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Abstract: The turning function is a tool in image processing that measures the difference between
two polygonal shapes. We propose a localization algorithm for the optimal pose estimation of
autonomous mobile robots using the scan-matching method based on the turning function algorithm.
There are several methodologies aimed at moving the robots in the right way and carrying out their
missions well, which involves the integration of localization and control. In the proposed method, the
localization problem is implemented in the form of an optimization problem. Afterwards, the turning
function algorithm and the simplex method are applied to estimate the localization and orientation
of the robot. The proposed algorithm first receives the polygons extracted from two sensors’ data and
then allocates a histogram to each sensor scan. This algorithm attempts to maximize the similarity
of the two histograms by converting them to a unified coordinate system. In this way, the estimate
of the difference between the two situations is calculated. In more detail, the main objective of this
study is to provide an algorithm aimed at reducing errors in the localization and orientation of mobile
robots. The simulation results indicate the great performance of this algorithm. Experimental results
on simulated and real datasets show that the proposed algorithms achieve better results in terms of
both position and orientation metrics.

Keywords: localization; optimization; SLAM; image processing autonomous vehicle; robot;
pose estimation

MSC: 65D18; 68U05; 90C23; 68W01; 70B15

1. Introduction

The most essential goal of robotics is to develop autonomous mobile robots that behave,
move, think, and communicate like people. Mobile robots are now widely employed in
daily life, and they are becoming increasingly intelligent to assist people in tough and
dangerous activities. Since mobile robots are utilized in a variety of settings, one of the most
important criteria for mobile robot applications is that the robot knows its present position
related to a fixed and reference coordinate. For example, in situations where the robot must
move to attain a goal, an accurate estimation of its current position is required. Similarly,
accurate information on the robot’s location is necessary for exploratory applications so
that the robot can avoid duplicate paths [1].

In mobile robotics, there are four main elements: localization, map building, collision
avoidance, and path planning. One of the most fundamental requirements in robotics
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is localization. Localization refers to the robot’s ability to calculate its correct position
in the environment relative to a reference point at any given time and to determine its
direction [2,3]. If the robot’s localization is incorrect, it will have difficulty performing other
tasks that require precise location data [4].

The use of robot sensors is critical in solving the localization problem. However,
these sensors are often unreliable, making it challenging to determine the robot’s exact
location. Mobile robots can use geometric tools to guess their location on a map and
eliminate localization errors as much as feasible. As a result, many efforts have been made
in the previous decade among scholars to find effective answers to this problem, and
several methods have been proposed [5,6]. Scan matching is a strategy that has received
considerable attention in recent years among scholars working in the field of improving
robot location estimates. It is a method that compares two consecutive measurements
received from robot sensor data and an environment map until the two measurements are
the most closely aligned. This can be accomplished by equipping the robot with sensors and
employing techniques such as particle filter estimation, Kalman filter estimation, and scan
matching, among others. With the sort of environment in which the robot operates, several
methods and algorithms have been presented for this goal. First, a spatial description of the
robot’s expected position is simulated on a complete and accurate map of the environment
using the suggested algorithm. After that, the simulated model is compared to a spatial
description derived from laser distance sensor data.

The remainder of this paper is organized as follows. Section 2 of this paper presents
a review of the relevant literature. We present the key concepts and definitions that are
necessary to discuss our methods in Section 3. Section 4 introduces our algorithm in detail.
Section 5 presents the experimental results of the proposed algorithms on the simulated
environment. Section 6 concludes with the discussion and points to future work.

2. Related Works

In [7], one of the most important strategies based on the scan matching of environmen-
tal geometry features is presented. The algorithm attempts to match data from the laser
distance sensor, such as line segments and break points, to calculate the robot’s position. In
Banerji et al. [8], a method is presented for precisely determining the position of a mobile
robot using laser distance sensor data. In this study, the authors use the closest neighbor
technique to compare the two images formed by the robot’s observations and the envi-
ronment map and then determine the robot’s position. In [9], a topological model-based
scan-based approach to mobile robot localization is presented. Topological nodes are used
as reference points in this strategy. The robot now calculates its location using the RANSAC
approach by matching the geometric relationships between the points collected from the
robot sensors and the reference scan.

