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Abstract: In this paper, the unconditional superconvergence error analysis of the semi-implicit
Euler scheme with low-order conforming mixed finite element discretization is investigated for
time-dependent Navier–Stokes equations. In terms of the high-accuracy error estimates of the
low-order finite element pair on the rectangular mesh and the unconditional boundedness of the
numerical solution in L∞-norm, the superclose error estimates for velocity in H1-norm and pressure in
L2-norm are derived firstly by dealing with the trilinear term carefully and skillfully. Then, the global
superconvergence results are obtained with the aid of the interpolation post-processing technique.
Finally, some numerical experiments are carried out to support the theoretical findings.
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1. Introduction

In this paper, we consider the following two-dimensional time-dependent incompress-
ible Navier–Stokes equations:

ut − ∆u + (u · ∇)u +∇p = f , (x, t) ∈ Ω× (0, T], (1)

∇ · u = 0, (x, t) ∈ Ω× (0, T], (2)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T], (3)

u(x, 0) = u0(x), x ∈ Ω, t = 0, (4)

where Ω ⊂ R2 is a rectangular domain with boundary ∂Ω, u = (u1, u2) = (u1(x), u2(x))
represents the velocity vector, p = p(x) denotes the pressure, and f = ( f1(x), f2(x)) is
the prescribed body force, x = (x, y). Moreover, u0 is the initial velocity and T > 0 is the
final time.

Navier–Stokes equations are a classical incompressible fluid model and have been widely
applied in the mathematical physics and the computational fluid dynamics fields [1–3]. It is an
unrealistic thing to find the the exact solutions of the Navier–Stokes equations due to their
nonlinear and incompressible properties. Therefore, numerous works have been devoted to
the development of efficient numerical approximations for Navier–Stokes Equations (1)–(4),
including finite difference methods [4–7], Galerkin finite element methods [8–21] and other
methods [22–26]. In particular, a new second-order accurate finite difference scheme for
the incompressible Navier–Stokes equations was discussed in [4] by the primitive variable
formulation. Based on the vorticity stream-function formulation and a fast Poisson solver
defined on a general domain using the immersed interface method, a fast finite difference
method was proposed and studied in [5] for the incompressible Navier–Stokes equations.
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A new fully discrete finite element nonlinear Galerkin method was established in [8] for the
Navier–Stokes equations with two-grid finite element discretization in the spatial direction
and Euler explicit scheme with variable time step size in the temporal direction. The bound-
edness, convergence and stability condition of the presented method were discussed under
certain time-step constraints dependent on the coarse grid parameter. A Lagrange–Galerkin
mixed finite element approximation was presented for the Navier–Stokes equations in [13],
and optimal error estimates were obtained with the mesh restriction τ = O(hσ), where
σ > (d − 1)/2, and τ, h and d denote the time step size, the mesh size and the dimen-
sion of the domain, respectively. In [14], in terms of the special properties of a low-order
nonconforming mixed finite element pair on the rectangular mesh, the superconvergence
error estimates were derived for Navier–Stokes equations with the time-step constraints
τ = O(h1+α), α > 0 due to the inverse inequality used in the error analysis. In [18],
in terms of the error splitting technique developed in [27,28], the unconditional stability
and convergence of a typical modified characteristics finite element method were studied
for the time-dependent Navier–Stokes equations by introducing an iterated characteristic
time-discrete system. Optimal error estimates were obtained under the boundedness of
the numerical solution in W1,∞-norm. Subsequently, the unconditionally optimal error esti-
mates were derived in [20] under the boundedness of the numerical solution in L∞-norm,
which is weaker than that in [18].

It should be pointed out that optimal error estimates were obtained in [20] due to
roughly handling trilinear terms. Moreover, the superconvergence error estimates were
derived in [14] with a certain time-step restriction. To the best of our knowledge, there are
few contributions on the unconditionally superclose and superconvergence error estimates
for problems (1)–(4). The purpose of this paper is to consider the unconditionally superclose
and superconvergence error estimates for incompressible time-dependent Navier–Stokes
Equations (1)–(4). It should be pointed out that the difficulties come from the trilinear term
(i.e., the convection term) (u · ∇)u in the superclose and superconvergence error analysis.
Therefore, we should deal with them carefully and skillfully.

In the present work, we focus on a low-order conforming finite element approxima-
tion, which is called the bilinear-constant scheme [4,29,30], for problems (1)–(4). The key
to our analysis is to employ the special properties (high-accuracy error estimation; see
Lemmas 1–2 below) on the rectangular mesh and to treat the convection term (u · ∇)u
rigorously and skillfully. The superclose error estimates are obtained firstly for the velocity
in H1-norm and for the pressure in L2-norm. Then, in terms of an efficient interpolation
post-processing approach, the global superconvergence results are derived for the veloc-
ity in the H1-norm and for the pressure in the L2-norm. In addition, some numerical
experiments are presented and tested.

The remainder of this paper is organized as follows. In Section 2, some preliminaries
and lemmas are introduced, and the semi-implicit Euler fully discrete finite element ap-
proximation of the problem (1)–(4) is presented. In Section 3, the detailed superclose error
estimates are studied with the help of the special properties of the bilinear-constant finite
element pair combined with skillfully dealing with the trilinear term. Then, the global
superconvergence error estimates are established by the interpolation post-processing tech-
nique. In Section 4, some numerical results are provided to verify the theoretical findings.

