks are not limited to pairs, but rather occur in larger groups [25]. Atom-
groups in a molecule represent specific chemical functionalities and user-groups in a social
network serve particular sociological purposes [26]. Similarly, triplets in KGs only depict
observable entity-pairs, but unobservable correlations reside in entity-groups (e.g., trian-
gles). Entity-groups in KGs serve as semantic patterns, and slight structural variations (e.g.,
absence of a triplet) within these patterns intricately shape distinct characteristics. Although
many KGE models have achieved significant success, capturing these unobserved relations
remains challenging. Graph convolutional networks (GCNs) offer powerful graph-learning
capabilities and can be employed to extract structural characteristics beyond pairwise
relations [27–30], GCNs are also effective in various domains (e.g., traffic flow predic-
tion [31]). R-GCN [32] introduced relation-specific transformations to incorporate relational
information during the aggregation of neighbors. Shang et al. considered the influence
of relation weights and proposed SACN [33]. Vashishth et al. designed CompGCN to
improve relation modeling by jointly embedding entities and relations. HRAN [34] use
heterogeneous relation–attention networks to improve relation modeling and prediction in
complex and heterogeneous KGs. All of these demonstrate the effectiveness of GCNs in
capturing higher-order interactions and dependencies between entities, which also provide
valuable insights for relation modeling and prediction tasks. In the context of message
passing scheme of GCNs, they effectively propagate semantic information within KGs.
Moreover, GCNs perform well in relation modeling and link-prediction tasks, showcasing
their capabilities of handling complex relational data. However, GCNs encounter difficul-
ties in aggregating limited neighborhood information within sparse KGs. Consequently,
GCN-based KGE models also face challenges in capturing potential semantic correlations.

To address this problem, we propose a KGE model, namely semantic-enhanced knowl-
edge graphcompletion (SE-KGC). The core of SE-KGC lies in a semantic enhancement
module, capturing potential correlations through semantic patterns. Considering these
patterns exhibit diverse behaviors across different domains, we predefine them by selecting
several higher-order structures (i.e., motifs) and then adapting the attention mechanism.
Accordingly, the enhancement module operates like sliding windows on KGs, empowering
information propagation on underlying relations by mimicking convolution operations.
We then apply a multi-relational GCN encoder to learn powerful representations in an
enriched local neighborhood. Additionally, we utilize a scoring decoder to evaluate triplets.
In summary, the main contributions of this paper are as follows:

• We propose SE-KGC, a knowledge graph embedding model that captures potential
semantic correlations between entities.

• We develop an entity feature enhancement module that incorporates both semantic
and structural information for inherently sparse KGs, which adaptively enriches local
neighborhoods for the GCN encoder.

• We conduct experiments on several real-world KGs from different domains, demon-
strating the effectiveness of SE-KGC. We thoroughly analyze the learned weights of
different semantic patterns and find that those with higher connectivity are more vital.
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Figure 1. An example of semantic patterns. Black solid lines are observable relations and red dashed
lines are potential semantic correlations.

The subsequent sections of this paper are organized as follows. Section 2 deals with
the previous relevant research related to our study. Section 3 introduces some preliminar-
ies. Section 4 elaborates on the intricate details of our proposed model, highlighting its
key components and functionalities. Section 5 offers a comprehensive exposition of our
experimental design, including an in-depth introduction to the experiments conducted
and the corresponding results obtained. Finally, Section 6 summarises the contributions,
emphasizing its significance and potential implications.

2. Related Work
2.1. Knowledge Graph Embedding Methods

KGE models aim to learn low-dimensional embeddings for relations and entities
and subsequently predict the validity of given triplets. Translational distance models
(e.g., TransE [22]) measure the distance between two entities based on their relationship
in the embedding space. However, these models are limited in their ability to handle
complex relations (e.g., symmetric relations and asymmetric relations). Bilinear matching
models (e.g., DISTMULT [23] and ComplEx [24]) satisfy various relations through powerful
matrix multiplication, which is always time-consuming. Convolutional neural network
(CNN)-based methods (e.g., ConvE [35], ConvR [36], and ConvKB [37]) adopt convolution
operations to perform multiplication on local regions of embedding matrices. While these
methods are scalable, they face challenges in capturing global relational patterns and may
struggle to effectively represent long-tail relations.

