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Abstract: The traditional finite element method (FEM) could only provide acceptable numerical
solutions for the Helmholtz equation in the relatively small wave number range due to numerical
dispersion errors. For the relatively large wave numbers, the corresponding FE solutions are never
adequately reliable. With the aim to enhance the numerical performance of the FEM in tackling
the Helmholtz equation, in this work an extrinsic enriched FEM (EFEM) is proposed to reduce
the inherent numerical dispersion errors in the standard FEM solutions. In this extrinsic EFEM,
the standard linear approximation space in the linear FEM is enriched extrinsically by using the
polynomial and trigonometric functions. The construction of this enriched approximation space is
realized based on the partition of unity concept and the highly oscillating features of the Helmholtz
equation in relatively large wave numbers can be effectively captured by the employed specially-
designed enrichment functions. A number of typical numerical examples are considered to examine
the ability of this extrinsic EFEM to control the dispersion error for solving Helmholtz problems.
From the obtained numerical results, it is found that this extrinsic EFEM behaves much better than the
standard FEM in suppressing the numerical dispersion effects and could provide much more accurate
numerical results. In addition, this extrinsic EFEM also possesses higher convergence rate than the
conventional FEM. More importantly, the formulation of this extrinsic EFEM can be formulated quite
easily without adding the extra nodes. Therefore, the present extrinsic EFEM can be regarded as
a competitive alternative to the traditional finite element approach in dealing with the Helmholtz
equation in relatively high frequency ranges.

Keywords: Helmholtz equation; finite element method (FEM); meshfree method; partition of unity;
pollution error

MSC: 35A08; 35A09; 35A24; 65L60; 74S05

1. Introduction

In the engineering computation field, nowadays, the finite element method (FEM) has
made great achievements due to the fact that it has sufficient generalities and versatilities in
dealing with very complex engineering problems [1,2]. Unfortunately, the FEM still suffers
from obvious laminations in solving several specific problems, such as the wave analysis
in relatively high frequency ranges [3]. The origin of this issue is that the numerical error
always arises and is not easy to effectively control when the FEM is employed for wave
problems [3–8].

In general, the total numerical error mainly consists of two different parts [9]. One
important component of the numerical error is the interpolation error. This numerical error
component usually stands for the capacities of the employed discretization to approximate
the solution of the considered problems. In solving elasticity problems, the numerical error
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of the obtained FEM solutions is actually the interpolation error. The interpolation error
usually exists locally and can be effectively suppressed by employing the smaller element
sizes. In addition to the numerical interpolation error, in wave analysis the pollution
error also exists and is relatively difficult to address. In contrast to the interpolation error,
the pollution error usually comes from the particularity of the governing equation for
wave problems (namely the Helmholtz equation). The pollution error actually represents
the phase difference between the numerical and analytical solutions. More importantly,
the pollution error has global feature and cannot be effectively suppressed by directly
decreasing the element sizes. No matter how refined meshes are employed, in wave
analysis, the pollution error still exists as long as the considered frequency values are
sufficiently high. Note that the FEM always suffers from the above mentioned numerical
errors for wave problems; the need of developing more powerful alternatives to FEM is
quite pressing in practical engineering computation fields.

In addition to the FEM, many other numerical methods, such as the finite volume
method (FVM) [10], finite difference method (FDM) [11–14], boundary element method
(BEM) [15,16], singular boundary method (SBM) [17–23], and different types of meshfree
numerical techniques [24–35] are also effective numerical approaches for wave problems.
However, these alternative approaches also usually have their own associated advantages,
disadvantages, and specificities. For example, the classical boundary element or boundary-
based numerical techniques have natural advantages in dealing with the Helmholtz prob-
lems in exterior unbounded domains (such as the acoustic radiation and acoustic scattering)
because the required Sommerfeld radiation at infinity can be satisfied naturally [36,37].
However, the resultant system matrices from these numerical approaches are always
non-symmetric and full, and then the solution of the obtained system matrix equation
is usually very expensive in computation cost. The meshfree numerical techniques in
strong-form (such as the FDM and a variety of collocation methods [38–44]) always have
very high computation efficiency in solving Helmholtz equation. Unfortunately, these
strong-form meshfree approaches usually become unstable and inaccurate when the consid-
ered Helmholtz problems have Neumann boundary conditions. The weak-form meshfree
numerical techniques indeed possess relatively high computation accuracy for Helmholtz
problems and the treatment of the Neumann boundary conditions is usually direct and
easy to implement [45–48]. While the construction of the related numerical approximation
is always quite complicated and the involved numerical integration is usually numerically
expensive [45].

