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Abstract: This paper proposes a novel optimization method for solving real-world optimization
problems. It is inspired by a cooperative human phenomenon named the mountaineering team-based
optimization (MTBO) algorithm. Proposed for the first time, the MTBO algorithm is mathematically
modeled to achieve a robust optimization algorithm based on the social behavior and human cooper-
ation needed in considering the natural phenomena to reach a mountaintop, which represents the
optimal global solution. To solve optimization problems, the proposed MTBO algorithm captures the
phases of the regular and guided movement of climbers based on the leader’s experience, obstacles
against reaching the peak and getting stuck in local optimality, and the coordination and social
cooperation of the group to save members from natural hazards. The performance of the MTBO
algorithm was tested with 30 known CEC 2014 test functions, as well as on classical engineering
design problems, and the results were compared with that of well-known methods. It is shown that
the MTBO algorithm is very competitive in comparison with state-of-art metaheuristic methods. The
superiority of the proposed MTBO algorithm is further confirmed by statistical validation, as well
as the Wilcoxon signed-rank test with advanced optimization algorithms. Compared to the other
algorithms, the MTBO algorithm is more robust, easier to implement, exhibits effective optimization
performance for a wide range of real-world test functions, and attains faster convergence to optimal
global solutions.

Keywords: optimization; mountaineering team-based optimization; human cooperation; benchmark
function; heuristic algorithm

MSC: 5K10; 68Q25; 68T20

1. Introduction

Numerous metaheuristic optimization algorithms have been proposed in recent years,
several of which have been deployed in solving engineering problems. The main perfor-
mance features of such methods include a simple structure with easy implementation, not
requiring gradient data, and not getting caught in premature convergence [1,2]. Metaheuris-
tic algorithms inspired by nature solve optimization problems by imitating biological or
physical phenomena. They are generally divided into four categories (Figure 1), including
evolutionary algorithms, methods based on swarm intelligence, physics-based algorithms,
and human-based algorithms.

Evolution-based methods are modeled on the laws of natural selection. In these
methods, upon random generation of a population, the search is started and evolves in the
next generations. The advantage of these methods is the combining of the fittest individuals
to form the next generation for optimizing the population. The most well-known of these
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methods include the genetic algorithm (GA) [3], the evolution strategy [4], biogeography-
based optimization (BBO) [5], and genetic programming (GP) [6]. The second group of
metaheuristic methods includes swarm intelligence methods based on the social behavior
of animals. The most popular of these methods include the particle swarm optimization
(PSO) algorithm [7], the ant colony optimization algorithm (ACO) [8], the artificial bee
algorithm (ABC) [9], the glowworm swarm optimization algorithm (GSO) [10], the grey
wolf optimization (GWO) algorithm [11], the firefly algorithm (FA) [12], and the spotted
hyena optimization (SHO) algorithm [13]. In Ref. [14], the optimization of the non-linear
Hammerstein model is evaluated via the marine predator algorithm’s (MPA) capabilities
as a population-based optimization based on the predators’ strategy for catching prey. In
Ref. [15], an optimization method is presented based on the dwarf mongoose optimization
algorithm (DMOA) to estimate the autoregressive exogenous (ARX) model parameter. In
Ref. [16], a metaheuristic algorithm named the Aquila optimizer (AO) is used to determine
the control autoregressive (CAR) model parameter. In Ref. [17], the parameter estimation of
power system harmonics is investigated through the swarm intelligence-based optimization
strength of the cuckoo search algorithm (CSA). In Ref. [18], a fractional hierarchical gradient
descent (FHGD) algorithm is presented based on the standard hierarchical gradient descent
generalization of the fractional order to solve the non-linear system problem. In Ref. [19],
an optimization method named the flower pollination algorithm is applied to estimate the
identification problems in non-linear active noise control systems.
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Physics-based algorithms are inspired by nature’s physical laws. The most popular
of these methods include the gravitational search algorithm (GSA) [20], the simulated
annealing algorithm (SA) [21], the atom search optimization (ASO) algorithm [22], the
artificial electric field algorithm (AEFA) [23], the big bang–big crunch (BBBC) algorithm [24],
the small world optimization algorithm (SWOA) [25], the galaxy-based search algorithm
(GbSA) [26], the black hole (BH) algorithm [27], the vortex search algorithm (VSA) [28], and
the electromagnetism-like mechanism (EM) algorithm [29]. The fourth category includes
metaheuristic algorithms inspired by human behavior. The most popular of these methods
include teaching–learning-based optimization (TLBO) [30], the harmony search (HS) [31],
the tabu search (TS) [32], the group search optimizer (GSO) [33], the imperialist competitive
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algorithm (ICA) [34], the league championship algorithm (LCA) [35], the firework algorithm
(FA) [36], the soccer league competition (SLC) [37], the seeker optimization algorithm
(SOA) [38], the exchange market algorithm (EMA) [39], group counseling optimization
(GCO) [40], and the driving training-based optimization (DTBO) algorithm [41].

Population-based metaheuristic algorithms share a common characteristic beyond
their nature. These algorithms divide the search process into two phases: exploration
and exploitation [42–46]. In the exploration phase, the algorithm must have operators
to explore the search space to find the global optimum. In the exploitation phase, the
algorithm can find the promising area of the search space. Therefore, the exploitation
phase is related to the local search capability in the promising area of the search space
discovered in the exploration phase. Creating a balance between these two phases, owing
to the optimization randomness, is an essential challenge for developing the metaheuristic
algorithm. A question that arises is, considering all these algorithms, is there a real need
for new algorithms?

The significance and function of optimization in numerous disciplines of science have
become more obvious with the development of science and technology. Hence, to meet
the numerous optimization issues, useful tools are required. Faced with the diversity
of challenging real-world problems in different areas of science and engineering [47–63],
scientists must solve a wide range of complex problems with different objective functions,
including linear or non-linear, single-objective or multi-objective functions, which are unlike
each other. No single algorithm can solve all such optimization problems based on the
no-free-lunch (NFL) theorem [64]. On the other hand, the inherent nature of metaheuristic
algorithms is such that they may have the best possible performance in solving several
functions, while on the other hand, the same algorithm may not perform well at solving
other functions of a different type. Therefore, each algorithm can cover only a certain set of
test functions well. Therefore, most scientific branches have widely recognized the need for
a comprehensive and robust algorithm that is versatile to handle a comprehensive set of
functions with various objectives.

In the present study, a new metaheuristic algorithm, the mountaineering team-based
optimization (MTBO) algorithm, inspired by humans’ social performance and cooperation,
by considering natural phenomena, is presented. This algorithm is novel, and as far as the
authors know, there is no previous study on this algorithm in previous optimization studies.
The performance of the MTBO algorithm in solving real-world functions, basic and common
standard test functions, CEC 2014 benchmark functions (unimodal, simple multimodal,
hybrid, and composition test functions), as well as a wide range of common engineering
design problems, is investigated herein. In each optimization stage, the MTBO algorithm’s
performance is compared with that of several modern and standard algorithms. The
optimization results have shown that the MTBO algorithm is very competitive compared
to common optimization methods. The advantages of the proposed MTBO algorithm are
as follows:

i. A novel metaheuristic algorithm inspired by the social performance and cooperation
of humans by considering natural phenomena;

ii. Has proper and effective MTBO optimization performance for a wide range of
real-world functions compared to other well-known algorithms;

iii. Has a simple optimization process with superior robustness compared to other algorithms;
iv. Characteristic of fast and appropriate convergence to an acceptable and global

optimal solution compared to modern algorithms;
v. A new algorithm based on the effective optimization of real and modern test functions.

The subsequent structure of this paper is as follows. In Section 2, the optimization
through a mountaineering team-based algorithm is formulated. In Section 3, Appendix A,
and Appendix B, the performance of the proposed algorithm is implemented on test
functions, and the optimization results are presented. In Section 4, the performance of
the proposed algorithm in solving real-world engineering problems is evaluated, and the
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results are analyzed. The findings obtained from the proposed algorithm and suggestions
for future work are presented in Section 5.