With the success of graph convolutional networks (GCNs) in handling graph-structured
data, numerous GCN-based models have been proposed for learning representations of
knowledge graphs (KGs). R-GCN [32] introduces learnable weights for each relation, inte-
grating them into the entity aggregation process. SACN [33] leverages the entity structure
and relation types to encode entities and relations using a weighted GCN. CompGCN [38]
leverages entity-relation composition operations and jointly learns representations for enti-
ties and relations. However, a common limitation of most GCN-based models is that they
primarily rely on observable correlations between entities while disregarding unobservable
correlations. Our work captures these potential correlations through predefined semantic
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patterns and enriches neighborhood information for the GCN encoder. This enables our
model to capture both observable and unobservable relationships, leading to improved
representation learning for KGs.

2.2. Structure Enhancement Methods

Most traditional KGE models mainly consider the triplet-form of KGs and overlook
structural information. GCNs have the ability to learn structural characteristics during
training by aggregation formulation. However, GCN cannot meet the need for tedious
neighborhoods in inherently sparse KGs, leading to learn uncertain structural character-
istics. To solve this problem, some GCN-based KGE models aim to integrate structural
information. SCAN [33] takes this issue by uniquifying edges in each subgraphs through
relation types, thereby improve the ability to identify structures. Similarly, KGEL [39] treats
each entity as a subject and an object simultaneously and leverages a cluster for both roles.
In comparison, DRGI [40] incorporates mutual information maximization to learn the struc-
tural distribution as complement information. Nevertheless, these three methods heavily
rely on the learning capacity of neural networks to capture the structural characteristic,
which introduces uncertainties in model explainability. In contrast, HRAN [34] explicitly
aggregates information based on relation paths in KGs for GCN encoders. Relation paths
are highly human-understandable, but the path structure is not complex enough to capture
most structural information in KGs. Our methods adopt more complex structures (i.e.,
motifs) for aggregation, maintaining good explainability simultaneously.

3. Preliminaries
3.1. Problem Definition

Let G = (E ,R, X,Z) denote a knowledge graph containing triplets (eh, r, et). E is the
set of entities and R is the set of relations such that eh, et ∈ E and r ∈ R. For a triplet
(eh, r, et), suppose eh, r, et ∈ Rd are the vector representations of eh, r, et, respectively. We
use X ∈ R|E |×d to represent the d-dimensional initial features of all entities in G. And Z ∈
R|R|×d denotes the initial relation features. Link prediction refers to the task of predicting
missing head (?, r, et) or tail (eh, r, ?) to infer new unobserved triplets for knowledge graph
completion. For a given KG, the objective of the scoring function ϕ(eh, r, et) is to look up the
embedding of entities and relations upon the embedding matrices E ∈ R|E |×d, R ∈ R|R|×d,
and then utilize them to score triplets. Generally, correct triplets receive higher truthfulness
scores than incorrect ones.

3.2. Network Motif

A network motif refers to a specific higher-order structure that frequently appears
in networks [26,41]. Motifs contain rich structural information and have been extensively
studied in biological, social, and technological networks. It is worth noting that the number
of selected motifs should encounter diverse domains for different KGs. However, higher-
order motifs actually contain lower-order ones, leading to redundant expressiveness and
increased computational complexity. Balancing the trade-off, our model uses six predefined
motifs with orders of 2, 3, and 4 as semantic patterns for semantic enhancement. The
specific definitions of these six motifs adopted in our model can be found in Table 1.

Table 1. The six predefined semantic patterns given by motifs.

Name M2 M31 M32 M41 M42 M43

Id 1 2 3 4 5 6

Motif

M2 M31 M32 M41 M42 M43Name

Motif

Id 1 2 3 4 5 6
M2 M31 M32 M41 M42 M43Name

Motif

Id 1 2 3 4 5 6
M2 M31 M32 M41 M42 M43Name

Motif

Id 1 2 3 4 5 6
M2 M31 M32 M41 M42 M43Name

Motif

Id 1 2 3 4 5 6
M2 M31 M32 M41 M42 M43Name

Motif

Id 1 2 3 4 5 6
M2 M31 M32 M41 M42 M43Name

Motif

Id 1 2 3 4 5 6
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4. Method

This section introduces our proposed method SE-KGC, as shown in Figure 2. We begin
by describing how we capture semantic correlations between entities using predefined se-
mantic patterns. Subsequently, we outline the process of enhancing features with semantic
information to facilitate representation learning. Next, we present the graph convolutional
network employed for representation learning and the scoring function utilized for triplet
evaluation. Finally, we provide comprehensive training details for our model.