Due to several preeminent and attractive features (such as rich mathematical back-
ground, symmetrical and banded system matrices, easy to solve coupled structural-acoustic
problems and inhomogeneous problems) of the classical FEM, the FEM is still a very impor-
tant and dominative numerical method for acoustic computation at present. Actually, the
main challenge of the acoustic computation using the standard FEM is to efficaciously tackle
the numerical error. With this objective in mind, many improved versions of FEMs are
developed for acoustic simulation, including the smoothed FEM [49–54], the Galerkin/least
squares FEM [55], the generalized FEM [56], and the mass-redistributed FEM [57], to name
a few. Unfortunately, all these methods still cannot totally remove the pollution effects for
solving general two and three dimensional acoustic problems.

In addition to the above-mentioned numerical approaches, the meshfree methods,
which are developed to address several inherent shortcomings of the FEM, also have great
potentials in the analysis of wave problems for relatively high computation precision.
One main feature of the meshfree numerical techniques is that the construction of the
employed nodal shape functions is based on several scattered field nodes in the considered
problem domain, while in the FEM, the pre-defined meshes are always used to construct
the nodal shape functions. Note the high order numerical approximation is always quite
easy to achieve in the meshfree framework; it is very reasonable to expect that the meshfree
methods have more powerful capacities than the FEM in decreasing the numerical errors in
wave analysis. Unfortunately, the relatively complicated formulation and implementation
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process always obstruct the development of the meshfree techniques. Additionally, to
obtain the optimal numerical results, usually many critical parameters (such as the influence
domains, the weight functions and the function bases) should be carefully determined. As
a result, the meshfree techniques usually cannot outmatch the classical FEM in terms of
versatility and universal nature for practical engineering computation.

The objective of the present paper is to use an extrinsic enriched finite element method
(EFEM) with appropriate enrichment functions to solve the acoustic problems. In this extrin-
sic EFEM, the simple linear nodal interpolation functions are enriched by the polynomial
and trigonometric functions, then the original linear approximation space is enriched by
the specially-designed enrichment functions. Due to the use of the appropriate enrichment
functions, the highly oscillating features of the Helmholtz equation in relatively large wave
numbers can be effectively captured, and the numerical dispersion error can be markedly
decreased. The numerical examples in this paper show that this extrinsic EFEM behaves
much better than the standard FEM in suppressing the numerical dispersion effects and
could provide much more accurate numerical solutions in acoustic computation. In addi-
tion, the present extrinsic EFEM also stands out as a winner in terms of the convergence
rate in comparison with the standard FEM. More importantly, the extrinsic EFEM can be
performed directly by using the standard triangular mesh as in the FEM and the additional
nodes (such as the mid-edge-point or element centroid) are not required. In the view of
these good properties of the present extrinsic EFEM, it could be a competitive alternative to
the standard FEM and has great potential in acoustic computation for practical engineering
applications.

In the following sections, firstly the basic formulations of the Helmholtz problems are
given in Section 2; secondly, the structure of this extrinsic EFEM for Helmholtz problems is
shown in Section 3; in Sections 4 and 5, the dispersion effects of the numerical solutions
for the Helmholtz equation and several typical numerical experiments are investigated in
great detail; and finally, the main concluding remarks are summarized in the final section.

2. Formulation of the Helmholtz Problem

Consider a problem domain Ω with boundary Γ; the ideal acoustic fluid medium
occupies the problem domain and the acoustic pressure propagation speed is c. Following
the momentum and mass conservation law as well as the ideal gas law, the following
governing equation for acoustic wave propagation can be obtained:

∇2P− 1
c2

1

∂2P
∂t2 = 0, (1)

in which P stands for the acoustic pressure variable, ∇2 represents the Laplace operator
and t is time.

If the considered pressure wave P has steady harmonic feature, we have

P = pejωt, (2)

in which j =
√
−1, p represents the acoustic pressure distribution in physical space and ω

stands for the angular frequency.
Using Equation (2), from Equation (1) we can obtain the following reduced wave

propagation equation (namely the well-known Helmholtz equation)

∇2 p + k2 p = 0, (3)

in which k = ω/c is the wave number.
By introducing the appropriate boundary conditions, the considered Helmholtz prob-

lem governed by Equation (3) can be well posed. By using the analytical or numerical
approaches, the solutions to Equation (3) can be obtained. When the involved problem
domain is very simple, the analytical approach can be used to solve Equation (3). When
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the problem has very complicated geometry shapes, the numerical techniques are always
employed to tackle Equation (3).