2. Mountaineering Team-Based Optimization (MTBO)
2.1. Inspiration

Common optimization algorithms can be classified into local optimization and global
optimization. Evolutionary methods are often used for global optimization. It is clear that
intellectual and environmental evolution with the coordinated behavior of humans takes
place much faster than physical and genetic evolution. Therefore, the cultural evolution and
human perspective have not been ignored, and a group of algorithms, known as cultural
algorithms, have been introduced. Cultural algorithms are actually not a completely new
category of algorithms. Rather, the main idea is that by adding the possibility of cultural
evolution (by capturing the possibility of exchanging information between members of the
population) to the existing algorithms, they increase the speed of convergence, as expected.

In this paper, a new optimization algorithm is introduced in the field of evolutionary
computations, which is based on intellectual and environmental evolution with coordi-
nated human behavior. A mountaineering team consists of a number of mountaineers with
an experienced and professional leader whose goal is to conquer the mountaintop in the
region, where the mountaintop is considered the final global solution to the optimization
problem [64–67]. Like other evolutionary optimization methods, the developed algorithm
starts with an initial population. In this algorithm, each population member is called a
mountaineering team member or mountaineer. This algorithm’s core is the mountaineers’
regular and coordinated movement and the consideration of the natural phenomena. Ac-
cording to the regular and coordinated movement phase, the mountaineers are coordinated
by their teammates and also the group leader, which in optimization science is equivalent
to the best solution in the current iteration of the algorithm to reach their goal, which is to
conquer the mountaintop, or in optimization, the science to reach the global optimum or
the best solution. In presenting this algorithm, natural disasters such as avalanches are also
considered, which can hinder the progress of the mountaineers and even endanger their
lives. The main inspiration of the MTBO algorithm is the team’s orderly and coordinated
movement to conquer the mountaintop, considering the natural disasters, formulated
below in rational steps.

2.2. Mathematical Model
2.2.1. First Phase: Coordinated Mountaineering

In a mountaineering team, the group’s most experienced member is always chosen as
the leader and front of the group, which in optimization science is equivalent to the best
solution in the current iteration of the algorithm. Here, the best member of the population
of the algorithm, or equivalently, the mountaineering group, assumes this role. This
member leads the best or the whole group towards the destination or goal to conquer the
mountaintop or, equivalently, to reach the optimal global solution. Therefore, the members
move toward the group leader as follows:

Xnew
i = Xi + rand× (XLeader − Xi) (1)

It should be noted that in a mountaineering team, the movement is organized under
the supervision of the group leader, and usually, the members are organized from the best
to the worst, and each member, in addition to being guided by the group leader, is also
guided, and directed by the member just in front. It can be assumed that the equivalent in
the MTBO algorithm is that after each iteration, the population is ordered from the best to
the worst, and each individual is guided through the group leader and the individual in
front of him/her. Therefore, the equation of regular movement towards the mountaintop is
modified in the following form:

Xnew
i = Xi + rand× (XLeader − Xi) + rand× (Xii − Xi) (2)
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where Xii is the position of the individual member directed by the member just in front.
On the other hand, in the optimization world, every action happens randomly, and

the probability of this phase is assumed to be equal to Li, and hence the pseudo-code of
this phase is as follows:

i f rand < Li

Xnew
i = Xi + rand× (XLeader − Xi) + rand× (Xii − Xi)

end

2.2.2. Second Phase: Effect of Natural Disasters

Several natural disasters could threaten the lives of the mountaineers and prevent
them from reaching the mountaintop, or in other words, trap the population in local
optima that are likely to occur at any moment. Figure 2 shows the common threat that
mountaineers may face when conquering the mountain peak. The most important thing in
the MTBO algorithm is the occurrence of an avalanche and falling off the cliff. In the MTBO,
the basis of the optimization process is mostly based on natural disasters, i.e., avalanches.
Therefore, the probability of this phase or the occurrence of an avalanche is higher than in
other conditions. Therefore, in the MTBO, the critical situation in the event of an avalanche
that occurs randomly in nature is considered to be equivalent to the worst situation of the
algorithm, XWorst or its equivalent XAvalanche, and that in the event of an avalanche and
other calamities, the ith individual tries to get away from the calamity situation, XWorst or
its equivalent XAvalanche, and save herself/himself through the below inspired equation. In
other words, inspired by the science of optimization, the individual is saved from getting
stuck in the optimal local solution and moves towards the global optimization of the best
possible solution.

Xnew
i = Xi − rand× (XAvalanche − Xi) (3)
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The probability of avalanche occurrence is assumed to be equal to Ai, and the pseudo-
code of this phase is presented as follows:

i f rand < Ai

Xnew
i = Xi − rand× (XAvalanche − Xi)

end
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2.2.3. Third Phase: Coordinated and Group Effort against Disasters

The main difference between human groups and other phenomena and beings is that
humans help and guide each other in an informed, organized, and highly effective manner.
This social and cooperative behavior is a vital skill in a mountaineering team. Therefore,
in a mountaineering team, when any calamity occurs, the entire team will try to save the
trapped member in the case of possible disaster or getting stuck. Therefore, the MTBO is
inspired by the concerted and social effort and cooperation of the group to save the trapped
member, i.e., the position of all the members is considered equal to their average position,
Xmean or XTeam that the ith individual is toward the position Xmean or XTeam; this behavior
is modeled as follows:

Xnew
i = Xi + rand× (XTeam − Xi) (4)

The probability of saving an individual trapped by an avalanche, or in other words,
trapped in the optimal local solution, is assumed to be equal to Mi, and the pseudo-code of
this phase is presented as follows:

if rand < Mi

Xnew
i = Xi + rand× (XTeam − Xi)

end

2.2.4. Fourth Phase: Possible Death of Members

Unfortunately, it has been observed that sometimes, due to an avalanche’s intensity,
a mountaineering team member is killed. Therefore, there is a possibility of the death of
mountaineers in the disaster, and none of the above phases can save the mountaineer. This
phase in the MTBO algorithm is considered in such a way that that member is removed
from the group, and a new member is randomly replaced using the following equation:

Xnew
i = X(Xmax − Xmin())min (5)

Finally, the overall pseudo-code of the optimization process of the proposed MTBO
algorithm is depicted in Algorithm 1. Additionally, the MTBO algorithm flowchart in the
optimization process is illustrated in Figure 3.

Algorithm 1: The MTBO Algorithm. https://github.com/Irajfaraji/MTBO (accessed on 6 January 2023)

1: to set values of the control parameters of MTBO algorithm: the scaling factors Li, Ai, and Mi, iterations maximum number
Itermax, and the population size NP and setting the iterations number Iter = 0 for individuals;
2: to generate the initial random population NP (i = 1, 2, . . . , NP);
3: Xi = X(Xmax − Xmin())min
4: to evaluate the fitness of each individual;
5: while The i till maximum no of iterations Itermax do
6: to set the iterations number Iter = Iter + 1;
7: for i = 1 to NP do
8: to choose the numbers XLeader , Xii , XAvalanche;
9: if rand < Li
10: Xnew

i = Xi + rand× (XLeader − Xi) + rand× (Xii − Xi)
11: else if rand < Ai
12: Xnew

i = Xi − rand× (XAvalanche − Xi)
13: else if rand < Mi;
14: Xnew

i = Xi + rand× (XTeam − Xi)
15: else
16: Xnew

i = X(Xmax − Xmin())min ;
17: end if
18: if f (Xnew

i ) < f (Xi)
19: Xi = Xnew

i and f (Xi) = f (Xnew
i );

20: end if
21: if f (Xi) < f (XLeader)(or f (XBest))
22: XLeader(orXBest) = Xi and f (XLeader)(or f (XBest)) = f (Xi);
23: end if
24: end for
25: end while
Return the best solution has been achieved by MTBO algorithm: XLeader or XBest

https://github.com/Irajfaraji/MTBO
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2.3. Computational Complexity of the MTBO

Note that the computational complexity of the MTBO mainly depends on three pro-
cesses: initialization, fitness evaluation, and updating of the population. Note that with
NP individuals, the computational complexity of the initialization process is O(NP). The
computational complexity of the updating mechanism is O(Itermax × NP) + O(Itermax ×
NP × D), which is composed of searching for the best location and updating the location
vector of all populations, where Itermax is the maximum number of iterations and D is the
dimension of the specific problems. Therefore, the computational complexity of the MTBO
is defined by:

O(MTBO) = O(NP × (Itermax + Itermax × D + 1)) (6)

3. Results and Discussion
3.1. Understanding MTBO Performance

First, to describe the performance of the MTBO algorithm based on different popu-
lations and identify the best values of factors Li, Ai, and Mi for the MTBO optimization
performance, three classic and diverse optimization functions [67] are considered, accord-
ing to Table 1. In addition, a three-dimensional specification of these functions is provided
in Figure 4.