2. Preliminaries

We denote by Wm,p(Ω) the Sobolev spaces with the norm ‖ · ‖m,p and semi-norm
| · |m,p defined by

‖u‖m,p =


(

∑|β|≤k
∫

Ω |Dβu|pdxdy
) 1

p , 1 ≤ p < ∞,

∑|β|≤k ess supΩ|Dβu|, p = ∞,
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where Dβ = ∂|β|
∂xβ1 ∂yβ2

for the multi-index β = (β1, β2), β1 ≥ 0, β2 ≥ 0 and |β| = β1 + β2.

For p = 2, we let Hm(Ω) denote Wm,2(Ω). We omit the subscript when p = 2 and write
‖ · ‖0,2 and | · |0,2 as ‖ · ‖0 and | · |0 for simplicity. Moreover, we use (·, ·) to represent the L2

inner product, i.e.,

(u, v) =
∫

Ω
uvdxdy.

For the mathematical setting of the problem (1)–(4), we introduce the following Sobolev
spaces V and M [31], i.e.,

V = (H1
0(Ω))2, P = L2

0(Ω) = {q ∈ L2(Ω) :
∫

Ω
q dxdy = 0}.

Moreover, for any Banach space X and I = [0, T], let Lp(I; X) be the space of all
measurable function f : I → X with the norm

‖ f ‖Lp(I;X) =

 (
∫ T

0 ‖ f ‖p
Xdt)

1
p , 1 ≤ p ≤ ∞,

ess supt∈I‖ f ‖X , p = ∞.

Let Th = {e} be a uniform rectangular mesh over Ω with mesh size h. For a given ele-
ment e ∈ Th, its four vertices are denoted by ai(xi, yi), i = 1, 2, 3, 4 in the counterclockwise
order (see Figure 1 left). For the velocity, we choose Vh as the general bilinear finite element
space. For the pressure, we assume that the subdivision Th is obtained from T2h = {τ}
by dividing each element of T2h into four small congruent rectangles. Let P

′
h consist of

piecewise constant functions with respect to Th such that the local basis functions for P
′
h

on a 2× 2-patch of τ (see Figure 1 right) are indicated in Figure 2. Then, the finite element
space for pressure is defined by P

′
h ∩ L2

0(Ω). In the following discussion, we always assume
that τ = ∪4

i=1ei ∈ T2h with ei ∈ Th (1 ≤ i ≤ 4) (see Figure 1 right). Thus, the finite
element approximation spaces Vh and Mh for the bilinear-constant scheme are described
by ([1,29,30])

Vh = {v ∈ (C(Ω))2 : v|e ∈ (Q11(e))2, v|∂Ω = 0, e ∈ Th},

Mh = {p ∈ L2
0(Ω) : p|τ =

3

∑
i=1

λτ
i ϕτ

i , ∑
τ∈T2h

λτ
1 = 0, τ ∈ T2h},

where Q11 denotes the space of all polynomials of degree ≤ 1 with respect to each of the
two variables, x and y. It is shown in [1,29,30] that the bilinear-constant scheme satisfies
the Babuška–Brezzi condition, i.e.,

sup
0 6=vh∈Xh

(qh,∇ · vh)

‖vh‖1
≥ β‖qh‖0, ∀qh ∈ Mh, (5)

where β > 0 is a constant, independent of h.

a1 a2

a3a4

e

e1 e2

e3 e4

Figure 1. The element e (left) and ẽ (right).



Mathematics 2023, 11, 1945 4 of 17

1 1

11

ϕẽ
1

1 −1

−11

ϕẽ
2

−1 −1

11

ϕẽ
3

Figure 2. Local basis functions of P
′
h.

For the velocity, we use the Lagrange nodal interpolation operator Ih : (C(Ω))2 7→ Vh
as the corresponding interpolation operator. For the pressure, we first introduce the local
L2-projection J

′
h p of p by

J
′
h p =

1
|e|
∫

e
p dx1dx2, ∀e ∈ Th, (6)

and then define the operator Jh with respect to ẽ by

Jh p =

{
J
′
h p− 1

4 αẽ, i = 1, 4,

J
′
h p + 1

4 αẽ, i = 2, 3,
(7)

where αẽ = pẽ
1 − pẽ

2 − pẽ
3 + pẽ

4 with the notations of pẽ
i =

1
|ei |
∫

ei
p dx1 dx2, (i = 1, 2, 3, 4). We

can check that

Jh p|ẽ =
1
4

[(
4

∑
i=1

pẽ
i

)
ϕẽ

1 + (pẽ
1 − pẽ

2 + pẽ
3 − pẽ

4)ϕẽ
2 + (pẽ

1 + pẽ
2 − pẽ

3 − pẽ
4)ϕẽ

3

]
,

which implies that Jh p ∈ Mh for p ∈ L2
0(Ω).