In [10], a scan-matching technique based on a laser distance sensor for approximating
the location of a mobile robot is presented. This technique always attempts to find the
correct matches between the two sets by finding correct matches and performing sequential
transformations, which considers a simulated polyline from the robot’s expected location
in the map as a prediction model and a real polyline extracted from robot sensor data. This
allows for an accurate estimation of the robot’s likely position on the map. The technique
given in [11] is another effort on mobile robot localization that uses scan matching. The
laser distance sensor is used to retrieve data, and the geometric aspects of the environment
are used to localize the robot. In [12], a robotic navigation approach is described in which
the points received from each scan are first imaged in networked map cells, and then
scan matching is used to determine the exact location. Li et al. [13] developed a novel
repetitive motion control approach to handle the limitations imposed by external noises by
considering the inherent noise suppression capability with the formulation of a dynamical
quadratic program. In [1], a method is proposed to determine the 3D relative pose of pairs
of communicating robots by using human pose-based key points as correspondences.
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3. Problem Statement

A robot’s environment is supposed to be static and polygonal, with a limited number
of obstacles and access to a map of the environment at all times to characterize the robot
localization problem. Table 1 provides a list of abbreviations used in this paper, with each
abbreviation accompanied by its corresponding full term. On a known map, Figure 1
depicts the virtual and real sensor concepts.

Table 1. List of abbreviations.

Abbreviation Definition Abbreviation Definition

RP Robot Position VP Virtual Position
RSD Robot Sensor Data VSD Virtual Sensor Data
TF Turning Function SS Shortstraw algorithm

Figure 1. Schematic map of the office environment used for localization in this study.

Real spatial descriptions and virtual spatial descriptions are two types of shapes that
may be produced from two-dimensional laser distance sensor data. Virtual and real sensors
both employ the same sort of sensor (Sick LMS200-30106), denoted as g(m, f , q), where m
stands for the sensor’s maximum range, f stands for its field of view, and q stands for its
angular resolution. Figure 2 depicts the mobile robot configuration in two-dimensional
Cartesian coordinate space. The O point, denoted by Xr and Yr for robot localization in
the plane, is assumed to be the robot position’s origin. As a result, the following is the
definition of the robot’s and virtual sensor’s positions in Figure 2:

RP =

xr
yr
θr

, VP =

xv
yv
θv

. (1)

The position difference values, denoted by T̂, are as follows:

T̂ = RP−VP =

∆̂x = ∑I
i=1 δxi

∆̂y = ∑J
j=1 δyj

∆̂θ = ∑K
k=1 δθk

 (2)

where δθk is the difference of orientation values at time k, and δyj and δyj are the difference
values of position at time i and j. Dr = [dr

1, dr
2, . . . , dr

n] is the set of measured distance
by real sensors, and Dv = [dv

1, dv
2, . . . , dv

n] is the set of measured distances by virtual sen-
sors. Φ = [φ1, φ2, . . . , φn] is the set of laser angles, where n = ( f /q) + 1 is the number of
measured distances. The angle of φi for distance di is calculated as follows [14]:

φi = φi−1 + q, φ1 = 0. (3)
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In the local coordinate system, Figure 3 displays the virtual sensor and robot sensor
data from Figure 2. The following linear equation is used to display any RSD and VSD
point in a local coordinate system.

RSDi =
(
cos(φi)dr

i , sin(φi)dr
i
)

VSDj =
(

cos(φj)dv
j , sin(φj)dv

j

)
.

(4)

Thus, the problem of robot pose estimation is solved if δθK, δyJ , and δxI are optimized.

R̂P = {VP + T̂|δxi ≤ εx, δyj ≤ εy, δθk ≤ εθ} (5)

and

εx = |xr − x̂r|, εy = |yr − ŷr|, εθ = angdi f f (θr, θ̂r) (6)

where −π ≤ angdi f f (a, b) ≤ π is the difference between two angles, a and b.

Figure 2. Robot configuration in two-dimensional space.

Figure 3. Visualization of laser range data for both real sensor RSD (left) and virtual sensor
VSD (right).