For the above-mentioned Helmholtz problem, the following three types of boundary
conditions are usually considered

p = pD, on ΓD
∂p
∂n = −jρωvn, on ΓN
∂p
∂n = −jρωAn p, on ΓR

, (4)

in which ρ stands for the acoustic fluid density, ΓD is the Dirichlet boundary condition
and the acoustic pressure pD is prescribed on ΓD, ΓN is the Neumann boundary condition
and the normal acoustic particle velocity vn is prescribed on ΓN , ΓR is the Robin boundary
condition, and An is the associated admittance coefficient which is usually employed to
model the structural damping effects.

In this work, we mainly focus on the numerical techniques in weak form (such as the
standard FEM) for solving the Helmholtz equation. In formulating the weak form of the
Helmholtz equation, the weighted residual technique is always employed. By introducing
the required boundary conditions shown in Equation (4), the following weak form of the
Helmholtz equation can be obtained:

−
∫

Ω

(
∇2 p + k2 p

)
wdΩ +

∫
ΓN

(
∂p
∂n

+ jρωvn

)
wdΓ +

∫
ΓR

(
∂p
∂n

+ jρωAn p
)

wdΓ = 0, (5)

in which w stands for the employed weight functions.
According to the Gauss divergence theorem, Equation (5) can reduce to∫

Ω

(
∇p∇w− k2wp

)
dΩ +

∫
ΓR

(
∂p
∂n

+ jρωAn p
)

wdΓ = −
∫

ΓN

jρωwvndΓ, (6)

On the purpose of solving this typical boundary-value problem described by Equation (6),
the involved acoustic pressure p should be discretized.

When the involved problem domain is divided into standard triangular mesh, the
following numerical approximation of the acoustic pressure p is usually employed

ph(x) =
n

∑
i=1

Ni pi = Np, (7)

in which Ni stands for the used nodal interpolation functions for node i, pi represents the
nodal unknown coefficient.

When the well-known Galerkin technique is employed here (namely the nodal in-
terpolation functions are directly used as the weighted functions), using Equation (7) the
following matrix form of Equation (6) can be obtained[

K + ikC− k2M
]
p = −jkf, (8)

in which 
K =

∫
Ω (∇N)T(∇N)dΩ

C = ρc
∫

ΓR
AnNTNdΓ

M =
∫

Ω NTNdΩ
f = ρc

∫
ΓN

NTvndΓ

, (9)

In Equations (8) and (9), the resultant system matrices K, M, and C correspond to
the acoustical stiffness, acoustical mass and acoustical damping effects, respectively; f is a
nodal vector representing the acoustical nodal excitation force, and p is a vector containing
the unknown nodal acoustic pressure.
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3. Structure of the Extrinsic EFEM for the Helmholtz Equation

Assuming that a scalar function u(x) is defined in a d-dimensional problem domain,
the standard linear triangular mesh with Ne elements and Nn nodes is employed to perform
the problem domain discretization. In this extrinsic EFEM, the numerical approximation of
the defined scalar function is given by [58–61]

uh(x) = ∑
i∈Nn

Ni(x)ui + ∑
i∈Nn

N∗i (x)ψ(x)ai, (10)

In the right side of Equation (10), the first term is the conventional finite element
approximation, and the second term corresponds to the additional extrinsic enriched
numerical approximation. ui corresponds to the conventional nodal unknown coefficient
in the finite element approximation which is usually the unknown nodal field variable
and ai is the associated additional nodal unknown coefficients. Ni(x) is the standard
nodal interpolation function as in the classical finite element approach, and N∗i (x) is a new
constructed nodal interpolation function which should satisfy the partition of unity (PU)
property, namely

∑ N∗i (x) = 1, (11)

Actually, N∗i (x) and Ni(x) can be but are not necessarily chosen as the same. However,
in this work N∗i (x) = Ni(x) is directly used for simplicity.

From Equation (10), it is easy to observe that in this extrinsic EFEM the basic nodal
unknown quantities are not the nodal unknown coefficients as in the traditional FEM, it
is actually the numerical approximation of the related nodal unknown coefficients. In
Equation (10), the function ψ(x) is a specially-designed enrichment function and it always
plays a very important role in improving the numerical performance of this extrinsic EFEM.
In general, the enrichment function ψ(x) is designed to contain the special knowledge
about the solution of the considered problems. For example, in this work the trigonometric
functions are incorporated into the enriched numerical approximation space to capture
the highly oscillating features of the Helmholtz equation, in particular the relatively large
wave numbers are considered.