Lemma 1 ([29]). Suppose that u ∈ (H3(Ω))2 and p ∈ H2(Ω), then there hold

(∇(u− Ihu),∇vh) ≤ Ch2‖u‖3‖∇vh‖0, ∀vh ∈ Vh, (8)

(p− Jh p,∇ · vh) ≤ Ch2‖p‖2‖∇vh‖0, ∀vh ∈ Vh, (9)

(∇ · (u− Ihuh), qh) ≤ Ch2‖u‖3‖qh‖0, ∀qh ∈ Ph. (10)

Lemma 2. Supposing that u ∈ H3(K) on element e, we have

((u− Ihu)x, v)e + ((u− Ihu)y, v)e ≤ Ch2
e‖u‖3,e‖v‖0,e, ∀v ∈ P

′
h. (11)

Furthermore, there holds for u ∈ H3(Ω)

((u− Ihu)x, v) + ((u− Ihu)y, v) ≤ Ch2‖u‖3‖v‖0 ∀v ∈ P
′
h. (12)

Proof. In order to obtain a second-order accuracy estimate, we adopt the high-accuracy
integral technique developed in [32]. We introduce the following error function on an
element e (see Figure 3):

F(y) =
1
2
[(y− ye)

2 − h2
y], (13)

where (xe, ye) denotes the barycentric coordinate of element e. One can check that F
′′
(y) = 1,

F(y)|l1,l3 = 0. Note that v is constant on an element e, and we have
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((u− Ihu)x, v)e =
∫

e
(u− Ihu)xvdxdy = v

∫
e
(u− Ihu)xdxdy = v

∫
e
(u− Ihu)xF

′′
(y)dxdy

= v
[(∫

l3
−
∫

l1

)
(u− Ihu)xF

′
(y)dx−

∫
e
(u− Ihu)xyF

′
(y)dxdy

]
= −

[(∫
l3
−
∫

l1

)
(u− Ihu)xyF(y)dx−

∫
e
(u− Ihu)xyyF(y)dxdy

]
=
∫

e
F(y)uxyyvdxdy ≤ Ch2

e‖u‖3,e‖v‖0,e, (14)

where we have that (u − Ihu)(ai) = 0, (i = 1, . . . , 4) and F
′
(y)|l1,l3 are constants in the

above estimate.

a1 a2

a3a4

hx

hy

l1

l2

l3

l4

Figure 3. The element ẽ.

In the same way, we also have

((u− Ihu)x, v)e ≤ Ch2
e‖u‖3,e‖v‖0,e. (15)

Therefore, by adding (14) and (15), the desired result (11) is derived. Furthermore,
summing up (11) with respect to e ∈ Th gives the result (12).

We present the discrete Gronwall’s inequality, which is useful in the following er-
ror analysis.

Lemma 3 ([33,34]). Let τ, B and ak, bk, ck, γk, for integers k ≥ 0, be non-negative numbers
such that

an + τ
n

∑
k=0

bk ≤ τ
n

∑
k=0

γkak + τ
n

∑
k=0

ck + B, for n ≥ 0,

suppose that τγk < 1, for all k, and set σk = (1− τγk)
−1. Then

an + τ
n

∑
k=0

bk ≤ exp

(
τ

n

∑
k=0

γkσk

)(
τ

n

∑
k=0

ck + B

)
, for n ≥ 0.
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The Young inequality will be frequently used in the following analysis, and we present
it here.

ab ≤ a2

2ε
+

εb2

2
, for ε > 0.

The weak formulation of (1)–(4) is as follows: find (u, p) : [0, T]→ (H1
0(Ω))2 × L2

0(Ω),
such that

(ut, v) + (∇u,∇v) + ((u · ∇)u, v)− (p,∇ · v) = ( f , v), ∀v ∈ (H1
0(Ω))2, (16)

(∇ · u, q) = 0, ∀q ∈ L2
0(Ω). (17)

Moreover, in order to give the fully discrete scheme, let 0 = t0 < t1 < · · · < tN = T
be a given uniform partition of the time interval with time step τ = T/N and tn = nτ,
n = 0, 1, . . . , N. For a smooth function w defined on [0, T], denote

wn = w(tn), Dτwn =
(wn − wn−1)

τ
.

Then, the semi-implicit backward Euler low-order conforming mixed finite element
scheme (bilinear-constant scheme) is as follows: for given (un−1

h , pn−1
h ) ∈ Vh ×Mh, find

(un
h , pn

h) ∈ Vh ×Mh such that

(Dτun
h , vh) + (∇un

h ,∇vh) + ((un−1
h · ∇)un

h , vh)− (pn
h ,∇ · vh) = ( f n, vh), ∀vh ∈ Vh, (18)

(∇ · un
h , qh) = 0, ∀qh ∈ Mh, (19)

with the initial approximation u0
h = Ihu0 = Ihu(0).

The unconditionally optimal error estimate for scheme (18)–(19) is shown in [20] by
using the error splitting technique with the low-order conforming mixed finite element
method, specifically, by introducing the following time-discrete system [18,20]:

DτUn − ∆Un + (Un−1 · ∇)Un +∇Pn = f n, (20)

∇ ·Un = 0, (21)

Un = 0, (22)

U0 = u0. (23)

Then, the error between the exact solution and the numerical solution comprises
two parts, where one is the temporal error and the other is the spatial error. Therefore,
the numerical solution in the L∞-norm can be bounded without any time-step restrictions.
Here, we present a lemma to state the τ-independent boundedness of the numerical
solution.

Lemma 4 ([20]). Suppose that (un, pn) is the solution of (1)–(4) with suitable regularity and
(Un, Pn) and (un

h , pn) are the solutions of (20)–(23) and (18)–(19). Then, there exist positive
constants τ0 and h0 such that when τ ≤ τ0 and h ≤ h0, we have the τ-independent boundedness of
numerical solutions

‖un
h‖0,∞ ≤ K, n = 0, 1, . . . , N, (24)

where K is a constant, which is not dependent on h, τ and n.