Entity Features

Relation Features

Semantic Enhancement

Link Prediciton

?

Encoder Decoder

Input Knowledge Graph

Mean

+++
+ Mean

+++

+ Mean+ +

Mean+
+

Mean+
+

Mean+

Attention

+ +

Figure 2. An overview of SE-KGC. First, the input knowledge graph is supplied to the model,
where entities undergo semantic enhancement to extract refined features while relation features are
obtained directly. Subsequently, these extracted features are then fed into the encoder for subsequent
processing. Finally, the decoder effectively utilizes the encoded features for accurate link prediction.

4.1. Semantic Enhancement

A knowledge graph consists of structured human-understanding facts; thus, motifs
frequently occurring in a knowledge graph naturally represent semantic patterns. Take the
triangle motif M32 in Figure 1 as an example; it indicates that two entities linked by another
entity also have a relation between them. Consequently, utilizing motifs to exploit semantic
patterns within a knowledge graph holds great promise for capturing semantic correlation.

We regard motifs in Table 1 as six different semantic patterns, denoted as M =
{M1, M2, . . . , M6}. A semantic pattern Mi contains substructures with the number of k in
G, denoted as SMi = {sMi,1 , sMi,2 , . . . , sMi,k}. Each substructure comprises multiple entities,
and the k-th substructure that follows Mi is represented as sMi,k = {sMi,k,e1 , sMi,k,e2 , sMi,k,e3 , . . . }.
We define substructure feature sMi ,k ∈ Rd of sMi ,k by summing the features of all the entities
it contains:

sMi ,k = ∑
e∈sMi ,k

e. (1)

An entity e resides in multiple substructures with the number of |hMi ,e| under the semantic
pattern Mi.

We define semantic feature mMi ,e ∈ Rd of entity e under pattern Mi by averaging the
features of all substructures it lies in:

mMi ,e =
1

|hMi ,e|
∑

sMi ,j∈SMi
∧e∈sMi ,j

sMi ,j. (2)
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Concatenating semantic features for entity e under all semantic patterns Mi, we obtain
mM,e = Concat[mM1,e, mM2,e, . . . , mM6,e] ∈ R6×d. However, entities should exhibit varying
sensitivities to distinct semantic patterns. To account for this diversity, our model adaptively
learns the contribution of each pattern for all entities. Accordingly, we employ the attention
mechanism, which allows us to calculate the enhanced feature xenh,e ∈ Rd for entity e:

xenh,e = Att(mM,e) = So f tmax( f (mM,e)) · mM,e. (3)

where f (·) represents a learnable linear transformation function. Finally, we obtain the
final enhanced features Xenh ∈ R|R|×d of G from enhanced features of all entities in R.

Our semantic enhancement closely resembles convolution operation on images. Sub-
structures (e.g., triangles and rectangles) defined by motifs can be seen as analogies of
sliding windows on KGs. The calculation of the substructure feature in Equation (1) and
the semantic feature in Equation (2) can be regarded as convolution filter and mean pool-
ing, respectively. We perform these two formulas with non-parameterized equal weights
because KGs have no canonical entity ordering. Furthermore, the six semantic patterns
play a similar role to multi-channels. The attention mechanism enables our model to learn
the contributions of different patterns for different KGs automatically.

We can also conceptualize our semantic enhancement as the reconstruction of dif-
ferent neighbor subgraphs according to various semantic patterns. We expand the entity
neighborhood or highlight influential entities for the target entity through these rebuilding
subgraphs. As a result, our semantic enhancement enables entities to obtain refined infor-
mation even if they are initially unconnected. Enriching local neighborhood information
also encourages us to leverage strongly localized graph learning models (i.e., GCNs).