Generally, the constructed numerical approximation in Equation (10) does not possess
the important Kronecker-delta function property, namely the following relationship is often
obtained:

uh(xi) 6= ui, (12)

Owing to the lack of the Kronecker-delta function property, the Dirichlet boundary
condition is always not very easy to impose when the numerical approximation in Equation
(10) is employed to build the discretized system matrix equation. To effectively address
this issue, the constructed extrinsic enriched numerical approximation in Equation (10) is
always modified as follows:

uh(x) = ∑
i∈Nn

Ni(x)ui + ∑
i∈Nn

N∗i (x)[ψ(x)− ψ(xi)]ai, (13)

With the aim to further reduce the condition number of the obtained system matrices
and improve the numerical stability, in practical numerical implementation, we usually
employ the following shifted form of Equation (13):

uh(x) = ∑
i∈Nn

Ni(x)ui + ∑
i∈Nn

N∗i (x)
[

ψ(x)− ψ(xi)

h

]
ai, (14)

in which h is a parameter to define the characteristic length of the employed meshes.
For the Helmholtz equation considered in this work, the polynomial and trigonometric

functions are exploited to create the enrichment function ψ(x).
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When the pure trigonometric functions are used, the enrichment function ψ(x) in
two dimensions has the following form [62–64]

ψ(x) =



cos
(

πxi
h

)
, sin

(
πxi

h

)
, cos

(
πyi

h

)
, sin

(
πyi

h

)
,

cos
(

πxi
h +

πyi
h

)
, sin

(
πxi

h +
πyi

h

)
, cos

(
πxi

h −
πyi

h

)
, sin

(
πxi

h −
πyi

h

)
,

. . . ,
cos
(

πqxi
h

)
, sin

(
πqxi

h

)
, cos

(
πqyi

h

)
, sin

(
πqyi

h

)
,

cos
(

πqxi
h +

πqyi
h

)
, sin

(
πqxi

h +
πqyi

h

)
, cos

(
πqxi

h −
πqyi

h

)
, sin

(
πqxi

h −
πqyi

h

)


, (15)

in which xi = x− xi and yi = y− yi are the relative coordinate value, as shown in Figure 1,
and q is a parameter to denote the degree of the employed polynomial or trigonomet-
ric functions.
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When the polynomial functions are combined with the trigonometric functions to
create the enrichment function ψ(x), in two dimensions we have

ψ(x) =



xi , yi , x2
i , xiyi , y2

i , . . . , xq
i , . . . , yq

i . . . ,
cos
(

πxi
h

)
, sin

(
πxi

h

)
, cos

(
πyi

h

)
, sin

(
πyi

h

)
,

cos
(

πxi
h +

πyi
h

)
, sin

(
πxi

h +
πyi

h

)
, cos

(
πxi

h −
πyi

h

)
, sin

(
πxi

h −
πyi

h

)
,

. . . ,
cos
(

πqxi
h

)
, sin

(
πqxi

h

)
, cos

(
πqyi

h

)
, sin

(
πqyi

h

)
,

cos
(

πqxi
h +

πqyi
h

)
, sin

(
πqxi

h +
πqyi

h

)
, cos

(
πqxi

h −
πqyi

h

)
, sin

(
πqxi

h −
πqyi

h

)


, (16)

In theory, the higher order enrichment functions can lead to higher computation accu-
racy, while the related numerical computation also becomes very numerically expensive.
For brevity, in this work, we only employ the linear polynomial and the first order of
trigonometric functions (namely q = 1) to create the enrichment function ψ(x).

In addition, it should also be noted that the present extrinsic enriched numerical
approximation usually suffers from the linear dependence (LD) issue when the polynomial
functions are employed to create the enrichment functions [65,66].

This LD issue comes from the fact that the linearly dependent nodal shape functions
are employed to construct the system matrix equation. Due to this LD issue, the resultant
system matrices are usually singular and not positive definite, making the associated
numerical computation not have sufficient numerical stability. To address this LD issue, a
systematic study was performed by Gui et al., and they have proposed a simple and direct
procedure to completely remove the LD issue of this extrinsic EFEM without any loss in
computation accuracy [63]. In this work, the related numerical procedures developed by
Gui et al. are directly employed to tackle the possible LD issue.
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4. The Dispersion Effects