3. Superclose and Superconvergence Error Estimates

In this section, we firstly present the superclose error estimates for the velocity and
pressure variables. Then, we give the superconvergence result in terms of the superclose
error estimates as well as the interpolation technique.
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Theorem 1. Suppose that (u, p) and (un
h , pn

h) are the solutions of (16)–(19) and u ∈ L∞((H3(Ω))2

∩ (H1
0(Ω))2), ut ∈ L∞((H3(Ω))2), utt ∈ L2((L2(Ω))2) and p ∈ L∞(H2(Ω)). Then, we have

the following superclose estimates

‖∇(Ihun − un
h)‖0 ≤ C(h2 + τ), τ

n

∑
k=1
‖Jh pn − pn

h‖0 ≤ C(h2 + τ). (25)

Furthermore, we have the following optimal error estimates:

‖un − un
h‖0 ≤ C(h2 + τ), ‖∇(un − un

h)‖0 ≤ C(h + τ), τ
n

∑
k=1
‖pn − pn

h‖0 ≤ C(h + τ). (26)

Proof. For simplicity, we split the errors u− uh and p− ph as follows:

un − un
h = un − Ihun + Ihun − un

h := ρn + θn,

pn − pn
h = pn − Jh pn + Jh pn − pn

h := ξn + ηn.

At t = tn, from (16)–(17), we have

(Dτun, vh) + (∇un,∇vh) + ((un−1 · ∇)un, vh)− (∇ · vh, pn) = ( f n, vh) + (Dτun − un
t , vh)

+ (((un−1 − un) · ∇)un, vh), ∀vh ∈ Vh, (27)

(∇ · un, qh) = 0, ∀qh ∈ Mh. (28)

Subtracting (18)–(19) from (27)–(28) gives the following error equations:

(Dτθn, vh) + (∇θn,∇vh)− (∇ · vh, ηn) = −(Dτρn, vh)− (∇ρn,∇vh) + (∇ · vh, ξn)

− ((un−1 · ∇)un − (un−1
h · ∇)un

h , vh) + (Dτun − un
t , vh)

+ (((un−1 − un) · ∇)un, vh), ∀vh ∈ Vh, (29)

(∇ · θn, qh) = −(∇ · ρn, qh), ∀qh ∈ Mh. (30)

Alternatively, we have

(∇ · Dτθn, qh) = −(∇ · Dτρn, qh), ∀qh ∈ Mh. (31)

Taking vh = Dτθn in (29) and qh = ηn in (31) yields that

‖Dτθn‖2
0 +

1
2τ

(‖∇θn‖2
0 − ‖∇θn−1‖2

0 + ‖∇(θn − θn−1)‖2
0) = −(Dτρn, Dτθn)

− (∇ρn,∇Dτθn) + (ξn,∇ · Dτθn)− (∇ · Dτρn, ηn)

− ((un−1 · ∇)un − (un−1
h · ∇)un

h , Dτθn)

+ (Dτun − un
t , Dτθn) + (((un−1 − un) · ∇)un, Dτθn) :=

7

∑
k=1

Ek. (32)

Now, we start to estimate Ek, (k = 1, · · · , 7) term by term. By the Cauchy–Schwarz
inequality and interpolation theory, we have

E1 = −(Dτρn, Dτθn) ≤ Ch2‖ut‖L∞((H2(Ω))2)‖Dτθn‖0

≤ Ch2‖Dτθn‖0 ≤ Ch4 + ε‖Dτθn‖2
0. (33)

Applying the following equality

(an, Dτbn) = Dτ(an, bn)− (Dτan, bn−1), (34)
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we have

E2 = −(∇ρn,∇Dτθn) = −Dτ(∇ρn,∇θn) + (∇Dτρn,∇θn−1)

≤ −Dτ(∇ρn,∇θn) + Ch2‖ut‖L∞(H3(Ω))2‖∇θn−1‖0

≤ −Dτ(∇ρn,∇θn) + Ch4 + C‖∇θn−1‖2
0, (35)

where we used (8) of Lemma 1 in the above estimate.
With an application of (34) again, it follows that

E3 = (ξn,∇ · Dτθn) = Dτ(ξ
n,∇ · θn)− (Dτξn,∇ · θn−1)

≤ Dτ(ξ
n,∇ · θn) + Ch2‖pt‖L∞(H2(Ω))‖∇θn−1‖0

≤ Dτ(ξ
n,∇ · θn) + Ch4 + C‖∇θn−1‖2

0, (36)

where we used (9) of Lemma 1 in the above estimate.
According to (10) of Lemma 1, E4 can be bounded by

E4 = −(∇ · Dτρn, ηn) ≤ Ch2‖ut‖L∞(H3(Ω))2‖ηn‖0 ≤ Ch2‖ηn‖0. (37)

To bound E5, we split (un−1 · ∇)un − (un−1
h · ∇)un

h as follows:

(un−1 · ∇)un − (un−1
h · ∇)un

h = ((un−1 − un−1
h ) · ∇)un + (un−1

h · ∇)(un − un
h)

= ((un−1 − Ihun−1) · ∇)un + ((Ihun−1 − un−1
h ) · ∇)un

+ (un−1
h · ∇)(un − Ihun) + (un−1

h · ∇)(Ihun − un
h)