4.2. Graph Encoder

The semantic enhancement allows us to capture potential correlations between entities
directly. Incorporating this expanded information with original information through
representation learning is intuitive. To this end, we employ a graph neural network
designed for multi-relational graphs as the graph encoder in our model.

For input of the encoder, we combine the enhanced features Xenh with the initial
features X through three optional operations: Attention, Replace, and Concat(Concatenate).

X′ = Att(Xenh, X), (4)

X′ = Xenh, (5)

X′ = Xenh||X. (6)

where Att(·) and | · | represent Attention and Concat operations, respectively. To enable
KGs to learn entity and relation representations simultaneously, we utilize an entity-relation
composition operation:

ϕ(x′u, zr) = xu
′ ∗ zr, (7)

where ∗ is multiplication operator [23], and x′u and zr denote features of entity u and
relation r, respectively. The operation redefines the messages passed in GNN by combining
entity and relation information. Then, the entity update equation of our GCN encoder is
given as:

he = f ( ∑
(u,r)∈N (e)

Weϕ(x′u, zr)). (8)

where N (e) is a set of immediate neighbors of e for its outgoing edges, and We ∈ Rdw×d is
a parameter matrix given by adding inverse relations and self-loops. Similarly, the relation
update equation of our GCN encoder is given as follows:

hr = Wrzr, (9)

where Wr ∈ Rdw×d is a learnable parameter matrix across all relations.
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Since GCNs are always multi-layer structures, we expand Equations (8) and (9) as:

hk+1
e = f

 ∑
(u,r)∈N (e)

Wk
e ϕ(hk

e , hk
r )

, (10)

hk+1
r = Wk

r hk
r . (11)

The entity-relation composition operation ϕ(·) in our encoder is non-parameterized.
Usually, untrainable operations may not offer significant insights for redefining messages
in a unique entity-relation fashion. It is worth noting that semantic enhancement in our
model bridges an inner correlation between entities and relations. Hence, it is effective to
incorporate simple composition operations with our semantic enhancement.

4.3. Graph Decoder

In this paper, we adopt ConvE [35] as the decoder to evaluate triplets. ConvE models
the interaction between input entities and relations through convolutional and fully con-
nected layers. Taking a triplet (eh, r, et) as input, ConvE reshapes entity embeddings and
applies convolution to obtain a score:

p(eh ,r,et) = ReLU(vec(ReLU([eh; r] ∗ ω))W)et. (12)

The operator ∗ denotes element-wise multiplication, and ω denotes the filter of a 2D
convolutional layer. We use W ∈ R1×d to represent trainable parameters, and vec(·)
represents the flatten operation. These scores reflect the similarity or association between
the tail entity and the given head entity and relation.

4.4. Optimization Target

We jointly train our encoder-decoder model. For a triplet (eh, r, et), we obtain its score
p(eh ,r,et) outputted by graph decoder to predict its truthfulness:

ŷ = sigmoid(p(eh ,r,et)). (13)

We train the model by minimizing binary cross-entropy (BCE) loss:

L = − 1
N

N

∑(y · log(ŷ) + (1 − y) · log(1 − ŷ)). (14)

where N represents the number of candidate tail entities, and label y is set as either 1 or 0
to represent whether a triplet is true. The training procedure of SE-KGC is illustrated in
Algorithm 1.

Algorithm 1 SE-KGC

Input: G = (E ,R, X,Z); Sum function Sum(·); mean function Mean(·); attention function
Att(·); update function f (·); sigmoid function sigmoid(·); scoring function p(eh ,r,et).

Output: entity embedding e = hL
e ; relation embedding r = hL

r .
1: for each substructure in the semantic pattern do
2: sMi ,k = Sum(e)
3: end for
4: for each semantic pattern in the KG do
5: mMi ,e = Mean(sMi ,j)
6: end for
7: mM,e = Concat[mM1,e, mM2,e, . . . , mM6,e]
8: xenh,e = Att(mM,e)
9: X′ = Att(Xenh, X), X′ = Xenh or X′ = Xenh||X

10: ϕ(x′u, zr) = xu
′ ∗ zr
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Algorithm 1 Cont.