Table 1. Summary of the selected test functions with f min = 0.

Test Function Search Range

f1 =
D
∑

i−1
x2

i
[−100, 100]

f2 =
D−1
∑

i=1
(100(x2

i − xi+1)
2
+
(

xi − 1)2) [−2.048, 2.048]

f3 =
D
∑

i=1

(
x2

i − 10 cos(2πxi
)
+ 10) [−5.12, 5.12]

3.1.1. Investigation of MTBO Population Changes

This section uses different populations from 15 to 90 for the MTBO algorithm to solve
three test functions with a dimension of 30 and several iterations of 1000. The mean value
and standard deviation (Std.) for 30 independent executions for each test function are given
in Table 2. It can be observed that the population between 60 and 75 is a suitable choice for
this algorithm for dimension 30. Moreover, the convergence characteristics of the MTBO
with different populations from 15 to 90 for the numerical results in Table 2 are shown in
Figure 5. The symbol R indicates the rank of the obtained result in the total results.
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Table 2. Mean value and standard deviation for 30 independent executions for each test function.

Population
F1 F2 F3

Mean Std. R Mean Std. R Mean Std. R

15 0.5449 0.8326 6 32.9596 8.1957 6 49.9483 9.9646 6

30 9.81 × 10−7 2.62 × 10−6 5 23.8511 2.3849 5 33.6374 17.2550 5

45 1.67 × 10−11 2.19 × 10−11 4 22.8453 2.0032 4 25.9691 11.4754 4

60 1.33 × 10−15 3.95 × 10−15 3 21.9909 0.6714 3 19.2027 5.3488 3

75 4.76 × 10−20 1.09 × 10−19 2 21.6596 0.9834 1 16.9143 4.2987 1

90 1.83 × 10−23 5.52 × 10−23 1 21.8772 0.9459 2 18.0088 5.1476 2

3.1.2. Determining Desirable Factors of MTBO

The performance of a metaheuristic algorithm depends on three factors: (1) the specific
optimization problem at hand, (2) the values of the control parameters, and (3) the random
variability inherent to stochastic algorithms. Therefore, the following aspects are taken
into account.

(i) The regular and coordinated natural movement of the climbing team.

This algorithm chooses the group’s most experienced member as the leader. The basis
of the optimization process is the avalanche. In other words, each member is guided by
the group leader and the member in front. In Table 3, various possibilities for continuing
the regular movement of the population have been examined. The number of repetitions
is 1000, the population of the algorithm is 60, and the dimension of the problem is 30.
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According to the optimization results obtained in Table 3, it can be concluded that the
suitable and desirable value for Li is equal to (0.25 + 0.25 × rand).
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Table 3. Various possibilities to continue the regular movement of the population.

Li
F1 F2 F3

Mean Std. R Mean Std. R Mean Std. R

(0.25 + 0.25 × rand) 1.33 × 10−15 3.95 × 10−15 1 21.9909 0.6714 1 19.2027 5.3488 3

(0.5 + 0.5 × rand) 8.6845 9.4542 6 31.0271 4.4540 6 41.7866 11.7440 6

(0.25 + 0.5 × rand) 8.41 × 10−15 1.51 × 10−14 2 22.3998 1.2361 3 29.0528 12.9879 4

0.5 × rand 3.42 × 10−12 8.85 × 10−12 4 22.3536 1.1654 2 16.5163 8.3666 2

rand 1.41 × 10−14 4.21 × 10−14 3 23.1929 1.7868 4 29.6497 6.9378 5

0.1 1.09 × 10−7 1.70 × 10−7 5 23.4122 1.0828 5 14.6635 7.4747 1

0.9 389.8292 365.6368 7 67.3013 33.3700 7 57.9233 17.7395 7

(ii) Avalanche occurrence probability as a model of natural disasters.

In this algorithm, the optimization process is based on the avalanche. Therefore, the
possibility of avalanche occurrence is more than in other conditions, which are analyzed
in Table 4. The number of repetitions is 1000, the population of the algorithm is 60, and
the dimension of the problem is 30. According to the optimization results obtained in
Table 4, it can be concluded that the appropriate and desirable value for Ai is equal to
(0.75 + 0.25 × rand).
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Table 4. Various possibilities for the occurrence of an avalanche.

Ai
F1 F2 F3

Mean Std. R Mean Std. R Mean Std. R

(0.5 + 0.5 × rand) 1.33 × 10−15 3.95 × 10−15 4 21.9909 0.6714 3 19.2027 5.3488 1

(0.5 + 0.25 × rand) 4.85 × 10−12 7.99 × 10−12 5 22.6942 0.9995 4 23.6800 12.5486 2

(0.75 + 0.25 × rand) 2.28 × 10−18 6.09 × 10−18 3 21.7711 1.3563 2 26.7644 5.1901 3

(0.9 + 0.1 × rand) 4.70 × 10−21 1.13 × 10−20 1 22.7972 2.6426 5 51.6382 22.0165 6

0.1 284.0440 242.0450 6 41.3510 6.7514 6 34.0024 12.2198 5

0.9 2.38 × 10−20 6.09 × 10−20 2 21.2388 1.1805 1 32.3361 11.3176 4

(iii) The possibility of rescuing an individual by the mountaineering team.

This algorithm establishes the probability of saving a person after the occurrence of
an avalanche. Thus, the possibility of saving a person cannot be very high compared to
the previous two processes, and the conditions of its occurrence are when the previous
two processes do not happen to the person in question. In Table 5, different possibilities
for rescue of an individual have been examined first. The number of repetitions is 1000,
the population of the algorithm is 60, and the dimension of the problem is 30. According
to the results obtained in Table 5, the appropriate and desirable value for Mi is equal to
(0.75 + 0.25 × rand).

Table 5. Various possibilities for the rescue of an individual.

Mi
F1 F2 F3

Mean Std. R Mean Std. R Mean Std. R

(0.5 + 0.5 × rand) 1.33 × 10−15 3.95 × 10−15 4 21.9909 0.6714 3 19.2027 5.3488 1

(0.5 + 0.25 × rand) 6.64 × 10−15 2.10 × 10−14 6 22.0837 0.9729 4 28.5554 9.8614 5

(0.75 + 0.25 × rand) 8.66 × 10−17 1.43 × 10−16 2 21.9980 1.2873 2 26.7644 16.5657 3

(0.9 + 0.1 × rand) 2.84 × 10−15 6.05 × 10−15 5 21.9107 1.1549 1 27.5603 15.6338 4

0.1 1.51 × 10−18 3.27 × 10−18 1 22.5299 0.5712 6 40.5943 10.7754 6

0.9 1.29 × 10−15 3.96 × 10−15 3 22.2802 0.8322 5 24.3765 6.1735 2

Appendix A examines the performance comparison of the MTBO based on basic test
functions, while Appendix B discusses the performance comparison of the MTBO based on
the CEC 2014 test functions.

4. MTBO for Real Engineering Problems

In this section, the performance of the MTBO algorithm has been evaluated with three
constrained engineering design problems based on equality and inequality constraints [68],
including the tension/compression spring design [69], the three-bar truss design [70,71],
and pressure vessel optimization [72,73]. Due to the different constraints of these prob-
lems, the constraint management method should be used. Previous optimization studies
have used different types of penalty functions, such as the static, dynamic, adaptive, co-
evolutionary, and death penalty, as well as the special operator and goal separation methods.
The death penalty is the simplest method with easy implementation and low computational
cost, which assigns a large numerical value in the minimization of the problem, causing
the algorithm to move away from impractical solutions in the optimization process. In this
study, the MTBO algorithm is equipped with a death penalty to satisfy the constraints.
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4.1. Tension/Compression Spring Design Problem

The aim of the studied problem is the minimization of the tension/compression spring
weight. The design problem is depicted in Figure 6. The appropriate design should satisfy
the constraints of the shear stress, deflection, and surge frequency. In this design, the
problem has three variables, including the diameter of the wire (d), the average diameter of
the coil (D), and the number of active coils (N).
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Figure 6. Problem of tension/compression spring design.