= ((un−1 − Ihun−1) · ∇)un + ((Ihun−1 − un−1
h ) · ∇)un

+ ((un−1
h − Ihun−1) · ∇)(un − Ihun) + ((Ihun−1 − un−1) · ∇)(un − Ihun)

+ (un−1 · ∇)(un − Ihun) + (un−1
h · ∇)(Ihun − un

h) :=
6

∑
k=1

Fk. (38)

In terms of the Cauchy–Schwarz inequality and interpolation theory, we have

−(F1, Dτθn)− (F2, Dτθn) ≤ (‖ρn−1‖0 + ‖θn−1‖0)‖∇un‖0,∞‖Dτθn‖0

≤ C(h2 + ‖∇θn−1‖0)‖Dτθn‖0

≤ Ch4 + C‖∇θn−1‖2
0 + 2ε‖Dτθn‖2

0. (39)

Using inverse inequality and interpolation theory, we have

−(F3, Dτθn)− (F4, Dτθn) ≤ (‖θn−1‖0 + ‖ρn−1‖0)‖∇ρn‖0‖Dτθn‖0,∞

≤ C(‖∇θn−1‖0 + h2‖un−1‖2)(Ch‖un‖2)(Ch−1‖Dτθn‖0)

≤ C(h2 + ‖∇θn−1‖0)‖Dτθn‖0

≤ Ch4 + C‖∇θn−1‖2
0 + 2ε‖Dτθn‖2

0. (40)

With the aid of (34), one can check that

−(F5, Dτθn) = −((un−1 · ∇)ρn, Dτθn) = −Dτ((un−1 · ∇)ρn, θn) + (Dτ((un−1 · ∇)ρn), θn−1)

= −Dτ((un−1 · ∇)ρn, θn) + ((Dτun−1 · ∇)ρn, θn−1) + ((un−2 · ∇)Dτρn, θn−1). (41)
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In order to obtain a high-accuracy error estimate, i.e., second-order accuracy, we
introduce the local L2-projection defined as follows:

Peu =
1
|e|
∫

e
udxdy, (42)

where e is an element of the partition of Th and |e| is the measure of e. Then, we have

‖Peu‖0,e ≤ ‖u‖0,e, ‖u−Peu‖0,e ≤ Che‖u‖1,e, ‖u−Peu‖0,∞,e ≤ Che‖u‖1,∞,e. (43)

Therefore, we have

((Dτun−1 · ∇)ρn, θn−1) = ∑
e∈Th

((Dτun−1 · ∇)ρn, θn−1)e

= ∑
e∈Th

(((Dτun−1 −PeDτun−1) · ∇))ρn, θn−1)e

+ ∑
e∈Th

((PeDτun−1 · ∇))ρn, θn−1 −Peθn−1)e

+ ∑
e∈Th

((PeDτun−1 · ∇))ρn,Peθn−1)e

≤ ∑
e∈Th

‖Dτun−1 −PeDτun−1‖0,∞,e‖∇ρn‖0,e‖θn−1‖0,e

+ C ∑
e∈Th

‖∇ρn‖0,e‖θn−1 −Peθn−1‖0,e + Ch2 ∑
e∈Th

‖un‖3,e‖Peθn−1‖0,e

≤ Ch2 ∑
e∈Th

‖un‖2,e‖θn−1‖0,e + Ch2 ∑
e∈Th

‖un‖2,e‖θn−1‖1,e

+ Ch2 ∑
e∈Th

‖un‖3,e‖θn−1‖0,e ≤ Ch2‖un‖3‖θn−1‖1 ≤ Ch2‖un‖3‖∇θn−1‖0

≤ Ch4 + C‖∇θn−1‖2
0, (44)

where we used Lemma 2 in the above estimate.
In the same way, we also have

((un−2 · ∇)Dτρn, θn−1) ≤ Ch2‖∇θn−1‖0 ≤ Ch4 + C‖∇θn−1‖2
0. (45)

Hence, there holds

−(F5, Dτθn) = −Dτ((un−1 · ∇)ρn, θn) + Ch4 + C‖∇θn−1‖2
0. (46)

By (24) of Lemma 4, the numerical solution un
h is bounded unconditionally in L∞-norm,

and we have

−(F6, Dτθn) ≤ ‖un
h‖0,∞‖∇θn‖0‖Dτθn‖0 ≤ C‖∇θn‖0‖Dτθn‖0

≤ C‖∇θn‖2
0 + ε‖Dτθn‖2

0. (47)

Based on the above estimates (Fk, Dτθn), (k = 1, . . . , 6), E5 reduces to

E5 ≤ Ch4 + C(‖∇θn‖2
0 + ‖∇θn−1‖2

0) + 5ε‖Dτθn‖2
0 − Dτ((un−1 · ∇)ρn, θn). (48)

Moreover, by Taylor expansion, we have

E6 + E7 ≤ Cτ‖utt‖L∞(L2(Ω))‖Dτθn‖0 + Cτ‖ut‖L∞(L2(Ω))‖∇u‖L∞(L∞(Ω))‖Dτθn‖0

≤ Cτ‖Dτθn‖0 ≤ Cτ2 + ε‖Dτθn‖2
0. (49)
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With the estimates Ek, (k = 1, . . . , 6), we obtain

‖Dτθn‖2
0 +

1
2τ

(‖∇θn‖2
0 − ‖∇θn−1‖2

0) ≤ C(h4 + τ2) + C(‖∇θn‖2
0 + ‖∇θn−1‖2

0)