4. Turning Function Algorithm

Turning function is a function that assigns a real value to each polygon/chain, which
can be used to measure the similarity or difference between two polygons/chains. This
function has already been used in several applications, the most recent one being used by
Padkan et al. [15] to match fingerprints. The proposed turning function (TF) algorithm
starts by receiving polygons extracted from RSD and VSD data from two-dimensional laser
distance sensors. Then, for each sensor scan, a histogram is generated. The algorithm
attempts to maximize the similarity between paired histograms by converting them into a
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single coordinate system, enabling the accurate estimation of the true difference between
the two desired positions. Figure 4 represents the TF algorithm’s steps.

Start

Data acquisition

Visualization

Corners detection

Corners matching

Histograms creation

Histograms matching

Criterion
is

satisfied?
End

Updating virtual robot pose, and simulation
no

yes

Figure 4. A brief overview of the proposed algorithm.

Corner detection, histogram creation, histogram matching, position calculation, and
orientation difference are all steps in the proposed location estimation algorithm. The
algorithm starts each cycle by matching paired histograms and calculating the distance
function in both sets, with angle detections of both images and histogram creation for each
scanned form. This reduces the difference between the two positions by calculating the
robot’s position and orientation difference. This process is repeated until the algorithm
converges or meets a stopping criterion.

4.1. Corner Detection

The corners, which are commonly used as critical points for localization problems, are
one of the most important features that provide information about the overall structure
of the environment. Corner points are points where the angle formed by two intersecting
line segments passing through them is greater than or equal to a predetermined value. As
a result, this section aims to separate corner points from VSD and RSD datasets. Many
algorithms for corner detection have been proposed in recent years. In this paper, we use
the shortstraw (SS) algorithm proposed by Wolin et al. [16] to extract corner points from
the laser distance sensor data set in this study. The data collected by the robot sensor is
re-sampled and redrawn as the first step in this algorithm. The procedure for reproducing
points from RSD and VSD datasets is shown in Algorithm 1. The goal is to create new points
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that are evenly spaced from one another. The format of each scan remains unchanged, with
only points that are equidistant from other remaining ones.

Algorithm 1 Point resampling
Input:
Output:

1: i← 2
2: S← 1
3: P1 ← pointsi
4: while i ≤ length(points) do
5: P2 ← pointsi
6: D ← ||P1 − P2||2
7: if D > S then
8: P3,x ← P1,x + (P2,x − P1,x)/D ∗ S
9: P3,y ← P1,y + (P2,y − P1,y)/D ∗ S

10: P3 is located exactly S Euclidian distance away from the P1 in the slop direction of the
straight line from Pi−1 to Pi

11: Append P3 to the resampled array
12: P1 ← P3
13: else
14: i← i + 1
15: end if
16: end while

The length of an interspacing distance is used to find corner points in the second step
of the SS algorithm. This interspacing distance is determined as follows for the re-sampled
Pi point:

strawi = |Pi−ω, Pi+ω |. (7)

When using the SS algorithm, ω is a static window with a length of one (ω = 1). To
compute the set of virtual straws for the points Pω+1 to PN−ω, where N is the number of
re-sampled points, we first calculate the set of virtual straws for the points Pω+1 to PN−ω.
As they approach a curve in the illustration, the length of these virtual straws shortens.
As a result, corner points are sites where the length of the related straws is smaller than a
specified value. The corners acquired from the recreated sets of actual and virtual sensors
using the SS method are shown in Figure 5. The method of extracting corners from new
sets, RSD, and VSD, is shown in Algorithm 2 [10].

Algorithm 2 Corner detection (points)
Input:
Output:

1: Corners← 1
2: Straws← {}
3: t← 0.99
4: for i← w + 1, number of points− w do
5: Straws(i− w)← ||points(i− w)− points(i + w)||2
6: end for
7: threshold← median(straws)× t
8: for i← w + 1, number of points− w do
9: if straws(i− w) < threshold then

10: Append(corners, i)
11: end if
12: end for
13: Append(corners, number of points)



Mathematics 2023, 11, 1449 7 of 15

Figure 5. Correctly detected corners of (left) VSD and (right) RSD, which are marked with red points.