The optimization problem is presented as follows [69]:
Minimize:

F1(X) = (x3 + 2)x2x2
1. (7)

Subject to:

g1(X) = 1−
x3

2x3

71785x4
1
≤ 0,

g2(X) =
4x2

2 − x1x2

12566
(
x3

1x2 − x4
1
) + 1

5108x2
1
− 1 ≤ 0,

g3(X) = 1− 140.45x1

x2
2x3

≤ 0,

g4(X) =
x1 + x2

1.5
− 1 ≤ 0.

Variable range: 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.
This design problem is conducted using the MTBO algorithm, as well as the Rao-1, BA,

PSO, and WOA algorithms for comparative purposes. The results, including the decision
variables, constraints, and function values, are given in Tables 6 and 7, which indicate
that the MTBO algorithm has obtained better results than that of the other algorithms.
Also, the convergence process for the tension/compression spring problem using different
algorithms is demonstrated in Figure 7, which shows that the MTBO algorithm achieved
lower mean and best values of the objective function.

4.2. Three-Bar Truss Design Problem

This section presents the three-bar truss design problem to minimize its weight. The
objective function is bounded, and structural design problems have many constraints. The
constraints include stress, deflection, and buckling. Figure 8 shows the three-bar truss
design problem.

This design problem is defined as follows [70,71]:
Minimize:

F2(X) = 100×
(

2
√

2x1 + x2

)
. (8)

Subject to:

g1(X) = P×
√

2x1 + x2√
2x2

1 + 2x1x2
− σ ≤ 0,
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g2(X) = P× x2√
2x2

1 + 2x1x2
− σ ≤ 0,

g3(X) = P× 1√
2x2 + x1

− σ ≤ 0,

Table 6. Tension/compression spring optimal design problem.

Variable MTBO

x1 0.05173

x2 0.35771

x3 11.2312

g1 −1.02 × 10−5

g2 −3.49 × 10−6

g3 −4.06

g4 −0.73

Best 0.012665

Mean 0.012684

Worst 0.012702

Std. 5.60 × 10−05

Table 7. Statistical results for the tension/compression spring problem by the studied algorithms.

Variable Best Mean Worst Std. p-Values

MTBO 0.012665 0.012684 0.012702 5.60 × 10−5 –

Rao-1 0.012666 0.012725 0.012875 7.94 × 10−5 0.020840

BA 0.012666 0.013495 0.016673 9.18 × 10−3 0.009918

PSO 0.012675 0.012728 0.012899 4.26 × 10−4 0.009235

WOA 0.012672 0.012711 0.012946 1.84 × 10−3 0.008167
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Figure 8. Problem of three-bar truss design. The numbers 1 to 3 are the number of elements of truss.

Variable range: 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1. This problem is performed via the MTBO, as
well as the Rao-1, BA, PSO, and WOA algorithms. The obtained optimal decision variables,
constraints, and function values are presented in Tables 8 and 9, which clearly indicates the
superiority of the MTBO algorithm in obtaining better results compared to that of the Rao-1,
BA, PSO, and WOA algorithms. Also, the convergence curve of different algorithms in the
design problem is depicted in Figure 9, which shows that the MTBO algorithm obtained
lower mean and best values.

Table 8. Three-bar truss structure optimal design problem using MTBO.

Variable MTBO

x1 0.78868

x2 0.40825

g1(X) −2.52

g2(X) −1.4639

g3(X) −0.5360

Best 263.8958434

Mean 263.895844

Worst 263.8958442

Std. 7.19 × 10−7

Table 9. Statistical results for the three-bar truss structure optimal design problem by the
studied algorithms.

Variable Best Mean Worst Std. p-Values

MTBO 263.8958434 263.895844 263.8958444 7.19 × 10−7 –

Rao-1 263.8958441 263.897012 263.897528 2.58 × 10−3 0.00481

BA 263.8958449 263.910134 263.931824 8.29 × 10−3 2.8772 × 10−4

PSO 263.8958608 263.898057 263.941265 1.67 × 10−2 9.3245 × 10−5

WOA 263.8958505 263.897963 263.928429 6.43 × 10−3 8.4932 × 10−5



Mathematics 2023, 11, 1273 15 of 36

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 40 
 

 

Table 9. Statistical results for the three-bar truss structure optimal design problem by the studied 
algorithms. 

Variable Best Mean Worst Std. p-Values 
MTBO 263.8958434 263.895844 263.8958444 7.19 × 10−7 -- 
Rao-1 263.8958441 263.897012 263.897528 2.58 × 10−3 0.00481 

BA 263.8958449 263.910134 263.931824 8.29 × 10−3 2.8772 × 10−4 
PSO 263.8958608 263.898057 263.941265 1.67 × 10−2 9.3245 × 10−5 

WOA 263.8958505 263.897963 263.928429 6.43 × 10−3 8.4932 × 10−5 

 
Figure 9. Convergence graphs for the three-bar truss design problem using different algorithms. 

4.3. Pressure Vessel Optimization Problem 
In pressure vessel optimization, the objective is to minimize the total cost, including 

the materials, shaping, and welding of the cylindrical pressure vessel, as shown in Figure 
10. Decision variables include shell thickness (Ts), head thickness (Th), inner radius (R), 
and length of cylindrical section excluding head (L). 

 
Figure 10. Problem of the pressure vessel optimization. 

The pressure vessel optimization problem is presented as follows [72,73]: 
Minimize: 

0 50 100 150 200 250 300 350 400

264

265

266

267

268

269

270

Iteration

O
bj

ec
tiv

e 
fu

nc
tio

n

 

 
MTBO
Rao-1
BA
PSO
WOA

Figure 9. Convergence graphs for the three-bar truss design problem using different algorithms.

4.3. Pressure Vessel Optimization Problem

In pressure vessel optimization, the objective is to minimize the total cost, including
the materials, shaping, and welding of the cylindrical pressure vessel, as shown in Figure 10.
Decision variables include shell thickness (Ts), head thickness (Th), inner radius (R), and
length of cylindrical section excluding head (L).
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The pressure vessel optimization problem is presented as follows [72,73]:
Minimize:

F3(X) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3. (9)

Subject to:
g1(X) = −x1 + 0.0193x3 ≤ 0,

g2(X) = −x2 + 0.00954x3 ≤ 0,

g3(X) = −πx2
3x4 −

4
3

πx3
3 + 1296000 ≤ 0,

g4(X) = x4 − 240 ≤ 0,

Variable range: 0 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200.
This problem of pressure vessel optimization is implemented via the MTBO, as well

as the Rao-1, BA, PSO, and WOA algorithms. The decision variables, constraints, and
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function values are given in Tables 10 and 11, which prove the superiority of the MTBO in
achieving superior results compared to that of the Rao-1, BA, PSO, and WOA algorithms.
Moreover, the convergence process of the Rao-1, BA, PSO, and WOA algorithms in the
design problem is demonstrated in Figure 11, which shows that the MTBO obtained lower
mean and best values.

Table 10. Pressure vessel optimal design problem using MTBO.

Variable MTBO

x1 0.8125

x2 0.4375

x3 42.09845

x4 1.76637

g1(X) 0.0

g2(X) −0.036

g3(X) −3.5 × 10−10

g4(X) −63.40

Best 6059.714335

Mean 6168.7825

Worst 6304.2583

Std. 95.37

Table 11. Statistical results for pressure vessel optimal design problem by the studied algorithms.