It is known that the computed wave number kh often differs from the exact wave
number k when the Galerkin-like numerical approaches (such as the classical FEM and
several meshless techniques [6,9]) are employed to deal with the Helmholtz equation and
a phase lag between kh and k usually exists in the numerical solutions. This non-robust
numerical performance of the underlying discretization method for Helmholtz problems
is called the numerical dispersion issue. It is this issue that can markedly decrease the
precision of the numerical solutions. What is more, the effects of this issue always become
more severe when the considered wave number gets larger. In the practical process of
performing the numerical simulation, the employed mesh quality and the order of the
employed numerical approximation should always be adopted to the computed wave
number to ensure that the computed numerical solution quality at an acceptable level.
To examine the ability of the employed numerical discretization methods from all sides
and investigate how the numerical dispersion effects are affected by the mesh quality,
a comprehensive dispersion analysis should be usually performed before the practical
numerical simulation. The dispersion analysis can be regarded as an a priori error estimate
of the obtained numerical solutions. In this section, the dispersion effects of several
disparate numerical discretization approaches are compared and investigated in great
detail using the regular mesh pattern shown in Figure 2.
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Without considering any boundary conditions, the constructed matrix equation in
Equation (8) becomes [

K− k2M
]
p = 0, (17)

Clearly, the numerical solution of Equation (17) can be assumed as the following form:

ph = Ahejkhn·x, (18)

in which n is a unit vector and x is a position vector of the interest point, Ah is a amplitude
vector and has the following form [63,64,67,68]

Ah = A1 A2 . . . Aad, A1 A2 . . . Aad, . . . T, (19)

in which
[
A1 A2 . . . Aad

]T is a amplitude vector corresponding to each node. Since
here we do not consider any types of boundary conditions, the amplitude vector[

A1 A2 . . . Aad
]T for each node should be identical; namely, this amplitude vector

should repeat itself in Equation (19).
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It also should be pointed out that the subscript ad in Equation (19) actually represents
the number of unknown nodal degree of freedom (DoF) at each node in this extrinsic EFEM
formulation. For example, when only the first order of trigonometric functions is employed
to create the enriched numerical approximation space, ad = 9; when the linear polynomial
and the first order of trigonometric functions are employed, ad = 11. In this work we
respectively use the abbreviations EFEM-N9 and EFEM-N11 to represent different versions
of this extrinsic EFEM when these two different enrichment functions are employed.

Using Equation (18), from Equation (17) we can obtain the following matrix equation:[
Dstiff − k2Dmass

]
Ahi = 0, (20)

in which Dstiff and Dmass represent two coefficient matrices with the dimensions ad× ad
and can be calculated by [63,64,67,68]

Dstiff = Kn,n + Kn,n−1e−jkhh cos θ + Kn,n+1ejkhh cos θ+

Kn,n−2ejkhh(cos θ−sin θ) + Kn,n+2ejkhh(− cos θ+sin θ)+

Kn,n−3e−jkhh sin θ + Kn,n+3ejkhh sin θ+

Kn,n−4ejkhh(− cos θ−sin θ) + Kn,n+4ejkhh(cos θ+sin θ)

, (21)

Dmass = Mn,n + Mn,n−1e−jkhh cos θ + Mn,n+1ejkhh cos θ+

Mn,n−2ejkhh(cos θ−sin θ) + Mn,n+2ejkhh(− cos θ+sin θ)+

Mn,n−3e−jkhh sin θ + Mn,n+3ejkhh sin θ+

Mn,n−4ejkhh(− cos θ−sin θ) + Mn,n+4ejkhh(cos θ+sin θ)

, (22)

When only consider the non-trivial solutions of Equation (20), it is actually a typical
eigenvalue problem and the exact wave number k can be calculated by [63,64,67,68]

k = eig
(√

Dstiff
Dmass

)
, (23)

Obviously, from Equations (21) and (22) we can see that the coefficient matrices Dstiff
and Dmass are the functions of the discrete wave number kh. Therefore, Equation (23) actu-
ally builds a relationship for k and kh. For any given kh, we can compute the corresponding
k via Equation (23). Due to the numerical dispersion effects, kh usually differs from k. In this
work the following error index is employed to measure the numerical dispersion effects of
the different discretization methods in solving the Helmholtz equation [67,68]:

ε =
k
kh

, (24)