We then proceed to eliminate the additional corners from the set after the corner
detection. All three corners are continuously examined to ensure that they are in all
directions for this purpose. If the Is-Line function returns True for each line between cl
and cn, then cl , cm, and cn are considered parallel. In this case, the set of corners is reduced
by removing the middle corner, i.e., cm. Algorithm 3 shows how to use this function. In
the following steps, the algorithm will be fed a set of corner points extracted from laser
distance sensor data.

Algorithm 3 Is-Line (points, a, b)
Input:
Output:

1: threshold← 0.95
2: D ← ||pointsa − pointsb||
3: PathD ← 0
4: for i← a, b− 1 do
5: PathD ← PathD + ||pointsi − pointsi+1||2
6: end for
7: if D/PathD > threshold then
8: return True
9: else

10: return False
11: end if

4.2. Histogram Creation

The histogram creation process is described in Algorithm 4. The function may become
non-smooth as a result of scaling, making it difficult to compare the two shapes’ similarities.
As a result, the first step in the algorithm is to maintain the scale, which includes normal-
izing the figure’s total length to one. The polygon’s length will eventually be between 0
and 1 due to the normalization. At a certain point on the shape boundary, the TF algorithm
begins. The angle between the edge and the horizontal axis (X-axis) in the counterclockwise
direction is calculated to determine the starting point angle. However, the angle between
the previous and the next edge of the point is calculated for the following points. For
counterclockwise concave vertices, all considered angles are positive; for clockwise concave
vertices, all considered angles are negative. By rotating to the left, the angle becomes bigger,
and by rotating to the right, the angle becomes smaller. The maximum sum of angles in the
rotation function is v if the angle created by the first line segment in the positive direction
of the X axis is ΘA(L) = 2π + v. The process of creating a histogram from a set of RSD and
VSD corner points is illustrated in Figure 6.
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Algorithm 4 TF (corners)
Input:
Output:

1: total_length← 0
2: for i← 1, number of corners do
3: Vector(i)← Corners(i + 1)− Corners(i) . Vectors are create in counterclockwise

direction
4: if i = Corners then
5: Vector(i)← Corners(1)− Corners(i)
6: end if
7: total_length = total_length +

√
Vector(i, 1)2 + Vector(i, 2)2

8: end for
9: for i← 1, number of Vectors do

10: Vector(i, 1)← vector(i, 1)/total_length
11: Vector(i, 2)← vector(i, 2)/total_length
12: end for
13: V ← (1, 0, 0)
14: for i← 1, number of Vector do
15: h(i, 1)← |Vector(i).|
16: if i = 1 then
17: h(i, 2)← Vector(i).V
18: (0, 0, , Z)← Vector(i)×V
19: else
20: h(i, 2)← Vector(i).Vector(i + 1)
21: (0, 0, , Z)← Vector(i)×Vector(i + 1)
22: end if
23: if Z < 0 then
24: h(i, 2)← h(i, 2)×−1
25: end if
26: end for

The set of corner point coordinates and the VSD, respectively, are denoted by:
CR = [cr

1, cr
2, . . . , cr

n] and CV = [cv
1, cv

2, . . . , cv
m]. Then, between the corner points of each

set, a vector is created sequentially (counterclockwise). Next, by utilizing the Euclidean
distance (for two consecutive points ci and ci+1, for example), the generated vector length
is calculated as follows:

Vectore(X, Y) = (Xci − Xci+1 , Yci −Yci+1)

distance(ci, ci+1) =
√
(Xci − Xci+1)

2 + (Yci −Yci+1)
2.

(8)

As a result, the sum of all the vector lengths yields the total length of each scan.

D =
N

∑
i=1

distance(ci, ci+1). (9)

Each set has a total of N corner points. The external angle between the two vectors is
calculated using interior and exterior products after each vector’s length (the length of each
side of the figure) has been calculated. If we have two vectors V and V̂ that are adjacent,
we can calculate their interior product using the formula:

V · V̂ = (Vx × V̂x) + (Vy × V̂y). (10)

The TF algorithm then calculates the angle between two neighbor vectors as follows:

θ = arccos(V · V̂). (11)
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As angle signs are critical in histogram creation, we use the TF algorithm’s exterior
product to determine them. Because vectors are two-dimensional, the Z component (Z = 0)
must also be included when calculating the exterior product. The exterior product’s output
will be a vector in the end. The angle sign is then determined by the sign of the Z component:

V × V̂ = (mx, my, mz)

mx = VyV̂z −VzV̂y

my = VzV̂x −VxV̂z

mz = VxV̂y −VyV̂x.