Variable Best Mean Worst Std. p-Values

MTBO 6059.714335 6168.7825 6304.2583 95.37 –

Rao-1 6059.714335 6182.7054 6391.1278 242.93 0.020568

BA 6059.714335 6195.1006 6325.3192 308.64 0.0164401

PSO 6061.592462 7982.6379 9296.1815 693.51 0.0065754

WOA 6059.715963 6314.8562 7142.5356 500.78 0.0081667
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5. Conclusions

This paper has established a novel optimization algorithm named the mountaineering
team-based optimization (MTBO) algorithm based on intellectual and environmental evolu-
tion with coordinated human behavior. The proposed algorithm is formulated based on the
four phases of coordinated mountaineering, the effect of natural disasters, coordinated and
group effort against disasters, and the possible death of the members due to avalanches.
The capability of the MTBO algorithm is investigated with different populations to identify
the best values of factors considering classic functions. The performance of the MTBO is
further evaluated on 23 basic functions based on unimodal, multimodal, and fixed mul-
timodal benchmark test functions. Statistical analysis and Wilcoxon test results proved
the superior and competitive performance of the MTBO algorithm in comparison with the
genetic algorithm (GA), differential evolution (DE), particle swarm optimization (PSO),
artificial bee colony (ABC), and simulated annealing (SA) algorithms (see Appendix A).
Moreover, the MTBO algorithm’s effectiveness has been investigated in solving the CEC
2014 test functions based on unimodal functions, simple multimodal, hybrid, and composi-
tion, which has provided very competitive results compared to the well-known Rao-1, BA,
PSO, and WOA algorithms (see Appendix B). Furthermore, to evaluate the MTBO algo-
rithm’s performance, three engineering problems, including tension/compression spring
design, three-bar truss design, and pressure vessel optimization, were solved, proving the
MTBO is very competitive compared to the Rao-1, BA, PSO, and WOA algorithms, and
proving its better performance. Hybridization of the MTBO algorithm with the well-known
evolutionary algorithms is suggested for future work.

Author Contributions: Conceptualization, I.F.D. and A.P.; methodology, I.F.D.; software, A.P.; valida-
tion, I.F.D.; formal analysis, I.F.; investigation, I.F.D.; resources, I.F.D.; data curation, A.P.; writing—
original draft preparation, I.F.; writing—review and editing, I.F. and I.F.D.; visualization, A.P.;
supervision, M.L.N.; project administration, M.L.N.; funding acquisition, M.L.N. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not acceptable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Performance Comparison of MTBO Based on Basic Test Functions

In the first part of the comparative study, to understand the proposed algorithm’s
power, its performance has been compared with five standard algorithms based on 23 basic
functions, based on unimodal, multimodal, and fixed multimodal benchmark test func-
tions [74–79], according to Table A1.

The performance of the MTBO algorithm is compared with the GA, DE, PSO, ABC,
and SA algorithms. The control parameters of these algorithms have been selected and
determined based on their reference article, according to Table A2.

Moreover, the code that the author has provided to the readers on selected sites, and
no changes have been made except that for all algorithms, the number of iterations selected
is 1000, and the number of the population considered is 60. Also, for this comparison, the
dimension designated is 30. Visualization of some basic benchmark functions in 2D is
depicted in Figure A1.

Moreover, the optimization performance of the MTBO for these benchmark functions
is depicted in Figure A2.

The numerical results based on the mean value, the best value, the standard deviation,
and the Wilcoxon test results are given in Tables A3–A7.
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Table A1. The 23 essential functions based on unimodal, multimodal, and fixed multimodal benchmark test functions [79].

Unimodal Benchmark Functions

Function Dim Range f min

f1(x) =
n
∑

i=1
x2

i
30 [−100, 100] 0

f2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30 [−10, 10] 0

f3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
30 [−100, 100] 0

f4(x) = maxi{|x1|} , 1 ≤ i ≤ n 30 [−100, 100] 0

f5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

30 [−30, 30] 0

f6(x) =
n
∑

i=1
([xi + 0.5])2 30 [−100, 100] 0

f7(x) =
n
∑

i=1
ix4

i + rand[0, 1) 30 [−1.28, 1.28] 0

Multimodal Benchmark Functions

Function Dim Range f min

f8(x) =
n
∑

i=1
−xi sin

(√
|xi|
)

30 [−500, 500] −418.9829× 5

f9(x) =
n
∑

i=1

[
x2

i − 10 cos(2πx1) + 10
] 30 [−5.12, 5.12] 0

f10(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e 30 [−32, 32] 0

f11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
30 [−600, 600] 0
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Table A1. Cont.

Unimodal Benchmark Functions

Function Dim Range f min

f12(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)

2[
1 + 10 sin2(πyi+1) + (yn − 1)2

]}
+

n
∑

i=1
u(xi, 10, 100, 4)

yi = 1 + xi+1
4

u(x1, a, k, m) =


k(xi − a)m xi > a

0 −a < xi < a
k(−xi − a)m xi < −a

30 [−50, 50] 0

f13(x) = 0.1
{

sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+

n
∑

i=1
u(xi, 5, 100, 4)

30 [−50, 50] 0

f14(x) = −
n
∑

i=1
sin(xi) ·

(
sin
(

i·x2
i

π

))2m
, m = 5 30 [0, π] −4.687

f15(x) =

e
−

n
∑

i=1
(

xi
β )

2m

− 2e
−

n
∑

i=1
x2

i

 · n
∏
i=1

cos2 xi , m = 5 30 [−20, 20] −1

f16(x) =
{[

n
∑

i=1
sin2(xi)

]
− exp

(
−

n
∑

i=1
x2

i

)}
. exp

[
−

n
∑

i=1
sin2√|xi|

]
30 [−10, 10] −1

Fixed-Dimension Multimodal Benchmark Functions

Function Dim Range f min

f14(x) =

 1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)

6

−1
2 [−65, 65] 1

f15(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]
4 [−5, 5] 0.00030

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

f17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5, 5] 0.398
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Table A1. Cont.

Unimodal Benchmark Functions

Function Dim Range f min

f18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2
)]

×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] 2 [−2, 2] 3

f19(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij

(
xj − pij

)2
)

3 [1, 3] −3.86

f20(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij

(
xj − pij

)2
)

6 [0, 1] −3.32

f21(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0, 10] −10.1532

f22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0, 10] −10.4028

f23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0, 10] −10.5363
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Table A2. The control parameters of different algorithms.

Algorithm Parameter Value

Genetic algorithm (GA) [74]
Crossover factor 0.7

Mutation factor 0.3

(DE) [75]
Crossover probability 0.1

Scaling factor 0.9

Particle swarm optimization
(PSO) [76,77]

Constriction factor χ 0.729

Acceleration control
coefficient c1

2.05

Acceleration control
coefficient c2

2.05

Artificial bee colony
(ABC) [68]

Onlooker number no 50% of the colony

Employed bee number ne 50% of the colony

Scout number ns 1

Limit ns × D (dimension of the
problem)

Simulated annealing (SA) [78]
Cooling rate α 0.8

Initial temperature T0 1
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Figure A2. Cont.
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Figure A2. Optimization performance of the MTBO for some basic benchmark functions.

Table A3. Summary of the Mean results for the test functions for the classic and MTBO algorithms.

Function GA DE PSO ABC SA MTBO

F1 3.53 × 10−2

-
1.26 × 10−11

-
2.96 × 10−8

-
5.14 × 10−14

-
1.59 × 10−7

-
7.70 × 10−19

F2 1.39
-

7.07 × 10−2

+
5.59 × 10−1

-
2.38 × 10−1

-
8.95 × 10−1

- 1.72 × 10−1

F3 4.50 × 10+2

-
3.77 × 10+1

-
1.67 × 10+2

-
3.64 × 10+1

-
6.21 × 10+1

-
3.55 × 10+1

F4 1.42 × 10+1

-
6.19

-
9.61

-
4.42

-
6.56

- 2.36

F5 9.56 × 10+1

-
3.80 × 10+1

-
3.44 × 10+1

-
3.07 × 10+1

-
5.49 × 10+1

-
2.73 × 10+1

F6 6.38 × 10−3

-
6.67 × 10−13

-
4.74 × 10−7

-
2.55 × 10−15

-
2.99 × 10−5

-
2.71 × 10−17

F7 1.15 × 10−1

-
3.06 × 10−2

-
4.75 × 10−2

-
2.45 × 10−2

-
3.89 × 10−2

-
1.69 × 10−2

F8 −7.57 × 10+3

-
−8.10 × 10+3

+
−8.24 × 10+3

+
−7.96 × 10+3

-
−7.51 × 10+3

- −8.09 × 10+3

F9 4.87 × 10+1

-
3.21 × 10+1

-
3.35 × 10+1

-
3.30 × 10+1

-
3.44 × 10+1

-
2.97 × 10+1

F10 2.94
-

1.92
-

2.40
-

2.29
-

2.57
- 1.34

F11 5.80 × 10−1

-
8.32 × 10−2

-
1.72 × 10−1

-
5.02 × 10−2

-
3.97 × 10−2

-
3.73 × 10−2

F12 4.58
-

9.51 × 10−1

-
1.96

-
1.37

-
1.21

- 2.08 × 10−1

F13 2.09 × 10+1

-
1.03 × 10+1

-
1.57 × 10+1

-
1.21 × 10+1

-
1.34 × 10+1

-
2.59
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Table A3. Cont.

