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1. Introduction

Umbral calculus originated in the 17th Century and is an important method for study-
ing polynomial sequences. It is a branch of combinatorial analysis [1]. In the mathematical
study of umbral calculus, there are three approaches known in the literature. Firstly, um-
bral calculus can be seen as a type of “magic” for reducing and improving indicators
in polynomials [2]. Secondly, the Appell polynomial is extended to the Sheffer polyno-
mial [3]. However, the development of this polynomial is not sufficient because of the lack
of computational tools. Thirdly, the abstract linear operators are used to study umbral
calculus in functional analysis [4]. Later, these three routes were combined and binomial
polynomial sequences studied using operator methods, revealing the mystery of umbral
calculus [5]. Umbral calculus is based on modern concepts like linear functionals, linear
operators, adjoints, and so on. It is used in fields such as combinatorics, homology algebra,
statistics, Fourier analysis, physics, and invariant theory [6].

In [7], the authors introduced umbral calculus into the Clifford analysis. They defined
the umbral Dirac operator using radial algebra and umbral calculus. In 2011, Faustino
and Ren Guangbin used the operator composition method to study the decomposition
theorems of umbral Dirac operators and Hamilton operators [8]. The Clifford analysis (see
for instance [9-12]) is based on the study of the properties of monogenic functions, which
are the higher dimensional analogue of holomorphic functions on the complex plane. While
continuous Clifford analysis is a well-established theory with applications in many fields
like electromagnetics and signal processing, discrete Clifford analysis is a theory used in
discrete potential theory, numerical analysis, and combinatorics. Umbral Clifford analysis
is seen as an abstract theory of Heisenberg exchange relations in quantum mechanics.
This provides a framework unifying continuity and discreteness [13-15]. We verified this
phenomena by studying normalized systems of functions with respect to the umbral Dirac
operator in Clifford analysis and their applications.

The method of the f-normalized system of functions introduced by Karachik is used
to construct polynomial solutions to linear partial differential equations with constant
coefficients, such as the polyharmonic equation, the Helmholtz equation, the Poisson
equation, and so on; see [16,17]. Generally speaking, the construction of polynomial
solutions depends on the structure of the equation’s operator. But, this method does not
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rely on the operator structure of the equation. Furthermore, the proposed method is also
used in the study of polynomial solutions of boundary-value problems for polyharmonic
equations and the Helmholtz equation, more specifically the Dirichlet problems, Neumann
problems, and so on; see [18]. This paper is devoted to the applications of the method of the
normalized systems of functions in constructing solutions to partial differential equations
in umbral Clifford analysis.

The outline of this paper is as follows. In Section 2, we go over the basics of umbral
Clifford analysis, including the umbral Dirac and Euler operators. For early research on
umbral Clifford analysis, we refer the reader to [7,8]. In Section 4, applying the Sheffer
operator, we obtain the intertwining relationship between umbral differential operators
and classical differential operators. Furthermore, we construct 0-normalized systems of
functions with respect to the umbral Dirac operator. In Section 5, by the system, we
investigate Almansi-type expansions for umbral k-monogenic functions. Furthermore, we
construct the solutions of inhomogeneous umbral poly-Dirac equations. In Section 6, we
study the normalized system with the base f(x). Moreover, we construct the solutions of
umbral Dirac-type equations.

2. Preliminaries

In this section, we will review some basic notions with umbral Clifford analysis;
see [7,8].

2.1. Umbral Dirac Operator

One of the interesting things about umbral Clifford analysis is the construction of a
first-order operator, the so-called umbral Dirac operator. By taking Oy; to be the partial

derivative %, we define the umbral Dirac operator by
]

n
D := Zeij]., (1)
j=1
where ¢jex + exej = —20j,j,k = 1,2, -+ ,n. Here, §j is the Kronecker symbol. The null

solutions of this operator are umbral monogenic functions.

2.2. Umbral Euler Operator
Let x = (x1,%2,...%,) € R". Then, x* = x;!
tive integers.

In umbral Clifford analysis, we take the delta operator Oy, as the momentum operators
and take

x;‘2 -+ xy", where a1, ay, ... are nonnega-

as the position operators, where O,x].f(g) = Ox(xjf(x)) — xjOxf(x) is the Pincherle
derivative. They satisfy the Heisenberg—Weyl relations:

Oy, O] = 0 =[x, x], [Ox,, ] = Sjid.