(12)

The angle sign will be negative if the Z-component sign is negative; otherwise, it will
be positive. We will obtain a histogram for each scan form after calculating the length and
angle of the vectors.

(a) RSD data (b) VSD data

(c) Created histogram based on RSD (d) Created histogram based on VSD

Figure 6. Histogram creation steps.

4.3. Histogram Matching

A histogram is generated for the RSD set after the length and angle of the vectors are
calculated. However, we will have a histogram for each point in the RSD set because each
point in the dataset will have a different graph when we begin drawing the histogram. As a
result, we have an equal number of points in the Cv set of the histogram, all of which match
the RSD set’s histogram. To match two histograms, they must first be transferred to the
same coordinate system. The area between the two graphs is then computed. Rectangles are
created between two graphs because they are in the form of histograms. Each rectangle’s
area is determined, and the area between the two graphs is calculated by adding the total
areas together. The more similar the two graphs are, the smaller the area between them
becomes. Therefore, a graph from the VSD set is chosen that has a lower distance function
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value than the others. The pairing of histograms made from RSD and VSD datasets is
shown in Figure 7.

Figure 7. Histogram matching on RSD and VSD data.

4.4. Pose and Orientation Estimation

The robot localization problem is expressed as an optimization problem to determine
the correct position and orientation. The simplex algorithm is proposed as a solution to
this problem.

f ind δx, δy, δθ

subject to Err ≤ Treshhold

where Err = (
∫ 1

0
|ΘR(L)−ΘV(L)|2 dL)1/2.

(13)

The rotation functions of the real and virtual sensor data sets are denoted by ΘR(L) and
ΘV(L), respectively, in this problem. The distance between these two functions is indicated
by Err. The goal is to determine the difference between real and virtual sensor positions.

The three vertices of a triangle are the three candidates for the robot’s expected position
on a predefined peripheral map in location estimation. The algorithm returns some of the
position minimization parameters of the error minimizer as a solution, described in the
Algorithm 5, by shifting the direction and coordinates of the vertices of this triangle and
moving them to the local or global minima. The expected position angle of the robot on the
map is assumed to be the viewing angle of each of these vertices. To improve the angle and
reduce the difference between the real and virtual sensors’ positions and orientations, the
angle of each of these three vertices is examined locally in seven orientations to find the
best angle that minimizes the difference in orientation and position. Algorithm 5 describes
the histogram matching process used to calculate the best orientation and least error from
the RSD and VSD sets for the seven virtual space coordinates (area between two graphs).
Three points are chosen at random in an arbitrary interval in the beginning. The maximum
value of the robot position difference should be covered by this interval. The δx, δy, and
δθ values are thus appropriately approximated each time the algorithm is run using the
simplex optimization algorithm. New approximations of the robot’s position in space
must be considered until new values for δx and δy can be estimated. The virtual sensor
is simulated for new values after the final values for δx, δy, and δθ have been set. This
operation is iterated by the algorithm until a suitable fixation between the two positions
is found.
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Algorithm 5 Simplex(xv, yv, θv, Dr)
Input:
Output:

1: v← [xv, yv]
2: Select three random points with an arbitrary x and y and call them P1, P2, P3
3: ErrP1 ← Function(P1, θv, Dr) . ErrP1 is the amount of error Err after simulation for P1
4: ErrP2 ← Function1(P2, θv, Dr)
5: ErrP3 ← Function1(P3, θv, Dr)
6: while (ErrP1 > Threshold)&(ErrP2 > Threshold)&(ErrP3 > Threshold) do
7: B←find the point among P1, P2, and P3 with minimum error
8: NB←find the point among P1, P2, and P3 with 2nd minimum error
9: W ←find the point among P1, P2, and P3 with 2nd maximum error