Function GA DE PSO ABC SA MTBO

F14 9.98 × 10−1

=
9.98 × 10−1

=
9.98 × 10−1

=
9.98 × 10−1

=
9.98 × 10−1

= 9.98 × 10−1

F15 2.55 × 10−3

-
2.66 × 10−3

-
2.50 × 10−3

-
5.39 × 10−4

+
7.85 × 10−4

- 6.73 × 10−4

F16 −1.03
=

−1.03
=

−1.03
=

−1.03
=

−1.03
= −1.03

F17 3.98 × 10−1

=
3.98 × 10−1

=
3.98 × 10−1

=
3.98 × 10−1

=
3.98 × 10−1

= 3.98 × 10−1

F18 3.00
=

3.00
=

3.00
=

3.00
=

3.00
= 3.00

F19 −3.86
=

−3.86
=

−3.86
=

−3.86
=

−3.86
= −3.86

F20 −3.29
=

−3.28
-

−3.27
-

−3.24
-

−3.27
- −3.29

F21 −5.78
-

−6.28
-

−6.53
-

−7.03
-

−6.86
- −8.65

F22 −6.68
-

−7.68
-

−5.53
-

−8.25
-

−7.82
- −8.80

F23 −6.37
-

−8.76
-

−9.48
=

−8.67
-

−7.75
- −9.48

Nm 6 6 7 6 5 20

Final rank 3 3 2 3 6 1
Nm represents the number of times with a ranking higher than the mean value obtained.

The Wilcoxon test based on Refs. [80–84] is performed for different algorithms, and the pro-
posed algorithm decisively won over all the algorithms and had a more effective performance.

Table A4. Wilcoxon’s test rank summary of the statistical assessment results for the classic and
MTBO algorithms.

Function GA DE PSO ABC SA MTBO

F1 6 3 4 2 5 1

F2 6 1 4 3 5 2

F3 6 3 5 2 4 1

F4 6 3 5 2 4 1

F5 6 4 3 2 5 1

F6 6 3 4 2 5 1

F7 6 3 5 2 4 1

F8 5 2 1 4 6 3

F9 6 2 4 3 5 1

F10 6 2 4 3 5 1

F11 6 4 5 3 2 1

F12 6 2 5 4 3 1

F13 6 2 5 3 4 1

F14 3.5 3.5 3.5 3.5 3.5 3.5

F15 5 6 4 1 3 2
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Table A4. Cont.

Function GA DE PSO ABC SA MTBO

F16 3.5 3.5 3.5 3.5 3.5 3.5

F17 3.5 3.5 3.5 3.5 3.5 3.5

F18 3.5 3.5 3.5 3.5 3.5 3.5

F19 3.5 3.5 3.5 3.5 3.5 3.5

F20 1.5 3 4.5 6 4.5 1.5

F21 6 5 4 2 3 1

F22 5 4 6 2 3 1

F23 6 3 1.5 4 5 1.5

Total 118 72.50 91.50 67.50 93 40.50

Rank mean 5.1304 3.1522 3.9783 2.9348 4.0435 1.7609

Final rank 6 3 4 2 5 1

Table A5. The competitive results of the Wilcoxon’s test.

Corresponding
Algorithm

MTBO versus

p-Values Better Worst Equal

SA 1.9644 × 10−4 18 0 5

ABC 3.2701 × 10−4 17 1 5

PSO 0.0049 16 1 6

DE 0.0074 16 2 5

GA 2.9305 × 10−4 17 0 6

Table A6. Summary of the best results for the test functions for the classic and MTBO algorithms.

Function GA DE PSO ABC SA MTBO

F1 0.00 0.00 0.00 0.00 0.00 0.00

F2 0.00 0.00 0.00 0.00 0.00 0.00

F3 18.70 2.57 5.96 2.27 5.42 0.32

F4 9.26 2.73 4.90 2.16 4.07 0.27

F5 22.90 9.35 4.81 11.50 7.06 4.03

F6 0.00 0.00 0.00 0.00 0.00 0.00

F7 0.04 0.01 0.01 0.01 0.01 0.01

F8 −9.23 × 10+3 −9.16 × 10+3 −9.14 × 10+3 −8.46 × 10+3 −9.23 × 10+3 −9.06 × 10+3

F9 21.90 18.90 14.90 16.00 16.20 15.90

F10 0.00 0.00 0.00 0.00 0.00 0.00

F11 0.00 0.00 0.00 0.00 0.00 0.00

F12 0.31 0.00 0.00 0.00 0.00 0.00

F13 9.15 0.01 0.56 0.00 0.02 0.00

F14 1.00 1.00 1.00 1.00 1.00 1.00

F15 0.00 0.00 0.00 0.00 0.00 0.00

F16 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03
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Table A6. Cont.

Function GA DE PSO ABC SA MTBO

F17 0.40 0.40 0.40 0.40 0.40 0.40

F18 3.00 3.00 3.00 3.00 3.00 3.00

F19 −3.86 −3.86 −3.86 −3.86 −3.86 −3.86

F20 −3.32 −3.32 −3.32 −3.32 −3.32 −3.32

F21 −1.02 × 10+1 −1.02 × 10+1 −1.02 × 10+1 −1.02 × 10+1 −1.02 × 10+1 −1.02 × 10+1

F22 −1.04 × 10+1 −1.04 × 10+1 −1.04 × 10+1 −1.04 × 10+1 −1.04 × 10+1 −1.04 × 10+1

F23 −1.05 × 10+1 −1.05 × 10+1 −1.05 × 10+1 −1.05 × 10+1 −1.05 × 10+1 −1.05 × 10+1

Nb 11.00 12.00 13.00 12.00 10.00 18.00

Final rank 5.00 3.00 2.00 3.00 6.00 1.00
Nb represents the number of times with a ranking higher than the best value obtained.

Table A7. Summary of the Std. results for the test functions for the classic and MTBO algorithms.

Function GA DE PSO ABC SA MTBO

F1 0.08 0.00 0.00 0.00 0.00 0.00

F2 1.80 0.12 0.73 0.42 0.37 0.45

F3 407.00 199.00 202.00 58.10 46.40 60.30

F4 2.80 2.50 2.54 1.27 2.23 1.34

F5 79.00 31.90 42.40 40.50 44.20 23.00

F6 2.85 0.00 0.00 0.00 0.00 0.00

F7 0.07 0.01 0.02 0.01 0.02 0.01

F8 1080.00 533.00 684.00 346.00 1350.00 603.00

F9 14.90 9.02 9.46 14.60 16.00 6.52

F10 1.27 0.78 1.47 1.46 1.18 1.03

F11 0.95 0.09 0.24 0.05 0.05 0.03

F12 4.80 0.96 2.33 2.43 0.82 0.30

F13 12.20 9.28 11.30 12.50 12.30 5.10

F14 0.00 0.00 0.00 0.00 0.00 0.00

F15 0.01 0.01 0.01 0.00 0.00 0.00

F16 0.00 0.00 0.00 0.00 0.00 0.00

F17 0.00 0.00 0.00 0.00 0.00 0.00

F18 0.00 0.00 0.00 0.00 0.00 0.00

F19 0.00 0.00 0.00 0.00 0.00 0.00

F20 0.06 0.06 0.06 0.06 0.06 0.06

F21 3.70 3.66 3.75 3.61 3.17 2.74

F22 3.83 3.48 3.68 3.38 3.62 2.86

F23 3.89 3.16 2.58 3.33 3.57 2.58

Appendix B. Performance Comparison of MTBO Based on CEC 2014 Test Functions

This section evaluates the MTBO algorithm’s performance in solving CEC 2014 test
functions [80] (see Table A8), based on unimodal functions, simple multimodal, hybrid, and
composition. The unimodal test functions have an optimal point to evaluate the algorithm’s
convergence and exploitation. Multimodal test functions have more than one optimum,
which is an important challenge, as they have one global optimum, and the rest are local
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optimums. Multimodal functions are suitable for evaluating algorithms from exploring
the local optimum to reaching the global optimum. Composition test functions are the
combined or transferred versions of the unimodal and multimodal functions.