11: for epoch=1 → n do
12: for ∀e ∈ E do and ∀r ∈ R
13: for k=1 → L do
14: hk+1

e = f (∑(u,r)∈N (e) Wk
e ϕ(hk

e , hk
r ))

15: hk+1
r = Wk

r hk
r

16: end for
17: end for
18: L = − 1

N ∑N(y · log(sigmoid(p(eh ,r,et))) + (1 − y) · log(1 − sigmoid(p(eh ,r,et))))
19: end for

5. Experiments

We evaluated SE-KGC against multiple baseline methods in the link-prediction task.
Furthermore, we performed an extensive analysis of different semantic patterns to gain
deeper insights into their effectiveness and contributions.

5.1. Datasets and Baselines
5.1.1. Datasets

To validate the effectiveness of our approach, extensive experiments are conducted
on the following benchmark datasets: WN18RR [35], Kinship [42], and Nations [43]. Each
dataset was divided into the train, valid, and test sets. The statistical information for these
datasets is presented in Table 2, and additional detailed information is provided as follows.

• WN18RR [35]: WN18RR is a subset of WN18, which is built by removing reversible
relations from WN18 dataset. It contains 40,559 entities and 11 relations.

• Kinship [42]: Aboriginal Australian kinship systems are important in traditional
aboriginal cultures as customary laws for social interactions among kin. The Alyawarre
system from Central Australia has 104 entities and 25 relations, particularly relevant
to marriages between aboriginal people.

• Nations [43]: Nations is a small knowledge graph and focuses on countries and their
political relations, providing valuable insights into international affairs and diplomatic
connections.

Table 2. Statistics of datasets.

Dataset WN18RR Kinship Nations

#Entities 40,599 104 14
#Relations 11 25 55
#Train set 86,835 8544 1592
#Valid set 2924 1068 199
#Test set 2824 1074 201

# represents the quantity.

5.1.2. Baselines

We evaluate our model with three different combination operations in Equations (4)–(6),
denoted as SE-KGC-attention, SE-KGC-replace, and SE-KGC-concat, respectively. We then
compare their performance with several methods developed in recent years.

• Translational distance models: TransE [22], RotatE [44].
• Bilinear matching models: DISTMULT [23], ComplEx [24].
• CNN-based models: ConvE [35], ConvR [36], ConvKB [37], LTE-ConvE [45].
• GCN-based models: R-GCN [32], SACN [33], CompGCN [38], HRAN [34], KGEL [39],

DRGI [40].

By comparing with these existing models, we aim to assess the effectiveness and
competitiveness of our proposed approach in knowledge graph representation and link-
prediction tasks.
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5.2. Experimental Setup
5.2.1. Implementation Details

Each model is trained for 500 epochs using an ADAM optimizerwith a learning rate of
0.001. ADAM is a suitable choice for training knowledge graph models due to its ability
to handle sparse gradients, scalability, adaptive learning rate, and faster convergence. To
prevent overfitting, the training process ends when the value of the loss function no longer
decreases. In order to accommodate the dataset size, strike a balance between efficiency
and performance, and mitigate the risk of overfitting, we opt for a single GCN layer
with a hidden state dimension of 200. Additionally, aligning the hidden state dimension
with the dimensions of the entity and relation embeddings contributes to the seamless
integration of information across various model components. The same hyperparameters
are used to maintain consistency across different datasets. All experiments are conducted
on Intel(R) Xeon(R) Gold 5120 CPU @ 2.20 GHz (Intel Corporation, Santa Clara, United
States) and Tesla V100-SXM2-32 GB GPU (NVIDIA Corporation, Santa Clara, United
States), which can accelerate the computational process and improve the speed of model
training and inference.

5.2.2. Metrics

Consistent with most baseline methods, we evaluate the performance of our model
using the ranks of triplets. Specifically, we conduct both head and tail evaluations for all
correct triplets. Taking the tail evaluation of a triplet as an example, we first construct
its correct triplet by replacing its head and tail entities with other entities. Subsequently,
the proposed model predicts the scores of correct and corrupted triples using the graph
decoder (ConvE). These scores are then sorted in descending order to determine the
corresponding ranks. Based on these ranks, we assess the model’s performance using
several rank-based metrics, including Mean Rank (MR), Mean Reciprocal Rank (MRR),
and Hits@n, which represents the proportion of correct entities ranking in the top n (where
n = 1, 3, 10).