Using the regular triangular mesh pattern shown in Figure 2, the numerical dispersion
error along the varying angles of acoustic wave propagation from different discretization
techniques is computed via Equation (23), and the corresponding results against the nor-
malized wave number kh/π are displayed in Figure 3. It is easily seen that the dispersion
errors yielded by the standard linear triangular finite element (FEM-T3) are observably
larger than the extrinsic EFEM-N9 and EFEM-N11, and the numerical dispersion effects
usually become larger with the increase of the considered normalized wave number kh/π;
actually, these results have also been reported in Ref. [63].
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Figure 3. The numerical dispersion error along the varying angles of acoustic wave propagation from
different discretization techniques: (a) FEM-T3; (b) EFEM-N9; (c) EFEM-N11.
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Additionally, it is also clear that the dispersion effects from the standard FEM-T3
differs quite much when the varying wave propagation angles are considered, namely
the standard FEM-T3 usually suffers from the numerical anisotropy issue in tackling the
Helmholtz equation. The EFEM using the first order of trigonometric enrichment functions
(EFEM-N9) is able to provide much smaller dispersion error results than the standard
FEM-T3, while the EFEM-N9 still suffers from the above-mentioned numerical anisotropy
issue and the numerical dispersion effects are also markedly different along different angles
of wave propagation. In contrast to the standard FEM-T3 and EFEM-N9, the EFEM with
linear polynomial and the first order of trigonometric enrichment functions (EFEM-N11)
can yield the smallest dispersion error results which are almost zero in the computed
normalized wave number range. More importantly, we also can observe that the above-
mentioned numerical anisotropy issue can be basically eliminated by this EFEM-N11. The
above findings show that it is quite suitable to enrich the linear numerical approximation
space of the standard FEM by using the combination of the polynomial and trigonometric
enrichment functions. The good performance of the EFEM-N11 in dispersion analysis
indicates that the EFEM-N11 also can behave quite well in solving the practical Helmholtz
problems. The related numerical experiments will be performed in the next section.

5. Numerical Results

In this section, a number of typical numerical experiments will be conducted to
examine the numerical performance of all the above-mentioned numerical discretization
techniques (FEM-T3, EFEM-N9, and EFEM-N11) in handling the real acoustic problems.
It should be noted that all the computed numerical solutions from different methods are
obtained using the totally identical mesh pattern.

5.1. Acoustic Propagation in a Two-Dimensional Tube

Here we firstly consider the acoustic propagation in a two-dimensional tube. As
shown in Figure 4, this tube is filled with water (mass density ρ = 1000 kg/m3 and acoustic
wave speed c = 1500 m/s) and has a dimension with length l = 1 m and width b = 0.1 m. The
Neumann boundary condition with normal acoustic particle velocity vn = 1 m/s is imposed
on the left side of this tube, and the other three sides are rigid walls. the regular triangular
elements are employed to perform the problem domain discretization and the average node
space h = 0.025 m. This is a frequently-used benchmark problem in examining the abilities
of the employed numerical discretization techniques in tackling the Helmholtz problems
and the exact solutions to this acoustic propagation problem can be easily obtained by{

p = −jρcvn
cos[k(1−x)]

sin k

v = vn sin[k(1−x)]
sin k

, (25)Mathematics 2023, 11, x FOR PEER REVIEW 12 of 28 
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To effectively measure the quality of the obtained numerical solutions, here the follow-
ing two error indexes are employed:

ep =

∣∣∣∣ pe − ph
pe

∣∣∣∣× 100%, (26)

η =

√√√√∫Ω (ve − vh)
T(ve − vh)dΩ∫

Ω vTvedΩ
≤ C1

(
kh
p

)p
+ C2k

(
kh
p

)2p
, (27)

in which the subscript h and e mean that the corresponding field variables are numerical
and exact, respectively; v denotes the acoustic particle velocities and the sigh · stands for
the complex conjugate of v; l is the order of the employed numerical approximation space;
and C1 and C2 are two constants which are independent of the wave number k and node
space h [9].

From Equations (26) and (27), we can find that ep is a local error index and it can
examine the numerical performance of the numerical methods in local domain. On the
contrary, η is a global error index and it can evaluate the solution quality in the total
problem domain. For the linear numerical approximation space (such as the standard FEM
using the simple linear nodal interpolation functions), Equation (27) becomes

η =

√√√√∫Ω (ve − vh)
T(ve − vh)dΩ∫

Ω vTvedΩ
≤ C1kh + C2k3h2, (28)

In the right side of Equations (27) and (28), the first term is the interpolation error and
the second term corresponding to the pollution error [9].