Table A8. CEC 2014 benchmark test functions.

Number Functions [Min, Max]

F1

Unimodal

Rotated high conditioned elliptic function [−100, 100]

F2 Rotated Bent Cigar function [−100, 100]

F3 Rotated discus function [−100, 100]

F4

Simple
Multimodal

Shifted and rotated Rosenbrock’s function [−100, 100]

F5 Shifted and rotated Ackley’s function [−100, 100]

F6 Shifted and rotated Weierstrass function [−100, 100]

F7 Shifted and rotated Griewank’s function [−100, 100]

F8 Shifted Rastrigin’s function [−100, 100]

F9 Shifted and rotated Rastrigin’s function [−100, 100]

F10 Shifted Schwefel’s function [−100, 100]

F11 Shifted and rotated Schwefel’s function [−100, 100]

F12 Shifted and rotated Katsuura function [−100, 100]

F13 Shifted and rotated HappyCat function [−100, 100]

F14 Shifted and rotated HGBat function [−100, 100]

F15 Shifted and rotated expanded Griewank’s plus
Rosenbrock’s function [−100, 100]

F16 Shifted and rotated expanded Scaffer’s F6 function [−100, 100]

F17

Hybrid

Hybrid function 1 (N = 3) [−100, 100]

F18 Hybrid function 2 (N = 3) [−100, 100]

F19 Hybrid function 3 (N = 4) [−100, 100]

F20 Hybrid function 4 (N = 4) [−100, 100]

F21 Hybrid function 5 (N = 5) [−100, 100]

F22 Hybrid function 6 (N = 5) [−100, 100]

F23

Composition

Composition function 1 (N = 5) [−100, 100]

F24 Composition function 2 (N = 3) [−100, 100]

F25 Composition function 3 (N = 3) [−100, 100]

F26 Composition function 4 (N = 5) [−100, 100]

F27 Composition function 5 (N = 5) [−100, 100]

F28 Composition function 6 (N = 5) [−100, 100]

F29 Composition function 7 (N = 3) [−100, 100]

F30 Composition function 8 (N = 3) [−100, 100]

To solve the CEC 2014 test functions, the effectiveness of the MTBO algorithm is
compared with the Rao-1 [81], BA [82,83], PSO [75,76], and WOA [84] algorithms. The
control parameters of the mentioned algorithms have been considered based on their
reference article, according to Table A9. The number of iterations is selected as 5000, the
population considered is 60, and the dimension is selected at 30.

The numerical results based on the mean value are given in Table A10. The results
show the MTBO method’s superiority and competitiveness compared to other algorithms.
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Table A9. The control parameters of different algorithms for solving the CEC 2014 test functions.

Algorithm Parameter Value

Rao-1 [81] Without any control parameter -

Bat algorithm (BA) [82,83]

loudness A 0.25

pulse rate r 0.5

Scaling factor ε 0.1

the minimum frequency fmin 0.7

the maximum frequency fmax 0.9

Particle swarm optimization (PSO) [75,76]

Constriction factor χ 0.729

Acceleration control coefficient c1 2.05

Acceleration control coefficient c2 2.05

Whale optimization algorithm (WOA) [84]

Scaling factor a [0, 2]

Scaling factor b 1

Scaling factor l [−1, 1]

Table A10. Summary of the mean results for CEC 2014 test functions for different algorithms with
D = 30.

Function
Rao-1 BA PSO WOA MTBO

Mean Mean Mean Mean Mean

F1

Unimodal

1.77 × 10+7

-
3.71 × 10+7

-
3.02 × 10+7

-
2.94 × 10+7

-
3.30 × 10+6

F2 8.05 × 10+3

-
1.91 × 10+7

-
1.23 × 10+6

-
4.81 × 10+6

-
1.99 × 10+1

F3 3.04 × 10+4

-
5.12 × 10+4

-
2.87 × 10+4

-
3.32 × 10+4

-
1.50 × 10+3

F4

Simple
Multimodal

1.04 × 10+2

-
1.88 × 10+2

-
1.74 × 10+2

-
1.84 × 10+2

-
4.47 × 10+1

F5 2.09 × 10+1

=
2.11 × 10+1

-
2.09 × 10+1

=
2.04 × 10+1

+ 2.09 × 10+1

F6 2.83 × 10+1

-
3.60 × 10+1

-
3.45 × 10+1

-
3.50 × 10+1

-
2.29 × 10+1

F7 6.33 × 10−2

-
1.08

-
8.78 × 10−1

-
9.74 × 10−1

-
3.14 × 10−2

F8 1.75 × 10+2

-
1.66 × 10+2

-
1.93 × 10+2

-
1.90 × 10+2

-
9.52 × 10+1

F9 2.16 × 10+2

-
2.61 × 10+2

-
2.18 × 10+2

-
2.36 × 10+2

-
1.02 × 10+2

F10 6.05 × 10+3

-
3.60 × 10+3

-
3.95 × 10+3

-
4.07 × 10+3

-
1.99 × 10+3

F11 6.90 × 10+3

-
5.67 × 10+3

-
4.78 × 10+3

+
4.85 × 10+3

- 5.37 × 10+3

F12 2.42
-

2.73
-

2.88
-

1.67
+ 2.35

F13 4.63 × 10−1

-
5.20 × 10−1

-
4.91 × 10−1

-
5.02 × 10−1

-
4.31 × 10−1

F14 5.44 × 10−1

-
3.90 × 10−1

-
3.43 × 10−1

-
2.39 × 10−1

+ 3.03 × 10−1
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Table A10. Cont.

Function
Rao-1 BA PSO WOA MTBO

Mean Mean Mean Mean Mean

F15 1.79 × 10+1

-
6.85 × 10+1

-
5.71 × 10+1

-
9.34 × 10+1

-
1.63 × 10+1

F16 1.28 × 10+1

-
1.29 × 10+1

-
1.24 × 10+1

-
1.27 × 10+1

-
1.13 × 10+1

F17

Hybrid

1.76 × 10+6

-
5.77 × 10+6

-
2.48 × 10+6

-
3.58 × 10+6

-
2.06 × 10+5

F18 4.73 × 10+6

-
5.81 × 10+3

-
4.45 × 10+3

-
3.51 × 10+4

-
2.18 × 10+3

F19 8.99
+

4.57 × 10+1

-
3.18 × 10+1

-
4.48 × 10+1

- 1.20 × 10+1

F20 5.61 × 10+3

-
4.15 × 10+4

-
2.24 × 10+4

-
2.22 × 10+4

-
7.36 × 10+2

F21 5.23 × 10+5

-
8.17 × 10+5

-
9.41 × 10+5

-
1.05 × 10+6

-
1.18 × 10+5

F22 4.55 × 10+2

-
7.21 × 10+2

-
7.50 × 10+2

-
7.23 × 10+2

-
3.82 × 10+2

F23

Composition

3.15 × 10+2

=
3.44 × 10+2

-
3.31 × 10+2

-
3.30 × 10+2

-
3.15 × 10+2

F24 2.40 × 10+2

-
2.37 × 10+2

-
2.34 × 10+2

-
2.08 × 10+2

+ 2.31 × 10+2

F25 2.09 × 10+2

+
2.12 × 10+2

+
2.25 × 10+2

-
2.20 × 10+2

- 2.13 × 10+2

F26 1.01 × 10+2

-
1.00 × 10+2

=
1.01 × 10+2

-
1.00 × 10+2

= 1.00 × 10+2

F27 9.23 × 10+2

-
1.15 × 10+3

-
1.08 × 10+3

-
9.78 × 10+2

-
8.44 × 10+2

F28 1.51 × 10+3

-
2.31 × 10+3

-
2.26 × 10+3

-
2.33 × 10+3

-
1.40 × 10+3

F29 1.89 × 10+6

+
4.02 × 10+6

-
5.79 × 10+6

-
4.88 × 10+6

- 3.52 × 10+6

F30 4.09 × 10+3

+
9.09 × 10+4

-
6.90 × 10+4

-
9.76 × 10+4

- 7.06 × 10+3

Nm 5 1 1 5 21

Final rank 2.5 4.5 4.5 2.5 1
Nm represents the number of times with a ranking higher than the mean value obtained.