• MR = 1
|S| ∑

|S|
i=1 ranki

= 1
|S| (rank1 + rank2 + · · ·+ rank|S|)

• MRR = 1
|S| ∑

|S|
i=1

1
ranki

= 1
|S| (

1
rank1

+ 1
rank2

+ · · ·+ 1
rank|S|

)

• Hits@n = 1
|S| ∑

|S|
i=1 II(ranki) ≤ n

Given the set of triplets S, ranki indicates the predicted rank of the ith triplet. The
indicator function II(·) is utilized to determine if a rank is the correct one. The MR metric
quantifies the average rank of the model within the ranking for each test example. On the
other hand, the MRR metric captures the speed at which the model identifies the correct
answer within the ranking. Meanwhile, the Hits@n metric assesses whether the model
includes the correct triples within its top n predictions. A higher value of MRR and Hits@n
indicates better model performance, while a higher MR value indicates poorer performance.
Again, the procedure for head evaluation is the same as for tails. The final evaluation result
is obtained by averaging the results of both head and tail evaluations. In the realm of real-
world KGs, relations between entities typically exhibit bidirectional characteristics, while
the identities of missing entities remain unknown (head or tail). To facilitate the application
of KGC in link-prediction tasks, a model must possess the capability to concurrently predict
both head and tail entities. As an example, consider a KG comprising entities A, B, and C.
Given the correct triplet (A, Relation1, B), head evaluation involves fixing Relation1 and
entity B to predict the missing head entity A. If the model accurately predicts entity A,
it can be concluded that the model exhibits a good understanding of Relation1 and the
patterns and dependencies between entities A and B. The same principle applies to tail
evaluation. By simultaneously considering both head and tail predictions, the model gains
a more comprehensive understanding of the interrelationships among entities, thereby
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enhancing its ability to capture entity interconnectedness, leading to improved accuracy in
predicting missing entities.

5.3. Link Prediction

The results from experiments are shown in Tables 3–5. SE-KGC outperforms all
other methods on the three datasets. Notably, for the WN18RR dataset, SE-KGC exhibits
significant performance improvement compared to SACN and CompGCN, with MRR
increased by 11.3% and 11.7%, respectively, while Hits@10 increased by 17.9% and 19.2%,
respectively. Such effectiveness is obtained due to the semantic enhancement step. In
addition, the Hits@1 and MRR metrics of SE-KGC-concat are better than those of SE-KGC-
replace. It is worth noting that SE-KGC-replace does not use the original feature, which still
contributes to the overall performance. Comparing SE-KGC to the single decoder model
ConvE, SE-KGC demonstrates significant improvements across all metrics, confirming the
effectiveness of our encoder model and semantic enhancement approach. The above results
show that the proposed SE-KGC can generate representation embedding for entities and
relations and can be used in link-prediction tasks. It can also improve the effectiveness of
the method through semantic enhancement. The results show that it is necessary to pay
attention to the potential semantic correlations between entities.

Table 3. Performance of link-prediction tasks evaluated on the WN18RR dataset.

Methods MRR MR Hits@10 Hits@3 Hits@1

TransE [22] 0.226 3384 0.501 - -
RotatE [44] 0.476 3340 0.571 0.492 0.428
DISTMULT [23] 0.430 5510 0.490 0.440 0.390
ComplEx [24] 0.440 5261 0.510 0.460 0.410
ConvE [35] 0.430 4187 0.520 0.440 0.400
ConvR [36] 0.475 - 0.537 0.489 0.443
ConvKB [37] 0.249 3324 0.524 0.417 0.057
LTE-ConvE [45] 0.472 3434 0.544 0.485 0.437
R-GCN [32] - - - - -
SACN [33] 0.470 - 0.540 0.480 0.430
CompGCN [38] 0.479 3533 0.546 0.494 0.443
HRAN [34] 0.479 2113 0.542 0.494 0.450
KGEL [39] 0.476 - 0.547 0.467 0.446
DRGI [40] 0.479 3223 0.543 0.496 0.445
SE-KGC-attention 0.486 2443 0.570 0.500 0.446
SE-KGC-replace 0.523 1330 0.644 0.560 0.456
SE-KGC-concat 0.535 1526 0.626 0.555 0.487

Bold values indicate optimal quantities.