In Figure 5, the calculated acoustic pressure along the longitudinal direction of the
tube provided by the above-mentioned numerical techniques are given together with
the exact ones. To effectively assess the effects of the considered frequency values on
the solution accuracy, a number of varying frequency values (f = 1100 Hz, f = 2200 Hz,
f = 4400 Hz and f = 6600 Hz) are employed here. It is quite interesting that for the relatively
low frequencies, all the numerical solutions produced by different methods are in very
good agreement with the exact solutions. When the computed frequency value becomes
higher, the standard FEM-T3 solution accuracy visibly gets worse. In contrast to the FEM-
T3, the EFEM-N9 indeed behaves better and more accurate solutions can be generated.
Nevertheless, among all the numerical solutions the EFEM-N11 can generate the best
numerical solutions which are very close to the exact ones, even if very high frequency
values are considered. These findings indicate that the enrichment functions which are
constructed by the linear polynomial and the first order of trigonometric functions is indeed
very suitable to enrich the original linear approximation space in the standard FEM-T3 for
solving Helmholtz problems and hence very reliable numerical solutions can be obtained.

For two different frequency values (f = 2200 Hz and f = 4400 Hz), the relative error
results, which is defined in Equation (26), are depicted in Figures 6a and 7a. For a clear
comparison and analysis, the corresponding exact acoustic particle velocity distributions
along the longitudinal direction of this tube for these two frequency values are also plotted
in Figures 6b and 7b. From Figures 6 and 7, it is again confirmed that the numerical
performance of the proposed EFEM-N11 is much better than the standard FEM-T3 and
EFEM-N9 in terms of computation accuracy, and it can provide the smallest relative error
results. More specifically, it is quite easy to see that the relative numerical error results
from the standard FEM-T3 and EFEM-N9 always exhibit obvious oscillations when the
corresponding acoustic particle velocity solutions are relatively high. This means that
in solving the Helmholtz problems, the numerical dispersion errors are usually larger
when the acoustic gradients, which is related to the acoustic particle velocity, are relatively
high. From Figures 6 and 7, it is clearly seen that the standard FEM-T3 and EFEM-N9
cannot perform sufficiently well in capturing the high oscillating features of the Helmholtz
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problems in the relatively high frequency range. However, the proposed EFEM-N11
behaves quite well and almost no oscillations can be seen in the relative error results.
These observations demonstrate that the effectiveness and robustness of the EFEM-N11 in
tackling the Helmholtz problems.
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Furthermore, we also have studied the numerical performance of different numerical
approaches in addressing the global numerical error for Helmholtz problems. The global
error index η from different methods versus the wave number k is calculated and compared
in Figure 8. It is shown that the global numerical error from the standard FEM-T3 increases
very fast when the computed wave number becomes larger. This means that the standard
FEM-T3 is not very effective in capturing the highly oscillating features of the Helmholtz
problem in the relatively large wave number range and very large numerical errors will
be obtained. Compared to the standard FEM-T3, the EFEM-N9 is able to yield a much
smaller global numerical error, while it still becomes larger when the computed wave
number k increases. Among the three mentioned numerical methods (FEM-T3, EFEM-N9
and EFEM-N11), the EFEM-N11 is able to yield the smallest numerical error results, which
are almost zero even if the computed wave number k is relatively large.
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Figure 6. The calculated relative error results from different numerical techniques for the frequency
value f = 2200 Hz: (a) the relative error results and (b) the corresponding exact acoustic particle
velocity distributions.

From Equations (27) and (28), it is shown that the numerical errors of the numerical
solutions for Helmholtz problems usually contains the numerical interpolation error and
numerical pollution error. Here the abilities of the three numerical techniques in controlling
these two different numerical error components are investigated separately. Figure 9 shows
the calculated global numerical error from different methods by keeping the parameter
kh = constant and k3h2 = constant. From the previous analysis, it is shown that the numerical
interpolation error can be effectively controlled by keeping kh = constant, and numerical
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pollution error can be effectively controlled by keeping k3h2 = constant. These two points
can be clearly confirmed by the global error results of the standard FEM-T3 in Figure 9. The
EFEM-N9 obviously performs better than the standard FEM-T3 and much lower global
error results can be yielded. However, the EFEM-N11 is able to yield the lowest global
error results. These observations indicate that both the numerical interpolation error and
the numerical pollution error can be effectively controlled by the EFEM-N11 in solving the
Helmholtz problems.
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5.2. Acoustic Propagation in a Two-Dimensional Square Domain

In the second numerical experiment, a two-dimensional square domain with side
length L = 1 m is considered (see Figure 10a). This square domain is filled with ideal
acoustic fluid with mass density ρ = 1 kg/m3 and acoustic wave speed c = 1 m/s. The
Robin boundary conditions with different admittance coefficients are applied on four
sides of the square domains (see Figure 10a). The Dirichlet boundary condition p = 1 Pa
is imposed at the left bottom corner of the square domain. The exact solution of this
Helmholtz problem is actually the following plane wave solution:

p = cos[k(x cos β + y sin β)] + j sin[k(x cos β + y sin β)], (29)

in which β is the angle of acoustic wave propagation.
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Figure 10. The acoustic propagation in a two-dimensional square domain: (a) the geometry pa-
rameters of this square domain and the related boundary conditions and (b) the employed spatial
discretization pattern.