The Wilcoxon’s test is implemented based on Ref. [79], and the results are presented
in Tables A11–A14. The resssults are clear that the MTBO algorithm has obtained the best
results among 30 execution times decisively compared to all the other algorithms.

Table A11. Wilcoxon’s test rank summary of the statistical assessment results for the CEC 2014 test
functions for the different algorithms with D = 30.

Function Rao-1 BA PSO WOA MTBO

F1

Unimodal

2 5 4 3 1

F2 2 5 3 4 1

F3 3 5 2 4 1
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Table A11. Cont.

Function Rao-1 BA PSO WOA MTBO

F4

Simple
Multimodal

2 5 3 4 1

F5 3 5 3 1 3

F6 2 5 3 4 1

F7 2 5 3 4 1

F8 3 2 5 4 1

F9 2 5 3 4 1

F10 5 2 3 4 1

F11 5 4 1 2 3

F12 3 4 5 1 2

F13 2 5 3 4 1

F14 5 4 3 1 2

F15 2 4 3 5 1

F16 4 5 2 3 1

F17

Hybrid

2 5 3 4 1

F18 5 3 2 4 1

F19 1 5 3 4 2

F20 2 5 4 3 1

F21 2 3 4 5 1

F22 2 3 5 4 1

F23

Composition

1.5 5 4 3 1.5

F24 5 4 3 1 2

F25 1 2 5 4 3

F26 4.5 2 4.5 2 2

F27 2 5 4 3 1

F28 2 3 4 5 1

F29 1 3 5 4 2

F30 1 4 3 5 2

Total 79 122 102.5 103 43.5

Rank mean 2.6333 4.0667 3.4167 3.4333 1.4500

Final rank 2 5 3 4 1

Table A12. The competitive results of the Wilcoxon’s test.

Corresponding Algorithm
MTBO versus

p-Values Better Worst Equal

WOA 9.1900 × 10−8 25 4 1

PSO 2.8088 × 10−9 28 1 1

BA 2.4151 × 10−10 28 1 1

Rao-1 5.0240 × 10−5 24 4 2
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Table A13. Summary of the best results for the CEC 2014 test functions for the different algorithms
with D = 30.

Function
Rao-1 BA PSO WOA MTBO

Best Best Best Best Best

F1

Unimodal

1.080 × 10+7 1.220 × 10+7 1.160 × 10+7 1.050 × 10+7 3.130 × 10+5

F2 2.680 × 10+2 2.080 × 10+6 3.670 × 10+5 1.140 × 10+6 0.58

F3 1.510 × 10+4 2.040 × 10+4 1.000 × 10+4 1.090 × 10+4 99.80

F4

Simple
Multimodal

3.71 104.00 114.00 117.00 0.01

F5 20.80 20.30 20.50 20.30 20.20

F6 17.00 32.20 29.00 27.90 5.74

F7 0.00 0.99 0.79 0.80 0.00

F8 130.00 114.00 131.00 141.00 40.70

F9 198.00 182.00 129.00 187.00 70.60

F10 5.410 × 10+3 2.220 × 10+3 3.370 × 10+3 3.560 × 10+3 712.00

F11 6.620 × 10+3 4.490 × 10+3 2.900 × 10+3 3.130 × 10+3 1.690 × 10+3

F12 1.87 1.43 1.30 0.91 1.83

F13 0.36 0.38 0.40 0.33 0.23

F14 0.25 0.23 0.16 0.18 0.21

F15 16.50 27.20 31.50 49.20 4.69

F16 12.30 12.10 11.60 12.00 10.50

F17

Hybrid

1.070 × 10+6 1.560 × 10+6 5.550 × 10+5 8.400 × 10+5 2.620 × 10+4

F18 25,600.00 596.00 394.00 384.00 78.90

F19 5.80 16.70 17.50 17.70 8.27

F20 2.520 × 10+3 1.330 × 10+4 6.790 × 10+3 5.590 × 10+3 184.00

F21 3.450 × 10+5 3.480 × 10+5 5.250 × 10+4 2.880 × 10+5 1.010 × 10+4

F22 290.00 487.00 512.00 502.00 47.50

F23

Composition

315.00 322.00 322.00 322.00 315.00

F24 220.00 203.00 200.00 201.00 200.00

F25 205.00 200.00 200.00 200.00 200.00

F26 100.00 100.00 100.00 100.00 100.00

F27 415.00 440.00 417.00 420.00 408.00

F28 750.00 1740.00 200.00 1630.00 1020.00

F29 2.930 × 10+3 3.420 × 10+4 9.360 × 10+3 1.130 × 10+4 1.330 × 10+3

F30 1.500 × 10+3 2.290 × 10+4 2.870 × 10+4 2.070 × 10+4 1.140 × 10+3

Nm 3 3.00 2.00 5.00 3.00

Final rank 3.5 3.50 5.00 2.00 3.50
Nm represents the number of times with a ranking higher than the best value obtained.
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Table A14. Summary of the Std. results for the CEC 2014 test functions for the different algorithms
with D = 30.

Function
Rao-1 BA PSO WOA MTBO

STD STD STD STD STD

F1

Unimodal

7.81 × 10+6 2.350 × 10+7 1.230 × 10+7 1.220 × 10+7 6.20 × 10+6

F2 6490.00 6.720 × 10+6 8.060 × 10+5 6.080 × 10+6 26.20

F3 9110.00 3.920 × 10+4 2.270 × 10+4 2.330 × 10+4 1480.00

F4

Simple
Multimodal

56.70 69.60 48.80 65.10 30.40

F5 0.06 0.20 0.15 0.19 0.04

F6 7.43 5.16 3.43 4.06 2.82

F7 0.11 0.10 0.07 0.10 0.03

F8 29.00 32.50 50.80 30.10 23.80

F9 15.50 82.40 57.20 56.10 19.10

F10 478.00 702.00 315.00 568.00 491.00

F11 251.00 838.00 1140.00 802.00 1940.00

F12 0.31 0.59 0.35 0.56 0.28

F13 0.07 0.24 0.07 0.16 0.08

F14 0.30 0.06 0.05 0.05 0.05

F15 0.96 22.80 14.80 32.80 7.51

F16 0.29 0.67 0.50 0.44 0.54

F17

Hybrid

469,000.00 2.27 × 10+6 1.33 × 10+6 1.52 × 10+6 1.94 × 10+5

F18 8,490,000.00 94,400.00 5260.00 95,100.00 3110.00

F19 2.13 31.60 19.00 40.60 2.81

F20 2080.00 14,100.00 22,100.00 10,800.00 910.00

F21 175,000.00 4.450 × 10+5 7.120 × 10+5 8.790 × 10+5 1.200 × 10+5

F22 130.00 299.00 134.00 215.00 144.00

F23

Composition

0.00 5.08 7.27 7.16 0.00

F24 8.36 9.25 2.66 4.96 7.99

F25 2.77 18.30 21.10 16.50 3.45

F26 0.08 0.24 0.14 0.11 0.12

F27 206.00 600.00 360.00 387.00 228.00

F28 331.00 282.00 858.00 684.00 300.00

F29 3,990,000.00 6.80 × 10+6 5.03 × 10+6 5.16 × 10+6 4.95 × 10+6

F30 2360.00 3.740 × 10+5 32,200.00 1.19 × 10+5 12,300.00

Figure A3 also shows the convergence comparisons of the algorithms for multimodal functions.
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