Let x} := xk(O;k)’l. Then, the basic polynomials are given by

where (x')* = [T¢_; (x})*. This is known as the Rodrigues formula.
The operator:

n
j=

is called the umbral Euler operator. This operator allows us to have
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E'Vo(x) = |a|Va().
2.3. Sheffer Operator
The Sheffer operator is defined by
‘Yg Xt =V, (E)/ (4)

where {V,(x),« € N} is a polynomial sequence. The inverse of this linear operator ¥ ! is
given by ‘I’il : Va(x) — x*. Furthermore, we have the intertwining relations, i.e.,

Oy ¥y = W30y, x¥y=¥yxj, EY¥,=Y,E

3. 0-Normalized System of Functions with Respect to the Umbral Dirac Operator

In this section, we set up the normalized systems of functions with respect to the Dirac
operator in the setting of umbral Clifford analysis. In other words, we will establish a
system of functions {Fy(x; f),k =0,1,2,- - - } satisfying

D'R(xf) = Fa(xf), k=12, ®)
where D'Fy(x; f) = D'f(x) = 0. That is to say, the function f(x) is an umbral mono-
genic function.

First of all, we give the following definitions:

Definition 1 ([19]). Let the open connected set (3 C R". If x € Q and 0 < a < 1 satisfy that
ax € Q, then it is the so-called star domain with center 0. It is denoted by Q).

Definition 2. Let f(x) € C(Qy, Cly,,). The operator ]l/ is defined by

i =Yo7 (6)
where [ f (x) = fol(l — )12t f(ax)dx, 1> 0.
Definition 3. Let E' be as stated before. Let I be the identical operator. Then, the operator E; is

defined by
E =E +1I, @)

where | > 0. Note that E'¥y = ¥yE. Thus, we have E; = Y E;'¥; .
Now, we consider the relations between the operators x’, D' and E.
Lemma 1 ([7]). Let x', D, and E' be as stated before. Then, we have the following intertwining
relations: . . /
xD 4+Dx =-2E —n,
E/x/ — x/E/ = x/,
DE-ED =D.
Lemma 2. Let f(x) € C(Qp,Clyy). Then,
D'[(x')*f(x)] = =2s(x )7 f(x) + (x)*D'f (),
D[(x)71f(x)) = =2 O7VEy 4 f(x) + (¢)* 7D f(x),

where s € N.
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For more details on the proof of Lemma 2, the reader can refer to [7].

Lemma 3. Let f(x) € C(Qp,Cly,). Then, fors > 1,

/!

/ !
E%+571]sf(x) = (S - 1)]5—1f(x)'
Proof of Lemma 3. Let E; = ‘}’lEs‘I’g1 and ]; = ‘I’l]s‘le. Then,
Ey o Jof (1) = ¥xEy o 1 ¥ Was ¥y ' f(x) = Yal(s — 1)1 ¥y f (%)

= (5= D¥u)s1¥: ' f(0) = (s = Dsaf(0),
The proof of this lemma is complete. [

Thus, we have the 0-normalized system of functions with respect to the umbral Dirac
operator as follows.

Theorem 1. Suppose that a function f(x) € C(Qy,Cly,) satisfies the equation D' f(x) = 0.
Then, the sequence of functions Fy(x; f) in Qg is the 0-normalized system of functions with respect
to the operator D', where

ﬂff(x) k =2l
21— ’
F(x; f) = (x')2-1 / - @
_22171(1 — I - 1)!]lf(x)/ k=21-1,
f(X), k=0.

Proof of Theorem 1. It is easy to see that D' Fy(x; f) = D f(x) = 0. We only need to prove
that D'F(x; f) = F_1(x; f) for any k € N. For k = 2I — 1, applying Lemmas 2 and 3,
we obtain

D'Faa () = - sy [0 )]

= Tar —11)!(1 —yi 26 PV E ) = D)

2 X, 21-1 , ,
- 221—1(1( )1)!(1 “y Py i)

B (x’)z(l—l)
- 220-D(1—1)1(1 -2)

!];71f(x) = Fy_»(x; f).