10: CEN ← [(Bx + NBx)/2, (By + NBy)/2]
11: R← [(CENx + (CENx −Wx)), (CENy + (CENy −Wy))]
12: ErrB ← Function1(B, θv, Dr)
13: ErrNB ← Function1(NB, θv, Dr)
14: ErrW ← Function1(W, θv, Dr)
15: ErrR ← Function1(R, θv, Dr)
16: if ErrR < ErrB then
17: E← [(Rx + (Rx − CENx)), (Ry + (Ry − CENy))]
18: ErrE ← Function1(E, θv, Dr)
19: if ErrR < ErrE then
20: W ← R
21: else
22: W ← E
23: end if
24: else
25: if ErrR ≥ ErrB&ErrR < ErrNB then
26: W ← R
27: else
28: if ErrR ≥ ErrNB&ErrR < ErrW then
29: CR ← [(CENx + Rx)/2, (CENy + Ry)/2]
30: ErrCR ← Function1(CR, θv, Dr)
31: W ← CR
32: else
33: CW ← [(CENx + Wx)/2, (CENy + Wy)/2]
34: ErrCW ← Function1(CW , θv, Dr)
35: W ← CW
36: end if
37: end if
38: ErrP1 ← Function1(B, θv, Dr)
39: ErrP2 ← Function1(NB, θv, Dr)
40: ErrP3 ← Function1(W, θv, Dr)
41: end if
42: end while
43: B← find the point among B, NB and W with minimum error
44: xv ← Bx, yv ← By

5. Results and Discussion

This section evaluates the performance of the proposed algorithm. The current paper
compares the performance of its turning function algorithm in three different positioning
scenarios: (I) the effect of environmental details on the position and orientation of the
robot, (II) the effect of angle difference on the position and orientation of the robot, and
(III) the effect of the distance difference on the position and orientation of the robot. In this
experiment, the environment map used in Figure 1 is made up of 1620 data points collected
from various observations with various robot viewing angles. The SICKLMS200-30106
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laser distance scans with a range of 10 m, an angular resolution of 1 degree, and a domain
of view of 180 degrees were used to gather all of these observations. The data in this set
were divided into three scenarios based on the influence of environmental factors, distance,
and angle to evaluate the algorithm’s performance. The difference in the position and
orientation of these data ranges from 0 to 300 cm and 0 to 150 degrees, respectively.

5.1. First Scenario

Table 2 shows how environmental details affect the robot’s position and orientation
improvement process. We attempt to measure the effect of the incremental process of the
obstacles in the simulated environment of the proposed algorithm in this experiment. One
of the main challenges for our proposed algorithm is the limited number of obstacles in
the environment, as it relies on robot observations (privacy). As a result, our algorithm
appears to be very efficient in such situations based on the results. Since the robot is too
close to the obstacles, finding the right position and orientation becomes more difficult as
the number of obstacles increases. Due to the fact that the robot may not always be able to
see the correct features and may find itself in situations where obstacles block its vision,
or where the same features of the obstacles cause the histogram produced by the turning
function to overlap, our proposed algorithm has demonstrated acceptable performance in
crowded environments.

Table 2. Effect of environmental details on improving the position and orientation of the robot.

Scenario Mean Distance
Error

Mean Orientation
Error

Distance
Improvement

Orientation
Improvement

1 7.7878 1.0526 94.8979 82.8125
2 7.9858 0.6315 64.3136 90.6250
3 9.3984 0.8421 93.0935 88.2353