Table 4. Performance of link-prediction tasks evaluated on the Kinship dataset.

Methods MRR MR Hits@10 Hits@3 Hits@1

TransE [22] 0.309 6.800 0.841 0.643 0.009
RotatE [44] 0.738 2.900 0.954 0.827 0.617
DISTMULT [23] 0.516 5.260 0.867 0.581 0.367
ComplEx [24] 0.823 2.480 0.971 0.899 0.733
ConvE [35] 0.830 2.000 0.980 0.910 0.730
ConvR [36] - - - - -
ConvKB [37] 0.614 3.300 0.953 0.755 0.436
LTE-ConvE [45] 0.840 1.997 0.982 0.919 0.752
R-GCN [32] 0.109 25.920 0.239 0.088 0.030
SACN [33] 0.799 2.500 0.964 0.878 0.699
CompGCN [38] 0.850 1.951 0.981 0.920 0.769
HRAN [34] - - - - -
KGEL [39] 0.844 - 0.983 0.919 0.764
DRGI [40] 0.847 1.900 0.981 0.915 0.765
SE-KGC-attention 0.859 1.942 0.981 0.926 0.781
SE-KGC-replace 0.844 1.863 0.987 0.918 0.758
SE-KGC-concat 0.849 1.968 0.981 0.919 0.766

Bold values indicate optimal quantities.
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Table 5. Performance of link-prediction tasks evaluated on the Nations dataset.

Methods MRR MR Hits@10 Hits@3 Hits@1

TransE [22] 0.422 3.114 0.988 0.749 0.050
RotatE [44] 0.667 2.366 0.998 0.799 0.502
DISTMULT [23] 0.692 2.480 0.988 0.794 0.555
ComplEx [24] 0.511 3.425 0.975 0.617 0.313
ConvE [35] 0.820 2.000 1.000 0.880 0.720
ConvR [36] - - - - -
ConvKB [37] - - - - -
LTE-ConvE [45] 0.742 2.112 0.992 0.831 0.622
R-GCN [32] 0.787 1.843 0.998 0.866 0.674
SACN [33] - - - - -
CompGCN [38] 0.796 1.796 1.000 0.866 0.689
HRAN [34] - - - - -
KGEL [39] - - - - -
DRGI [40] - - - - -
SE-KGC-attention 0.839 1.562 1.000 0.928 0.740
SE-KGC-replace 0.799 1.861 0.993 0.878 0.692
SE-KGC-concat 0.833 1.627 1.000 0.901 0.739

Bold values indicate optimal quantities.

This paper also addresses the performance of SE-KGC on two small datasets (Kinship,
Nations). For Kinship, SE-KGC showed a 1.6% improvement in the Hits@1 metrics com-
pared to CompGCN. For Nations, SE-KGC showed a greater improvement in the Hits@3
and Hits@1 metrics compared to CompGCN, with 7% and 7.9%, respectively. Our model
has limited improvement in performance due to the small size of these two datasets. The
MRR index of SE-KGC-attention is 24.4% higher than that of ConvE, which confirms the
effectiveness of our encoder model and shows that the neighborhood information and
semantic enhancement of SE-KGC-attention aggregation are valuable.

The best results for WN18RR were observed with the replace and concat optional
operations, as they effectively preserved the original enhanced features and initial features.
Compared with WN18RR, Kinship and Nations exhibit better performance on SE-KGC-
attention rather than SE-KGC-replace. We contend the reason is that SE-KGC-attention
easily fits trainable attention weights for small datasets.

5.4. Analysis of Semantic Patterns

As shown in Figure 3, both SE-KGC-replace and SE-KGC-concat exhibit a similar
distribution of the learned weights of the six motifs in the WN18RR dataset. Motifs M32
and M43 occupy the top two highest proportions in two SE-KGC variants, which can be
explained by semantic patterns given by structures of motifs. Structurally, motifs M32 and
M43 connect every entity to all other entities in the graph. Semantic patterns behind these
two structures imply that entities with the same neighbors probably also have relations.
This observation highlights the semantic patterns ingrained within the structures of these
motifs, reinforcing the importance of considering such patterns in link-prediction tasks.