For k = 2, it is obvious to obtain the result by Lemma 2. [

4. Applications of 0-Normalized System of Functions with Respect to the Umbral
Dirac Operator

4.1. The Almansi-Type Expansion for the Umbral Dirac Operator
In this section, we will derive the Almansi-type expansion for umbral k-monogenic

functions by using the 0-normalized system of functions with respect to the umbral Dirac
operator. We begin with the following lemma.
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Lemma 4. Let f(x) € C(Qp,Cly,). Then

1 lle(l _ tx)p_l
, Lal(1 = a)P / e f(ax)da, p €N,
E / — do = 0 p :
i fy o Sl f(x)
x), p=0,
where l > 0.

Proof of Lemma 4. Let Tj);f = fol alf(

ax)da. Then, T(/),l = ¢xTo 95"
have

- By computation, we

EpTo f = ¥xEp ¥y "aTo ¥y ' f(x)

=Y, E 1 To ¥ f(x) = f(x).

f(ax)da. Then, T, = ¥T,,¥5 ", and

1 (1—a)?
Let T, f = [ ol
E;+1T;;,1f = YxEi 1 ¥y ¥ Ty ¥y f(x)
= ¥aE Ty ¥y ' f() = 9 Tpo11401¥x F(X) = Tpoq ya f(%)-
Thus, we have the result. O

Theorem 2. Let F(x) € C*(Qy, Cly,). If (D' )¥F(x) = 0, then

’)21'71

1 ; n
(i =11 —1)! /0 (1- ‘X)lil‘ﬂilfziq (ax)do

k
F = 100+ 3
:l

N ©)
il - Z)jll /1(1—a)i’1a%’1f2i(ocx)da,
where fi(x)(j = 0, -~k — 1) are umbral monogenic, and
fitx) = (D +1 [ OB i oy e s
- (10)
g U OB iy s

Proof of Theorem 2. First of all, we first prove that f;(x)(j
monogenic. Using Lemmas 2 and 4, we have

0,--+,k—1) are umbral

fi(x) = (D')*'F(x)

%] —1)5(x)26-1) , _g)ys—lgits—2 .
+ Z ( 1)22( _) (En )/01 (1(5 _.Bi)!(sﬁ_ T (D )]+2571F(/3x)d,8

[k7]7 s(~/\25—1 s—1ps
E R -y
I & pE

s—1)i(s — 1) (D)= F(px)ap
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] s(+ V251 s—1
(=)= b A=B) T
s=1 2271 /0 (S - 1) (S - l) ﬁ

Y(D'Y*%F(Bx)dp

(D)= P A= g jeasn
+ Zl 225 /0 S!(S _ 1)| ﬁz (D >]+ ot F(‘BX)dﬁ
s=
By computing the first integral of the equality, we have
)

2

a-

( )Z(s 1)

o s—1ps—1
. 5—1)<E2+S_1)/0 E:—f))(s—ﬁl)ﬁz_l( )]+2S_1F(ﬁx)d,8

7 / ﬁj—l ]+1F ﬁx ‘B

] —1)5(x )26-1) , — B)ys—1lgs—-1 o
L i (Bn) [ a0 Egns

= (D J+11:

T] s 2(s—1) _B)s—28s ,
; ) (x) /O (5(1_ 2)[%!25 _‘Bl)!ﬁz_l(D )H—ZS_lF(‘Bx)d‘B

. P10 s+ 1 (1 - gys—lgs+l .
= —(D')*1F(x) + ; ( 1)225(35) /0 (1 (Sﬁ_)l)!f! BE-1(D'V+2=HE(Bx)dp

~

, . %_1]75/25 _g)s-lgs+1 .
-~y e -y S [P g gap

S

Thus, we have D/f]-(x) =0.

Substituting (10) into (9), we have

i1 5 )Zi(ll —1)! /1 (1— ) 'a? ™ f g (ax)da

L Z1)i(x )21 i—1pi—1 ,
=)+ Y, S [ e 0 (g

« A= B) T e
+i; o7 /O G- 1! g>~'(D

)XF(Bx)dp

Iy )2i-1 _gy-1 }
T (22)1'71 /01 (i (11)![(31') 3B (DY IE(Bx)AB + Fi(x) + Fa(x)

./01(1—1x)1 1a%*1(D1)2iF(ucx)duc+F3( ) + Fy(x)
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2 _1)s "\12s—1 _ g)s—lgs+s—2
% Z ( 1) 2[§s(f1)] /01 (ts_ﬁi)!(sﬁ_j;)! (D )21+25_2F(0cﬁx)d,8d0c.

(E3L] (=44 (_1)s(x’)2i+2572

Fi(x) = E ; 4its=1G — )i = 1)(s = 1)!(s — 1)!