The involved problem domain is discretized into standard triangular mesh with
average node space h = 0.05 m (see Figure 10b). For a wave propagation angle β = 45

◦

and the varying wave numbers (k = 2, k = 5 and k = 10), the calculated acoustic pressure
distribution results along the defined path are plotted in Figure 11. For comparison, the
numerical solutions from the three different methods (FEM-T3, EFEM-N9, and EFEM-N11)
together with the exact solutions are given in Figure 11. The similar observations obtained
from the previous numerical experiment are again confirmed here, namely the standard
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FEM-T3 and EFEM-N9 cannot generate sufficiently reliable numerical solutions for the
Helmholtz problems, while the proposed EFEM-N11 is able to yield nearly exact solutions,
even though the considered wave number is very large.
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5.3. Acoustic Propagation in a Two-Dimensional Car

In the third numerical experiment, a two-dimensional section of a car is investigated.
The geometry description and mesh pattern of the car is given in Figure 12; here, the
average node space of the used mesh is h = 0.04 m. The front panel of the car is excited by
the Neumann boundary condition with normal acoustic particle velocity vn = 0.01 m/s, and
the roof of this two-dimensional car is coated with absorbing material (namely the Robin
boundary condition is imposed) with the admittance coefficient An = 0.00144 m/(Pa·s). The
considered acoustic fluid medium in this car is air with mass density ρ = 1.25 kg/m3 and
acoustic wave speed c = 340 m/s. Note that the exact solution to this Helmholtz problem is
not available, the corresponding numerical solutions from the high order elements with
very refined mesh are provided as the reference solutions for comparison in this section.
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Figure 12. The acoustic propagation in a two-dimensional car: (a) the geometry parameters of this
two-dimensional car and (b) the employed spatial discretization pattern.

For two frequency values (f = 320 Hz and f = 650 Hz), Figure 13 gives the computed
acoustic pressure results along the defined path. The main finding obtained from Figure 13
is that all the employed numerical methods are able to produce acceptable numerical
solutions for the relatively low frequency value (f = 320 Hz). When it comes to the relatively
high frequency value (f = 650 Hz), the standard FEM-T3 and EFEM-N9 solutions are
not very accurate, and the clear accuracy reduction can be seen in the results, while the
proposed EFEM-N11 can produce very accurate and reliable numerical solutions even
though the relatively high frequency value (f = 650 Hz) is considered. These observations
again show the powerful and excellent numerical performance of the EFEM-N11 in solving
the Helmholtz problems. In more detail, the calculated acoustic pressure distribution results
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from different methods in the total problem domain are also shown in Figures 14 and 15.
We can again observe that the EFEM-N11 can obtain more accurate solutions than the
standard FEM-T3 and EFEM-N9 in solving the Helmholtz problems, and the numerical
error can be markedly reduced.
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6. Concluding Remarks

In this work, we present the formulation and implementation of the extrinsic enriched
FEM (EFEM) for solving the Helmholtz problems. In this extrinsic EFEM, the original linear
polynomial approximation space in the standard FEM using linear triangular element
(FEM-T3) can be enriched extrinsically by using the proper enrichment functions. To
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effectively reduce the numerical errors of the obtained solutions and capture the highly
oscillating characteristics of the Helmholtz equation in relatively high frequency range,
different types of enrichment functions are employed and their numerical performance
are investigated in great detail via the dispersion analysis and several typical numerical
experiments. The obtained numerical solutions show that the hybrid enrichment functions,
which are constructed by the combination of the linear polynomial and the first order
of trigonometric functions, are particularly suitable for solving the Helmholtz problems
in relatively high frequency ranges. The explicit findings are that better control of the
numerical error and much more accurate solutions can be achieved by the proposed EFEM-
N11 compared to other numerical techniques (FEM-T3 and EFEM-N9). More importantly,
the formulation and implementation of this proposed EFEM-N11 is as easy as in the
standard FEM and can also be extended directly from the two-dimensional case to the
general three-dimensional case. Therefore, the present EFEM-N11 can be regarded as a
promising numerical approach in solving the complicated Helmholtz problems in practical
engineering applications.
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