+ 7ε‖Dτθn‖2
0 + Ch2‖ηn‖0 − Dτ(∇ρn,∇θn)

+ Dτ(ξ
n,∇ · θn)− Dτ((un−1 · ∇)ρn, θn). (50)

On the other hand, from (29), it follows that

(∇ · vh, ηn) = (Dτθn, vh) + (Dτρn, vh) + (∇θn,∇vh) + (∇ρn,∇vh)− (∇ · vh, ξn)

+ ((un−1 · ∇)un − (un−1
h · ∇)un

h , vh)− (Dτun − un
t , vh)

− (((un−1 − un) · ∇)un, vh), ∀vh ∈ Vh. (51)

Then, one can check that by the Cauchy–Schwarz inequality and interpolation theory,

(Dτθn, vh) + (Dτρn, vh) ≤ (‖Dτθn‖0 + ‖Dτρn‖0)‖vh‖0

≤ C(h2 + ‖Dτθn‖0)‖∇vh‖0 (52)

and

(∇θn,∇vh) ≤ ‖∇θn‖0‖∇vh‖0. (53)

By Lemma 1, we have

(∇ρn,∇vh)− (∇ · vh, ξn) ≤ Ch2‖∇vh‖0. (54)

Using a similar estimate process as E5, there holds

((un−1 · ∇)un − (un−1
h · ∇)un

h , vh) ≤ C(h2 + ‖∇θn‖0 + ‖∇θn−1‖0)‖∇vh‖0. (55)

As an application of the Taylor expansion, we have

−(Dτun − un
t , vh)− (((un−1 − un) · ∇)un, vh) ≤ Cτ‖∇vh‖0. (56)

Therefore, we conclude that

(∇ · vh, ηn) ≤ C(h2 + τ + ‖∇θn‖0 + ‖∇θn−1‖0 + ‖Dτθn‖0)‖∇vh‖0. (57)

Then, thanks to the discrete LBB condition (β is a positive constant independent of
mesh-size h), we have

β‖ηn‖0 ≤ sup
0 6=vh∈Vh

(∇ · vh, ηn)

‖∇vh‖0
≤ C(h2 + τ + ‖∇θn‖0 + ‖∇θn−1‖0 + ‖Dτθn‖0). (58)

Substituting (58) into (50) and using the Young inequality, (50) reduces to

‖Dτθn‖2
0 +

1
2τ

(‖∇θn‖2
0 − ‖∇θn−1‖2

0) ≤ C(h4 + τ2) + C(‖∇θn‖2
0 + ‖∇θn−1‖2

0)

+ 8ε‖Dτθn‖2
0 − Dτ(∇ρn,∇θn)

+ Dτ(ξ
n,∇ · θn)− Dτ((un−1 · ∇)ρn, θn). (59)

Choosing ε = 1
16 in (59) and summing up the resulting inequality, we have
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τ

2

n

∑
k=1
‖Dτθk‖2

0 +
1
2
‖∇θn‖2

0 ≤ C(h4 + τ2) + Cτ
n

∑
k=1
‖∇θk‖2

0 − (∇ρn,∇θn)

+ (ξn,∇ · θn)− ((un−1 · ∇)ρn, θn),

≤ C(h4 + τ2) + Cτ
n

∑
k=1
‖∇θk‖2

0 + Ch2‖un‖3‖∇θn‖0

+ Ch2‖pn‖3‖∇θn‖0 + Ch2‖un‖3‖∇θn‖0

≤ C(h4 + τ2) + Cτ
n

∑
k=1
‖∇θk‖2

0 +
1
4
‖∇θn‖2

0, (60)

where we used θ0 = 0, Lemma 1 and the same estimate process (44) for−((un−1 · ∇)ρn, θn).
Hence, from (60), there holds

τ
n

∑
k=1
‖Dτθk‖2

0 + ‖∇θn‖2
0 ≤ C(h4 + τ2) + Cτ

n

∑
k=1
‖∇θk‖2

0. (61)

Then, an application of the Gronwall lemma (see Lemma 3) yields

τ
n

∑
k=1
‖Dτθk‖2

0 + ‖∇θn‖2
0 ≤ C(h4 + τ2). (62)

Putting (62) into (58) gives that

τ
n

∑
k=1
‖η‖0 ≤ C(h2 + τ) + τ

n

∑
k=1
‖Dτθn‖0

≤ C(h2 + τ) + C

(
τ

n

∑
k=1
‖Dτθk‖2

0

) 1
2

≤ C(h2 + τ). (63)

The desired results are obtained, and the proof is complete.

With the aid of the superclose error estimate in Theorem 1, we adopt the interpolation
post-processing approach to improve the accuracy of the numerical solution (un

h , pn
h) on the

whole domain. Let I2h be the piecewise biquadratic nodal interpolation operator for the
velocity associated with T2h. Moreover, for the pressure, the postprocessing operator J2h is
defined as  J2h p ∈ Q11(ẽ),

1
|ei |
∫

ei
(J2h p− p)dx1x2 = 0, i = 1, 2, 3, 4.

The following properties are shown in [29]:
I2h Ih = I2h,

‖I2hv‖1 ≤ C‖v‖1, ∀v ∈ Vh,

‖I2hu− u‖1 ≤ Ch2‖u‖3,


J2h J

′
h = J2h,

‖J2hq‖0 ≤ C‖q‖0, ∀q ∈ Ph,

‖J2h p− p‖0 ≤ Ch2‖p‖2.