X

/01(1 o a)ifllx%flaZsfl /01(1 N ‘3)571,8571,3%71(D,)ZiJrzssz(Dcﬁx)d,Bth

_ [%] [Mfl} (—1)5(x)2i+25-2
== S (e VS VIR IR I

! i1 [ s— s— 2 '\2i+2s— aBx w
[T a—a) ™t [ - wp) () (wp) (D2 (wp) B

Let t = «f. Then,
1 . 1 n I\2;
Bi(x) = [ (=) [ (e —ap) ™ (@p) (@B) 11 (D22 F(wpx)dpda
— /1(1 _ “)ifl /a(a _ t)sfltsflt%fl (D’)2i+2572F<tx)dtd‘x
) 0

1, . 1 .
= [ R0 ) [ = ) = ),
0 t

We consider the second integral of the above equality as follows.

Ci(t) = /t1(1 —a) (a1 e
Leta = S+ t. Then,
1—t .
am= [ a-p-nF
Let B = a(1 —t). Then,

1 .
Ci(t)= /0 1—a(l—t)—t) a1l -] 11 - t)da
= /01(1 — ) (1 =) (1 - t)%da
= (1—¢)i+st /01(1 — )" da.

It is well-known that the Euler beta function is given by

1
B(l,s) :/0 11— ) da.
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After a simple calculation, we obtain

Ci(t) = (1 — £)+5~1B(s, ).

Note that () (s)
Bs) = Tar1)
where
[(s) = (s —1)!
We have
Ci(t) = (1 pyits1 (Sfi(:)l)

Thus, we have
[E] [k gl] (_1)s(x’)2i+2572
= 1 4its=1G{ — 1) —1)1(s —1)!(s — 1)!

s=

X/O (l(—si)l(s;)l) t”+s72(D’)2i+2572F(tx)dt

[kT] [k 21+1] ( 1)s(x/)2i+25—2 1 (1 t)i+5—1t%+572
= — _ "\2i+25—2
S 4”5‘1(1'*1)!(8*1)!/ Gricnr (D) R(a
[kiTl] - 1)s(x/)2]'—2 1 (1 *t)j_lts_l - oy s
B Z ]—5—1) (s —1)! / G—1)! t273(D )7 “F(tx)dt
= .
5 (x)¥- = (—1)5¢s1 =181y \2j-2
- 41— 1) — ) “2F(tx)dt
=2 4]’1(1'—1>!/ e e y A A C R A Y

A+ (22 j—1 s—1ys-1 o L

[E2]+1 (2 5 1yt
- — i—1,2-1//\2j—2
= 751 L syt (D) (ke

g A<x’>2j2) [0 s o e

S 4G-) o (-2

2 ()2 11— gy (=8 \2ip (0t
—_— - N 2 '

;; 4 /o G=1t e

Similarly, we obtain F,(x), F3(x), F4(x) as follows. The theorem is proven. []

In the following part of this paper, we suppose that all infinite series converge abso-
lutely and uniformly in (). For the discussion of the convergence of these series, the reader
can refer to [17]. Now, we give the main theorem in this section as follows.
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Theorem 3. If F(x) € C*(Qg, Ro,m), then
- (x> 1 i-1 11
F@) = o) = L gy fp (-0 e e a (e
i=
(11)

0 \2i . ] .
+ 3 [ -t ey

i=1

where umbral monogenic functions f;(x),j =0,1,-- -, are given by

. o (_1)5(y 251 _g)ys—lgsti—2
i) = (0p() = 3 I [ OB B 0y

0o (_1)s(x/)25 1 1 gy .
L m/o (1= B 'p 271 (D Y= F(Bx)dp.

(12)

Remark 1. From Theorem 3, we establish one representation of the functions by umbral monogenic
functions, which is an Almansi formula of infinite order. As applications of the representation,
we construct solutions of the equation (D' + A)f(x) = 0 and the inhomogeneous umbral poly-
Dirac equation.