(a) SE-KGC-replace (b) SE-KGC-concat

Figure 3. Proportion distribution of different semantic patterns in the WN18RR dataset.

We can also obtain the distribution of the SE-KGC-attention model from Figure 4.
For third-order motifs, M32 holds greater significance compared to M31. Similarly, in the
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case of fourth-order motifs, M43 exhibits higher importance than M42, and likewise, M42
surpasses M41 in significance. This observation can be attributed to the semantic patterns
determined by the motifs. The patterns can be explained by the fact that entities with
higher connectivity tend to play a more crucial role in characterizing semantic information.
We show the effectiveness of semantic enhancement guided by motifs, and different motif
structures stand for various semantic patterns.

Figure 4. Proportion distribution of different semantic patterns in SE-KGC-attention.

5.5. Parameter Sensitivity

We conducted extensive experiments on the Nations dataset to investigate the sensi-
tivity of four important parameters, including the impact of the learning rate, the settings
of attention dropout, hidden dropout and GCN dropout. By systematically varying these
parameters and analyzing their effects on the experimental outcomes, our objective was
to gain profound insights into their influence and identify the optimal configurations for
our model.

5.5.1. The Value of Learning Rate

The learning rate is a crucial hyperparameter in machine learning that plays a pivotal
role in determining the step size for updating model parameters during training. It directly
influences the speed at which the model converges when minimizing the loss function
using gradient descent. Setting the appropriate learning rate is essential for improving
the accuracy and convergence speed of the model. We conducted experiments with learn-
ing rates set to 0.01, 0.001, and 0.0001 to ascertain the most suitable learning rate. The
experimental results are shown in Figure 5a. Notably, our model achieved the best results
when the learning rate was set to 0.001. As observed, when the learning rate is too small,
the model tends to converge at a sluggish pace. Conversely, when using a large learning
rate, the model may either fail to converge or converge to a suboptimal solution.
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(a) Learning rate (b) Att_dropout

(c) GCN_dropout (d) Hid_dropout

Figure 5. Parameter sensitivity.

5.5.2. The Settings of Dropout

Attention dropout, GCN dropout, and hidden dropout are regularization techniques
widely employed in deep learning to mitigate the problem of overfitting. These techniques
play a crucial role in improving the generalization capability of models. Attention dropout
sets a proportion of attention weights to zero during training to reduce the model’s reliance
on specific attention areas and improve generalization. Hidden dropout randomly drops
out neurons during training. This dropout scheme reduces the model’s dependence on
specific features and promotes robustness by encouraging the remaining neurons to collec-
tively contribute to the learning process. GCN dropout operates on the adjacency matrix of
graph data during training to reduce dependence on certain nodes or edges and improve
generalization. This regularization technique enhances the generalization capability of
graph convolutional networks by encouraging the model to consider a wider range of node
and edge relationships. These techniques are important for preventing overfitting and
improving generalization in deep learning models. The experimental results, depicted in
Figure 5b–d, confirm the effectiveness of these techniques. Notably, the optimal experi-
mental results are obtained when att_dropout is and set to 0.1, GCN_dropout is set to 0.1,
and hid_dropout is set to 0.2.

6. Conclusions

We have proposed a KGE model, namely SE-KGC, that can capture various semantic
information within knowledge graphs. The key idea is to present a semantic enhancement
under different semantic patterns. These patterns are predefined by a group of typical
higher-order structures, incorporating human-understanding knowledge. The semantic
enhancement not only captures potential semantic correlations between entities but also
enriches the local neighborhood for our GCN encoder. We apply a decoder to evaluate
triplet scores for link-prediction tasks. Experimental results demonstrate that our SE-KGC
is superior to other models on three datasets, and we also comprehensively analyze the
contributions of different semantic patterns.

Capturing semantic information in KGs is crucial for advancing various information-
retrieval applications. Although large language models have achieved significant success in
understanding semantemes, their underlying mechanisms remain opaque and difficult to
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interpret. Exploring human-understanding higher-order semantic patterns holds significant
value for model transparency. In this paper, we attempted to formulate these semantic
patterns for knowledge graph completion and achieved significant improvements. The
follow-up research could pay more attention to higher-order complex semantic information,
which will definitely prompt practical applications in various fields such as mining graphs
and data science.
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