(64)

Moreover, we also have from [29] that for p ∈ H2(Ω),
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‖p− J2h Jh p‖0 ≤ Ch2‖p‖2. (65)

Now, we state the global superonvergence result in the following theorem:

Theorem 2. Under the condition of Theorem 1, there holds

‖un − I2hun
h‖1 + ‖pn − J2h pn

h‖0 ≤ C(h2 + τ). (66)

Proof. By (64) and (65), we have

‖un − I2hun
h‖1 + ‖pn − J2h pn

h‖0 ≤ ‖un − I2h Ihun‖1 + ‖I2h Ihun − I2hun
h‖1

+ ‖pn − J2h Jh pn‖0 + ‖J2h Jh pn − J2h pn
h‖0

≤ Ch2‖un‖3 + C‖Ihun − un
h‖1 + Ch2‖pn‖2 + C‖Jh pn − pn

h‖0

≤ C(h2 + τ).

The proof is complete.

4. Numerical Experiment

In this section, we present some numerical results to confirm the correctness of the
theoretical analysis. The software we used is MATLAB 2018a with a 3.20 GHz Intel Core
i5-6500 CPU processor and 8 GB memory.

Example 1. Let Ω = (0, 1)2, and divide Ω into m × n uniform rectangles. Moreover,
the function f and the initial and boundary conditions are chosen corresponding to the
exact solution [35]:

u1 = e−t(x4
1 − 2x3

1 + x2
1)(4x3

2 − 6x2
2 + 2x2),

u2 = −e−t(x4
2 − 2x3

2 + x2
2)(4x3

1 − 6x2
1 + 2x1),

p = 10e−t(2x1 − 1)(2x2 − 1).

We set the final time T = 1.0 in the computation. In order to confirm the error estimates
in Theorems 1 and 2, we present the numerical errors in Tables 1−6 at t = 0.1, 0.6, 1.0,
respectively. Obviously, it can be seen that the numerical results are in agreement with the
theoretical analysis, i.e., the errors ‖un − un

h‖0, ‖un − un
h‖1, ‖Ihun − un

h‖1 and ‖un − I2hun
h‖1

for the velocity u are of order O(h2), O(h), O(h2) and O(h2), respectively. In addition,
the errors ‖pn − pn

h‖0, ‖Jh pn − pn
h‖0 and ‖pn − J2h pn

h‖0 for the pressure p are of orders
O(h), O(h2) and O(h2), respectively. At the same time, we also give the graphics of the
exact solutions (u, p) and finite element solutions (uh, ph) at t = 1.0 on mesh 32 × 32
(see Figures 4−7), respectively. It can be seen that the numerical results are also in good
agreement with the theoretical analysis.

Table 1. The numerical errors and convergence orders at t = 0.1 of u.

m × n 4 × 4 8 × 8 16 × 16 32 × 32

‖un − un
h‖0 6.9832 × 10−4 1.7443 × 10−4 4.0642 × 10−5 1.0779 × 10−5

Order / 2.0012 2.1016 1.9147
‖un − un

h‖1 2.7565 × 10−2 1.3929 × 10−2 6.9778 × 10−3 3.4900 × 10−3

Order / 0.98469 0.99730 0.99953
‖Ihun − un

h‖1 5.1545 × 10−3 1.7229 × 10−3 4.9365 × 10−4 1.1691 × 10−4

Order / 1.5810 1.8033 2.0780
‖un − I2hun

h‖1 1.6546 × 10−2 4.4691 × 10−3 1.1290 × 10−3 2.7815 × 10−4

Order / 1.8884 1.9849 2.0211
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Table 2. The numerical errors and convergence orders at t = 0.1 of p.

m × n 8 × 8 16 × 16 32 × 32 64 × 64

‖p− ph‖0 1.1969×10+0 5.4990×10−1 2.6876×10−1 1.3356×10−1

Order / 1.1221 1.0329 1.0088
‖Jh p− ph‖0 5.7535×10−1 1.4260×10−1 3.6042×10−2 8.9144×10−3

Order / 2.0125 1.9842 2.0154
‖p− J2h ph‖0 7.6225×10−1 1.8945×10−1 4.7655×10−2 1.1841×10−2

Order / 2.0084 1.9911 2.0089

Table 3. The numerical errors and convergence orders at t = 0.6 of u.

m × n 4 × 4 8 × 8 16 × 16 32 × 32

‖un − un
h‖0 2.4270×10−4 6.3566×10−5 1.4898×10−5 3.9554×10−6

Order / 1.9329 2.0931 1.9132
‖un − un

h‖1 1.6737×10− 8.4489×10−3 4.2323×10−3 2.1168×10−3

Order / 0.98623 0.99734 0.99953
‖Ihun − un

h‖1 3.5044e×10−3 1.0579×10−3 3.0068×10−4 7.1119×10−5

Order / 1.7279 1.8149 2.0799
‖un − I2hun

h‖1 1.0152×10−2 2.7162×10−3 6.8536×10−4 1.6879×10−4

Order / 1.9022 1.9867 2.0216

Table 4. The numerical errors and convergence orders at t = 0.6 of p.