4.2. Solutions of the Equation (D' + A)f(x) = 0

Let A be a real number. Then, we consider the Dirac-type equation in umbral Clif-
ford analysis:

(D' +A)f(x) =0. (13)

Theorem 4. If F(x) € C(Qy, Cly,,), then the solution of Equation (13) is given by

o x )12 o
F0 = o)+ T i [ -0 (e
(14)
o0 [/\(x’)]Zifl 1 1y
+/; 2213 — 1)1(i — 1)! /0 (1— )" a2 fo(ax)da,
where
folo) = () — 3 S = BY B2 st g
s=1 2251 0o (s—1)!(s—1)!
(15)

© (_1)5(x )28 ) /
_'_gz(zssl!)(s(_)l)!/ol(l—ﬁ)SlﬁSJer(D )ZSF(,BX)CI’B,

Proof of Theorem 4. Let F(x) € C(Qp, Cly,). Then, D’fo(x) = 0 by Theorem 3. Further-
more, we have

D' </01(1 - a)ilocglfo(ocx)da) =0.

From Lemma 2, we can see that

D' {(x,)% /01(1 - oc)ilzxglfo(zxx)doc]

1 o,
= —2ix21_1/0 (1—a) a2 fy(ax)da,



Mathematics 2024, 12, 344 10 of 18

and

D' [(x/)zzl_1 /01(1 — vc)i_lag_lfo(txx)dzx}

; / 1 ; n
= —2x2(l*1)E%+i71/0 (1—a)ta2 7 fy(ax)da.

Differentiating both sides of Equation (14), we have

, ) 2i(4"\2i~1 1 . m
D F(x) = — ; 221'1)Ei E 1))!(1- —1)! /O (1- “)lilﬂ(jilfo(ﬂéx)da

1) )\21 ( )2(1 1) , 1 1w
_2221 1) (i—1)(i— )‘E'%ﬂ'fl/o (I—a)" a2 fo(ax)da.

We calculate the second sum in the above expression as follows.

o AEEED
_;22(1 1)(1_1) (1_1)!E%+H/0 (1—a) a? folax)da

Y ) )\Zifl(x )2(1’71) , 1 (1 _ a)ifl 0
= AE% /0 a2 fo(ax)da i:§2 21 1)1 E%Hfl/o =1 a2 fo(ax)da

oo 2i-1(,/\2(i—1) 1
:_AfO(x>_gzz(i)\n(i(jf)!(i—z)!/o (1 - &) a2 o ax)

0 A2i+1 (x’)Zz‘

= —Afo(x) — ; P —1)! /01(1 — ) la? 7 fo(ax)da.

To sum up, we have that the function F(x) is a solution of Equation (14). O

4.3. Solutions of Inhomogeneous Umbral Poly-Dirac Equations
In this section, we investigate the inhomogeneous umbral poly-Dirac equation:

(D)'g = flx)u (16)
where f(x) € C®(Qp, Ro)-
Theorem 5. Assume that f(x) € C*(Q, Ro ) is a real analytic function. Then, the function
F(x) is given by
1\ 2i+k 1

)H—k( )

F(x) = ; 21+k1| Y (1 — )1 31D )2 f(ax)da

(17)

i+k—1,8+i/ 1/ \2i+1
+2221+k+1(1+1)1 i—l—k—l)! 0 (1—06)1 oz Z(D) 1 f(ocx)dﬁé
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Proof of Theorem 5. We argue by induction. For k = 1, we prove that the solution of
Equation D'g(x) = f(x) is given by

7\ 2i+1

c- ) (x) ! i B4i-1p\2i
EW/O (1—a)az (D) f(ax)da
- - (18)
i 1+
1) (x 1 con INGY
+ 222131((11_1)'11/ (1—a)'a2™(D )2 f(ax)da.
Then, it follows by Theorem 3 that
C- (x)* ! i-1,%-1
G(x) = o) = L sy y () o e w)a
(19)
(x )21 ! i1 24-1
+Zm/ (1—a)" a2 foi(ax)da,
where f;(x) are umbral monogenic functions in (g given by the relation:
= ()X A= e
i) = (06t - 1 U [ P B D) G g
(20)

"\2s 1 _g)s-1gs .
I i G L

Using (19) and (20), we obtain

00 25—1 1 s—1ps—1
-5 U [ Dt 0> o(pmap

s=1

S (D) (L= BB e
B Z 225 /0 S!(S _ 1)| :B 1(D )2 G(,BX)d’B

oS S+1( /)ZS+1

1 " ,
-1 iR ) @ =@yt (D) f ax)d

1\2(s+1)

v (—1)°(x)
+s§) 225+ (s +1)!s! Jo

1(1 — )’ (D)2 fax)da.