5.2. Second Scenario

In the second scenario, we attempt to figure out how the angle affects the robot’s
observations. The effect of angle difference on the process of improving the robot’s position
and orientation is shown in Table 3. Based on the angle difference between real and virtual
sensors, the datasets are divided into three classes, as shown in Table 2: (1) data with
an angle difference between the two sets of RSD and VSD located in the range of 0 to
5 degrees, (2) located in the range of 5 to 10 degrees, and (3) located in the range of 10 to
15 degrees. Each category contains 540 data points. The distance difference in all three
sections ranges from 0 to 300 cm. The greater the angle difference, the more obvious the
differences between real and virtual robot observations. As a result of the rotation function,
the distance difference between the two histograms will increase. There are sometimes large
and unusual differences between the two sets of RSD and VSD, causing both histograms
to deform fundamentally. The algorithm’s performance will undoubtedly be harmed in
this case. It should be noted that, as with any other algorithm, some histograms may have
multiple matching candidates. Because our proposed algorithm is based on observations,
there may be points that the rotation function can view and process, resulting in a histogram
that looks very similar to the RSD set’s histogram. In this case, our proposed algorithm
will incorrectly interpret that point as the robot’s true coordinates. The algorithm comes to
a halt at a local optimum in this situation. The greater the angle difference, the greater the
angle error, as shown by the results of this experiment.

Table 3. Effect of angle on improving the position and orientation of the robot.

Scenario Sample Mean
Distance Error

Mean Orientation
Error

Distance
Improvement

Orientation
Improvement

1 540 8.5752 0.4368 94.2968 77.4194
2 540 6.5290 0.7371 95.3235 86.2746
3 540 10.0688 1.0536 92.7747 90.5661
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5.3. Third Scenario

The effect of the distance between the real and virtual sensors is investigated in
the third scenario. Table 4 represents the results in this scenario. Based on the distance
difference between the RSD and VSD data sets, the data were divided into three categories
in this section: (1) data with a distance difference between 0 and 100 cm, (2) data with a
distance difference between 100 and 200 cm, and (3) data with a distance difference between
200 to 300 cm. The angle difference in this scenario ranges from 0 to 15 degrees. Our
proposed algorithm performs better in reducing angle error when the position difference
between RSD and VSD is small, as can be seen. The virtual and real sensors’ positions
are more similar to the details observed in their surroundings the closer their positions
are. The robot’s histogram will be different than RSD in this case because of the angle
change. As a result, our proposed algorithm can better orient itself at shorter distances.
The distance error grows in proportion to the difference in position between the RSD and
VSD. However, given the initial position difference, this increase is negligible, and due
to the distance improvement rate, our proposed algorithm has been successful over long
distances. Figures 8 and 9 represent the results in these scenarios. In both figures red, blue,
and green lines represent first, second, third scenarios respectively.

Table 4. Effect of distance on improving the position and orientation of the robot.

Scenario Sample Mean
Distance Error

Mean Orientation
Error

Distance
Improvement

Orientation
Improvement

1 540 6.0639 0.4210 89.8533 93.7500
2 540 8.6486 1.0538 93.9186 84.6154
3 540 10.4595 1.0526 95.5024 85.5073
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1 2 3
0

20

40

60

80

100

im
pr

ov
em

en
t

Distance improvement

1 2 3
0

20

40

60

80

100

Orientation improvement

Figure 9. Distance and Orientation improvement in different scenarios.
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6. Conclusions

In this article, a new matching algorithm for estimating a robot’s position with the
ability to correct the error in the orientation and position of a moving robot is presented. In
the presented algorithm, first, a spatial description of the expected position of the robot
is simulated on a complete and accurate map of the environment, and then the simulated
model is adapted to a spatial description obtained from the laser rangefinder sensor data.
The proposed TF algorithm first receives the polygons extracted from the data received
from both sensors and then assigns a histogram to each sensor scan and tries to transform
the pair of histograms into a single coordinate system. In this research, a simulation has been
carried out to evaluate the performance of the TF algorithm. The simulation results show
that our proposed algorithm is able to perform well in quiet, crowded environments and in
different conditions due to the use of a suitable matching strategy. Other features of this
algorithm include its low computational complexity and high speed and the simplicity of
its implementation. Our future work in this field will involve determining the appropriate
time step to estimate the position of the moving robot using the TF algorithm. If we run
the rotation function algorithm after every hundredth of a second, we can calculate the
exact position of the robot. Although we will have an accurate position of the robot, we
will bear a significant calculation burden. If we run the TF algorithm after traveling a long
distance and time step, the position of the robot may be estimated incorrectly, which causes
the error to accumulate and the robot to wander in the environment. Therefore, one of our
future tasks will be finding the best time to estimate the position of a moving robot using
the rotation function.
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