m × n 8 × 8 16 × 16 32 × 32 64 × 64

‖p− ph‖0 7.2597×10−1 3.3353×10−1 1.6301×10−1 8.1008×10−2

Order / 1.1221 1.0329 1.0088
‖Jh p− ph‖0 3.4897×10−1 8.6491×10−2 2.1860×10−2 5.4069×10−3

Order / 2.0125 1.9842 2.0154
‖p− J2h ph‖0 4.6233×10−1 1.1491×10−1 2.8905×10−2 7.1817×10−3

Order / 2.0084 1.9911 2.0089

Table 5. The numerical errors and convergence orders at t = 1.0 of u.

m × n 4 × 4 8 × 8 16 × 16 32 × 32

‖un − un
h‖0 1.2510×10−4 3.2199×10−5 8.0816×10−6 2.0220×10−6

Order / 1.9580 1.9943 1.9989
‖un − un

h‖1 1.1202×10−2 5.6624×10−3 2.8366×10−3 1.4189×10−3

Order / 0.98430 0.99724 0.99938
‖Ihun − un

h‖1 1.7780×10−3 6.0911×10−4 1.6246×10−4 4.1252×10−5

Order / 1.5455 1.9066 1.9775
‖un − I2hun

h‖1 6.6492×10−3 1.7801×10−3 4.4318×10−4 1.1058×10−4

Order / 1.9012 2.0060 2.0029

Table 6. The numerical errors and convergence orders at t = 1.0 of p.

m × n 8 × 8 16 × 16 32 × 32 64 × 64

‖p− ph‖0 4.8472×10−1 2.2345×10−1 1.0923×10−1 5.4300×10−2

Order / 1.1172 1.0325 1.0084
‖Jh p− ph‖0 2.2993×10−1 5.7482×10−2 1.4370×10−2 3.5926×10−3

Order / 2.0000 2.0000 2.0000
‖p− J2h ph‖0 3.0657×10−1 7.6642×10−2 1.9160×10−3 4.7901×10−3

Order / 2.0000 2.0000 2.0000
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(a) Exact solution un
1 . (b) Numerical solution un

1h.

Figure 4. The graphics of un
1 and un

1h on mesh 32× 32.

(a) Exact solution un
2 . (b) Numerical solution un

2h.

Figure 5. The graphics of un
2 and un

2h on mesh 32× 32.
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(a) The vector field of un.
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(b) The vector field of un
h .

Figure 6. The graphics of the vector fields on mesh 32× 32.

(a) Exact solution pn. (b) Numerical solution pn
h .

Figure 7. The graphics of pn and pn
h on mesh 32× 32.
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Example 2. Let Ω = (0, 1)2 and divide Ω into m × n uniform rectangles. Moreover,
the function f and the initial and boundary conditions are chosen corresponding to the
exact solution [14]:

u1 = −e−2t sin2(πx) sin(πy) cos(πy),

u2 = e−2t sin(πx) cos(πx) sin2(πy),

p = e−4t sin(πx) sin(πy).

We set the final time T = 10 in the computation. In order to confirm the error estimates
in Theorems 1 and 2, we present the numerical errors in Tables 7 and 8 at t = 10. Obviously,
it can be seen that numerical results are in agreement with the theoretical analysis.

Table 7. The numerical errors and convergence orders at t = 10 of u.

m × n 4 × 4 8 × 8 16 × 16 32 × 32

‖un − un
h‖0 3.9072×10−18 9.6945×10−19 2.4129×10−19 6.0248×10−20

Order / 2.0109 2.0064 2.0018
‖un − un

h‖1 2.0623×10−9 1.0366×10−9 5.1886×10−10 2.5950×10−10

Order / 0.99241 0.99839 0.99959
‖Ihun − un

h‖1 3.0875×10−10 1.0500×10−10 2.8119×10−11 7.1483×10−12

Order / 1.5560 1.9008 1.9759
‖un − I2hun

h‖1 1.2562×10−9 4.2567×10−10 1.0848×10−10 2.7240×10−11

Order / 1.5612 1.9723 1.9937

Table 8. The numerical errors and convergence orders at t = 10 of p.

m × n 8 × 8 16 × 16 32 × 32 64 × 64

‖p− ph‖0 2.4684×10−10 7.9753×10−11 2.0617×10−11 5.1913×10−12

Order / 1.6300 1.9517 1.9896
‖Jh p− ph‖0 2.4684×10−10 7.9753×10−11 2.0617×10−11 5.1913×10−12

Order / 1.6300 1.9517 1.9896
‖p− J2h ph‖0 2.8503×10−10 8.7022×10−11 2.1086×10−11 5.2215×10−12

Order / 1.7117 2.0451 2.0138

5. Conclusions

In this paper, a low-order conforming mixed finite element method is investigated for
time-dependent Navier–Stokes equations with the semi-implicit Euler scheme. With the
help of the error splitting technique and the high-accuracy error estimates of the element
pair on the rectangular mesh, the numerical solution in Lin f ty-norm is obtained without
any time-step restrictions. Furthermore, the unconditionally superclose error estimates are
derived by treating the trilinear term rigorously and skillfully. Moreover, the global super-
convergence results are acquired in terms of the interpolation post-processing approach. It
should be pointed out there are many interesting topics to study in future works, such as
high-order time (e.g., Crank–Nicolson scheme and BDF2 scheme), low-order nonconform-
ing mixed finite element methods, and fast computing for discretized linear system. We
will study these topics in the future.
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