The left-hand side of the above expression is a solution of Equation (16) for k = 1; therefore,
its right-hand side is a solution as well.

Assume that Formula (17) holds for k = p. Then, we prove that Formula (17) also
holds for k = p + 1.

By setting DPu = g(x) for g(x), we obtain the equation Dg = f(x); therefore, by The-
orem 1, the function g(x) is given by

0 _1i+1 x/ 2i+1 1 _— .
R R N R R
i=0 b
(21)
1\ 2(i4+1)

’ Z 4(+11)((zx+)1>u' [ = a0 e
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Moreover, by the inductive assumption, we have
: 1\ 2i+p
_ v (D)7P(x) ! i+p—1, B4i—1/1y\2i
w3 = X sy p (1@ O gaan
(22)
1\ 2i+p+1
( 1)l+p 1( ) i+p—1,8%+i\2i+1
+2221+p+1(1+P_1) TEES (1—0&) a2™(D )7 g(ax)da
Note that (D')Pg(x) = (D')P~1f(x). From (22), we have
GO 181
u(x) = m/o (1 —[X)p w2 g(l’(x)d“
(=17 (x D ip—1 241y \2i-1
JFZ:221“’1'(1—#?—1)' 0 (1-a) a2 D) f(ax)da @3)
7\ 2i+p+1
(= 1)l+p 1( ) ! i+p—=1,%5+i (' \2
1 — q)it? (D)2
+2221+P+1(1+p 1)! (i+1)!/0 (1-a) #27 (D)7 f (ax)da
Using (21), we transform the first integral in (23) as follows.
(CDPEDP 1 1 g
(1) ./0 (1—a)P " a2 g(ax)da
C(EDPEDP s & (D) IEDE i
= Sy R gy o w @B D (apr)apn
' (24)
(—)PE)P 2)P-1 (“)I)HHF2 o a i
+m/o (1- Z G+ D)l / a(a —ap) (ap)2™(D )" f(apx)dpda
=Nh+)]2
We calculate the sum of the two terms in the above equation separately.
—1DP( P z+1 x2i+1 o
(zp&_(l;! ,;o i [ [0 = ap )t (D (aprd(ap e
’ p 00 1+1 21+l . o s
- et 20 Vi [ [ a2 gy (@) (D i (e
(25)

TP ()P 2, ()it 1,21+ . . A
- (ng,),p_(l;f Zé( ;)-lii!i!+ /0157%1(13 P f(Bx) [gl(l_“)pl(“—ﬁ>’dadﬁ

_EDPE) @ (DT it 2
o L zauir | (1=t 5D (),

i=
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and

- ' " 2i+2 ] . L
mﬁ/ol(l )P 12414}1)1&)1):;/1( B (aB) BT (D) f(apx)d (ap)da

(_1)pxp 0 121+2
- ZF’(p—l)!i:04+1 (i +1)ti!

/ = - gy (D f(pr)dpan

1 P / 0 121+2 1 " oo 1 ) |
“5 (’)7 ! 1;()4+1 i+1) 'z'/ gD )2+1f(ﬁX)d5/ﬁ (1— )" '(a — B)da
o 2i42 o
— (-1 Z4z+1 1) (x ')(ljrp) /l(l_ﬁ)p+lﬁ7+l(D )2+ £(Bx)dp.

By replacing i — i + 1, we compute the second integral in Formula (23):

p 0 z+1 2i+1 1 . I
u(x) = (-1 z;() 221“1' (+)p)! /0 (1 —a)P a2 (D) f(ax)da

(=1)P(x)) i (—1)i(x)2+2

2P

¥ [0 a0 (g
)

(
= 22D i+ 1)1(i + p)! Jo

1)z+p( )21+2+p
* Z 221+P+2(1 +D)!(i+p

1 . TN
)1/0 (1—oc)l+p0c7+l(D )ZZHf(txx)dtx

)1+p( )2i+p+1

=) 1 . v ;o
2 21+p+l 1+P ) (l—‘rl)'/() (1 _a)ZerilajJrl(D )ZZf(“x)da

o (1 i+p+1 x’ 2i+p+1  ,1 , i ) ons
= Z ( 221)‘+p+11'|<(1~_)’_p)| /O (1 - D‘)Hp“zﬂ 1(D )Zlf(‘xx)d“

( 1)z+p( )21+p+2
* 2 L2224+ 1) (i p

; / '(1— ) Pad (D)2 f(ax)da

Thus, we have the result. [

5. Normalized System with the Base f(x) and Its Applications
5.1. Normalized System with the Base f(x)
In this section, we construct normalized systems with the base f(x) in the setting of
umbral Clifford analysis. That is to say, we establish a system of functions {G,,(x; f), m =
2,-- -} satisfying
D'Gu(x;f) = Guo1(x:f), m=1,2,---, (26)

where

D'Gy(x; f) = Go(x; f) = f(x).



Mathematics 2024, 12, 344

14 of 18

Form =2s —1,

© (1)1 (y )2i+2s-1  p1 s i N
Goa () = B ot e pyr fy (1= 0002 )

(27)

—1)i(x)2(i+s) 1 ) W
+ 2 221+s+(l (111_<1))(1 s 1)! / 1- a)HS*laf*l(D )21+1f(06x)d1x.

For m = 2s,

0 (_1)\i+1 2i42s . no ey
Gu(f) =~ 1 eyt (1= 050370 ax)an

(28)
2(1 S) 1 . no o / .
- Z 221&52(5?1);1 I s)! /1(1 — ) a2 T (D)FH f (ax)da.

Theorem 6. The function system Gy, (x; f) is the normalized system with respect to the umbral
Dirac operator with the base f(x).

Proof of Theorem 6. Form =1,

© [ 1\i(.]\2i , o )
D'Gy(x; f) = 20(;31.1,(!2)15%1- /01(1 — ) a2 YD) f(ax)da

i=l

- ( DAL i B4\ 2i41
+ 221“1'1' ./0 (1—a)a2™(D )™ f(ax)da

i=0

0 l+12(l—|—1)( )2i+1 1 Y
+ / 1—a)azt(D)%H f(ax)da
1;) A nm o WP )

o (DI )2 i Bl \2i42
L gy, (0O )

X 2i ) N
+Z#/l(]_a)171a7+l(D )ZIf(tXx)dlx

(i—1)!
N oo ( )21+1 1(1 _“)ia%+i(D,)2i+1f(“x)d“
221+1llll 0
i=0
0o 1+1( )2i+1 1 ionag '\2i+1
i W/o (1—a)'a2*(D)**! f(ax)da

o

© (1)t (|2 A
+ Z (221135_(1))' /01(1 - [x)lflaiJrl(D )ZZf(lXx)dtx

For m = 2s,
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D'Ga(x3) = ~ 1o g o D162 [0 @) a0 fax)al
S\ = 22i+s+1i!(1’ + S)! 0

i 1)i D’[(x’)z(i+s)+l /1(1 _ a)i+soc%+i(Dl)2i+1f(0(x)dtx]

= 222 ( z+ (i +5)! 0

© (_1)i+lp(j 4 g X )2it+2s=1 1 ) 0 n

— Z ( )22i+£+1i1()i(+ S))| /O (1 _ 0()1+S¢x2+’ 1(D )ZZf(Dcx)da
i=0 : :
(29)
) 1+l( )2(i+s)

1 : n; I\9;
2 21+s+1ll l+s) /0 (1—g¢)1+50¢7+1(D )21+1f(06x)d04

(_1)i(x)2(l+s) ! ! _aNits B iy 2i41
+2221+s+2<1+1> it (0 D fada

i(x)2(i+s)+1 1 ) . L
_2221“2(5 +)1> o fy (10 et D e

We calculate the first sum and the forth sum in (29).

) (_1)i+l(x’)2i+2571 s Bl
— 1S, 5 T1— 1
h+ 1= L oo | =@y ot (D ()

=) z+1( )2i+2571 1 sl i 2
+Z 221+s (i+s— 1)l /0(1—,;()1 5103+ (DY f(wx)da
=1

z+1( )21+2s 1

- Z 21+sll Ts—1)! /0 (1 —a) T La 21 (D)2 f(ax)da.

We calculate the second sum and the third sum in (29).

o (_1)itL (5 \2(i+s) 1 o Hins
L+1I3=— 1—20 (22i+)s+1i(!(i)+ S)! /O (1 - D‘)HS“ZJFZ(D )2l+1f(“x)d“

( 1)1+1( )2(1+s)
+Z 221+s+1( +1) (Z—I—S—l

) /1(1 _“)i+s_1ﬁc%+i+l(D,)2i+1f(0éx)d0c

( 1)1+1( )2(z+s)
+ Z 221+s+1(1 + 1) (1 + S)'

/l (1 B a)i+sa%+i(D/)2i+1f(ocx)duc

I e VI CP i
Z 221+s+1( + 1) (l +s—1

1 . no s )
) / (1 _ IX)H_S_llXTH(D )21+1f(ocx)dzx.

To sum up, we have the result. [
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5.2. Applications of the Normalized System with the Base f(x)

Consider the inhomogeneous umbral Dirac equation:

(D' +A)g(x) = f(x),
where f(x) € C(Qo,Clp,) and A € R.
Theorem 7. Let f(x) € C(Qp, Cly ). Then, the solution of Equation (30) is given by

0 z+1Al z( /)21-1-1 1 L Bt
- L Z PIREESET /o (1—a) a2 ™H(D)" f(ax)da

1=0i=0

o (_1)i/\lfi(x’)2(l+l) 1 AR
+z§3§o 22 (4 1)1 /()(1_“)“2+(D) 1 f(ax)da

o | (_1)i+1)tlfi+l (x’)21+2

1 no P
- Z Z 21+i+21’!(l 1) /0 (1- “>l+l“7+171(D )ZZf(“x)d“

[=0i=0

1)i/\l—i+l (x/)2(1+1)+1
21+i+2(i + 1)

*ZZ

1 s oa:
/ (1 . D()Z-HDCTH(D )2’+1f(1xx)d1x.
=0i=0 J0

Proof of Theorem 7. From Theorem 6, we have

00 00 z+1 s—1 2i+2s—=1 ,1 . . ey
:ZZ A ( ) /()(1—06)1+S_106%+1_1(D )Zlf((xx)drx

s=1i=0 221+Sl' (i+s—1)!

n i i )iAs1(x)20+9) /1(1 @) L3 (D 2 f () da
== 22z+s+1 l+ 1) (l 45— 1)! 0

z+1/\s( )2i+2s

0o 00 1 . 0 .
ZZ L Jy () e D) (ax)d

iys (i+s)+1 1 ) Y
— Z Z 221+5J22/21(_|_ 1)) 1(i+s)! / (1— “)Z+S(xf+l(D )21+1f(ocx)dzx.

By changing the summation index as s — s 4 1, we have

0 o (_1)i+1/\s(x/)2i+25+1 1 ] wi L
22i+s+141(j 4 5)! /0 (1—a) a2t 1(D)? f (wx)da

g(x) =

|
g
1

+ Z Z 1)\5( ) 2i+s+1) /1(1 _ Dé)i+slx%+i(D/)2i+1f(Déx)le
== 221+5Jr2 i+ (i+s)!Jo

g

B © oo (_1>i+l/\s+l<x )2i+25+2 /1( _a)iJFSJFlD(%JFi*l(D’)Zif@wc)d“
22i4s5H241(i4+s+ 1)1 Jo

s=0i=0

zAs+1( )2(i+s+1)+l /1
0

[coluNe o]
i+s5+1 5 +i () \2i+1
S;)Z;:] 221+s+2 -1+ — ) T2 T (D)2 f(ax)da

(30)

(31)
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Note that Y05y = Y120 Yerim1 = X2 25:0 . Then, we have

—1)it1pl-i xl 2141 w ;o
( )21+,‘+1i$l, ) /O (1 _ (X)ZIXZ-H 1(D )2’f(ocx)d1x

x):wZ

1=0i=0

o 1 (_1yixl—i(\2(1+1)
(DA ()™
) 22 (j 4 1)

/01(1 — 2)la3 (D)2 f(ax)da

[=0i=0
co | z+1Al 1+l( )21+2 1 AITIp.
1—a) a2 (D )" f(ax)da
l;)z:o 21+l+21' (I+1)! /0 ( ) (D)~ f(ax)

1)i/\l—i+1 (x/)2(1+1)+1
2””2(1’ + 1)

i > [ et (D flan
== Jo

This completes the proof. [

6. Conclusions

The method of the normalized systems of functions is devoted to the construction of
the solutions of initial- and boundary-value problems for real-valued partial differential
equations. In this paper, applying the Sheffer operator, we constructed the normalized
systems of functions to study Clifford-valued partial differential equations in the frame of
umbral calculus. Umbral Clifford analysis based on umbral calculus is a bridge between
continuous and discrete Clifford analysis. One may further bring this method to the field
of discrete Clifford analysis.
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